Review of main QCD ideas: proton structure, parton evolution and saturation

UPC2023, Student day, Playa del Carmen, December 10, 2023

- Exploration of proton structure: brief historical overview
- DGLAP evolution
- BFKL evolution at small x
- Dipole model
- Parton saturation

Atomic structure revealed

Geiger-Marsden experiment 1909 Scattering of alpha particles off the gold foil. Observation of large angle scattering.

Rutherford model 1911 Atomic structure: positively charged small nucleus

LXXIX. The Scattering of α and β Particles by Matter and the Structure of the Atom. By Professor E. RUTHERFORD, F.R.S., University of Manchester *.

traversed. The observations, however, of Geiger and Marsden \dagger on the scattering of α rays indicate that some of the α particles must suffer a deflexion of more than a right angle at a single encounter. They found, for example, that

It seems reasonable to suppose that the deflexion through a large angle is due to a single atomic encounter, for the chance of a second encounter of a kind to produce a large deflexion must in most cases be exceedingly small. A simple calculation shows that the atom must be a seat of an intense electric field in order to produce such a large deflexion at a single encounter.

Atomic structure revealed

Geiger-Marsden experiment 1909 Scattering of alpha particles off the gold foil. Observation of large angle scattering.

Rutherford model 1911 Atomic structure: positively charged small nucleus

LXXIX. The Scattering of α and β Particles by Matter and the Structure of the Atom. By Professor E. RUTHERFORD, F.R.S., University of Manchester *.

traversed. The observations, however, of Geiger and Marsden \dagger on the scattering of α rays indicate that some of the α particles must suffer a deflexion of more than a right angle at a single encounter. They found, for example, that

It seems reasonable to suppose that the deflexion through a large angle is due to a single atomic encounter, for the chance of a second encounter of a kind to produce a large deflexion must in most cases be exceedingly small. A simple calculation shows that the atom must be a seat of an intense electric field in order to produce such a large deflexion at a single encounter.

Later on addressing a Royal Society anniversary meeting as its President, Rutherford commented prophetically, "It would be of great scientific interest if it were possible in experiments to have a supply of electrons... of which the individual energy of motion is greater even than that of the a particle".

Nucleon size

Hofstadter experiments in 1950-1957

<u>Electron</u> scattering off nuclei, determining the charge and shape of nuclei, and measuring the finite size of protons.

Energy of electrons 188 MeV

Fig. 2. This figure shows a schematic diagram of a modern electron-scattering experimental area. The track on which the spectrometers roll has an approximate radius of 13.5 feet.

Current experimental value (measured with electrons):

$$R_p = 0.87 \text{ fm}$$

1 fm = 10⁻¹³ cm

First observation of proton structure

VOLUME 23, NUMBER 16

PHYSICAL REVIEW LETTERS

20 October 1969

OBSERVED BEHAVIOR OF HIGHLY INELASTIC ELECTRON-PROTON SCATTERING

M. Breidenbach, J. I. Friedman, and H. W. Kendall Department of Physics and Laboratory for Nuclear Science,* Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and

E. D. Bloom, D. H. Coward, H. DeStaebler, J. Drees, L. W. Mo, and R. E. Taylor Stanford Linear Accelerator Center,[†] Stanford, California 94305 (Received 22 August 1969)

First observation of proton structure

VOLUME 23, NUMBER 16

PHYSICAL REVIEW LETTERS

20 October 1969

OBSERVED BEHAVIOR OF HIGHLY INELASTIC ELECTRON-PROTON SCATTERING

M. Breidenbach, J. I. Friedman, and H. W. Kendall Department of Physics and Laboratory for Nuclear Science,* Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and

E. D. Bloom, D. H. Coward, H. DeStaebler, J. Drees, L. W. Mo, and R. E. Taylor Stanford Linear Accelerator Center,[†] Stanford, California 94305 (Received 22 August 1969)

Feynman-Bjorken scaling: existence of partons

x has the interpretation of the longitudinal momentum fraction of the proton carried by the struck quark (in the frame where proton is fast) $x \simeq \xi$

DIS: structure functions

Inclusive DIS cross section for $lp \rightarrow lX$ (*l* charged lepton, $Q^2 \ll M_Z^2$, $s \gg M_p^2$)

$$\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha_{\rm em}^2}{Q^4x} [(1+(1-y)^2)F_2(x,Q^2) - y^2F_L(x,Q^2)]$$

structure functions
$$y = \frac{p \cdot q}{p \cdot k} = Q^2/(sx) \quad \text{inelasticity}$$

Structure functions encode all the information about the proton(hadron) structure

$$F_T(x, Q^2) = F_2(x, Q^2) - F_L(x, Q^2)$$
 transversely polarized photons
 $F_L(x, Q^2)$ longitudinally polarized photons

Often experiments give reduced cross section

 $Y_{+} = 1 + (1 - y)^{2}$

$$\sigma_{r,NC} = \frac{d^2 \sigma_{NC}}{dx dQ^2} \frac{Q^4 x}{2\pi \alpha_{\rm em} Y_+} = F_2 - \frac{y^2}{Y_+} F_L$$

Dominated by the F_2 structure function except for large y

Revealing proton structure

Exploring proton structure at high energy

DESY - Hamburg HERA Collider 1992-2007

The only electron(positron)proton collider ever built

Center of mass energy: $E_{\rm cm} = 320 \; {\rm GeV}$

equivalent to 50 TeV electron beam on a fixed proton target...about 2500 times more than at SLAC

Cross section and that means parton density increases:

- with decreasing x
- with increasing scale Q

Cross section and that means parton density increases:

- with decreasing x
- with increasing scale Q

Where does this rise come from?

Answer: **QCD** radiation

Parton model

Parton model

QCD radiation

Parton model

QCD radiation

Pair production of sea quarks

Parton model electron quark p_z p_z

Pair production of sea quarks

Gluon splitting

...and even more...

...and even more...

More gluons

...and even more...

These emissions suppressed by powers of coupling constant but enhanced by large (kinematical) logarithms

Arbitrarily many gluon emissions

Cross section vs parton density

Data demonstrate the growth of the gluon and sea quark distributions with decreasing x

Gluon density increases rapidly with x and with Q

Gluons dominate over the quark density

valence quarks

DGLAP evolution

 γ^*N as a template

Focusing on gluon emissions

Large parameter $O^2
ightarrow \infty$

 φ / ∞

Probing small distances

Strong ordering in transverse momenta

 $Q^2 \gg k_{1\perp}^2 \gg k_{2\perp}^2 \gg k_{3\perp}^2 \dots \gg k_{n\perp}^2$

Resummation of large logarithms

 $\int_{\mu_0^2}^{Q^2} \frac{dk_{1\perp}^2}{k_{1\perp}^2} g^2 \int_{\mu_0^2}^{k_{1\perp}^2} \frac{dk_{2\perp}^2}{k_{2\perp}^2} g^2 \int_{\mu_0^2}^{k_{2\perp}^2} \frac{dk_{3\perp}^2}{k_{3\perp}^2} g^2 \cdots \int_{\mu_0^2}^{k_{n-1\perp}^2} \frac{dk_{n\perp}^2}{k_{n\perp}^2} g^2 \simeq \left(g^2 \log \frac{Q^2}{\mu_0^2}\right)^n$

DGLAP evolution

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

NNLO

DGLAP evolution equations for parton densities

$$\mu^2 \frac{\partial}{\partial \mu^2} \begin{pmatrix} q_i(x,\mu^2) \\ g(x,\mu^2) \end{pmatrix} = \sum_j \int_x^1 \frac{dz}{z} \begin{pmatrix} P_{q_iq_j}(z,\alpha_s) & P_{q_ig}(z,\alpha_s) \\ P_{gq_j}(z,\alpha_s) & P_{gg}(z,\alpha_s) \end{pmatrix} \begin{pmatrix} q_j(\frac{x}{z},\mu^2) \\ g(\frac{x}{z},\mu^2) \end{pmatrix}$$

 q_i : quark density, g: gluon density

Splitting functions calculated perturbatively $P_{ab}(z,\alpha_s) \equiv P_{b\to a}(z,\alpha_s) = \frac{\alpha_s}{2\pi} P_{ab}^{(0)}(z) + \left(\frac{\alpha_s}{2\pi}\right)^2 P_{ab}^{(1)}(z) + \left(\frac{\alpha_s}{2\pi}\right)^3 P_{ab}^{(2)}(z) + \dots$ LO NLO

Leading order splitting functions

 $k_{3\perp}$

 $k_{n-1} \bot$

 $k_{n\perp}$

000000000

$$\begin{split} P_{qq}^{(0)}(z) &= C_F \Big[\frac{1+z^2}{(1-z)_+} + \frac{3}{2} \delta(1-z) \Big] \\ P_{qg}^{(0)}(z) &= T_R \Big[z^2 + (1-z)^2 \Big] \\ P_{gq}^{(0)}(z) &= C_F \Big[\frac{z^2 + (1-z)^2}{z} \Big] \\ P_{gg}^{(0)}(z) &= 2C_A \Big[\frac{z}{(1-z)_+} + \frac{1-z}{z} + z(1-z) + \delta(1-z) \frac{11C_A - 4n_f T_R}{6} \Big] \end{split}$$

0.2 xdv xS (× 0.05) DGLAP parton densities x

Gluon density the results at small x NLO vs NNLO small x behavior x_{g} What happens at small x? ^{0.8} Small x means large energy HERAPDE2.0 NLO

 $W^2 = s_{\gamma^* p}$

Collinear factorization

Given parton density one can compute cross section provided hard scale is present: photon virtuality, transverse momentum of particles, mass of produced particles

Collinear factorization of the cross section

$$d\sigma(x,Q^2) = \sum_i f_i \otimes d\hat{\sigma}^i + \mathcal{O}(\Lambda^2/Q^2)$$

partonic cross section, calculable perturbatively

Parton densities:should be universal, can take from process to process

Large parameter

 $s \to \infty$

 Q^2 fixed, perturbative

High energy or Regge limit $s \gg Q^2 \gg \Lambda^2$

Large parameter $s
ightarrow\infty$

High energy or Regge limit $s \gg Q^2 \gg \Lambda^2$

 Q^2 fixed, perturbative

Light cone proton momentum $p^+ = p^0 + p^z$

$$k_i^+ = x_i p^+$$

Strong ordering in longitudinal momenta $x \ll x_1 \ll x_2 \ll \cdots \ll x_n$

Large parameter $s
ightarrow \infty$

High energy or Regge limit $s \gg Q^2 \gg \Lambda^2$

 Q^2 fixed, perturbative

Light cone proton momentum $p^+ = p^0 + p^z \qquad \qquad k_i^+ = x_i p^+$

Strong ordering in longitudinal momenta $x \ll x_1 \ll x_2 \ll \cdots \ll x_n$

Perturbative coupling but large logarithm $\bar{\alpha}_s \ll 1 \qquad \qquad \ln \frac{1}{x} \simeq \ln \frac{s}{Q^2} \gg 1$

Large parameter $s
ightarrow \infty$

High energy or Regge limit $s \gg Q^2 \gg \Lambda^2$

 Q^2 fixed, perturbative

Light cone proton momentum $p^+ = p^0 + p^z \qquad \qquad k_i^+ = x_i p^+$

Strong ordering in longitudinal momenta $x \ll x_1 \ll x_2 \ll \cdots \ll x_n$

Perturbative coupling but large logarithm

$$\bar{\alpha}_s \ll 1$$
 $\ln \frac{1}{x} \simeq \ln \frac{s}{Q^2} \gg 1$

Large logarithms

$$\frac{\alpha_s N_c}{\pi} \int_x^1 \frac{dz}{z} = \frac{\alpha_s N_c}{\pi} \ln \frac{1}{x} = \bar{\alpha}_s \ln \frac{1}{x}$$

Leading logarithmic resummation

0

$$\left(\bar{\alpha}_s \ln \frac{1}{x}\right)^n \qquad \left(\bar{\alpha}_s \ln \frac{s}{s_0}\right)^n$$

Resummation performed by BFKL evolution equation

$$\frac{\partial \mathcal{F}_g(x, k_T)}{\partial \ln 1/x} = \int d^2 k'_T \, \mathcal{K}(k_T, k'_T) \, \mathcal{F}_g(x, k'_T)$$

Resummation performed by BFKL evolution equation

$$\frac{\partial \mathcal{F}_g(x, k_T)}{\partial \ln 1/x} = \int d^2 k'_T \, \mathcal{K}(k_T, k'_T) \, \mathcal{F}_g(x, k'_T)$$

Branching kernel (perturbative expansion)

$$\mathcal{K} = \bar{\alpha}_{s} \mathcal{K}^{LLx} + \bar{\alpha}_{s}^{2} \mathcal{K}^{NLLx} + \bar{\alpha}_{s}^{3} \mathcal{K}^{NNLLx} + \dots$$
QCD N=4 SYM

Resummation performed by BFKL evolution equation

$$\frac{\partial \mathcal{F}_g(x, k_T)}{\partial \ln 1/x} = \int d^2 k'_T \, \mathcal{K}(k_T, k'_T) \, \mathcal{F}_g(x, k'_T)$$

Branching kernel (perturbative expansion)

 $\mathcal{F}_q(x,k_T)$

Unintegrated, (transverse momentum dependent) gluon density

Resummation performed by BFKL evolution equation

compare with DGLAPcollinear approach

$$\frac{\partial \mathcal{F}_g(x, k_T)}{\partial \ln 1/x} = \int d^2 k'_T \, \mathcal{K}(k_T, k'_T) \, \mathcal{F}_g(x, k'_T)$$

Branching kernel (perturbative expansion)

 $\mathcal{F}_q(x,k_T)$

Unintegrated, (transverse momentum dependent) gluon density

$$\frac{\partial f_i(x,Q^2)}{\partial \log(Q^2)} = \sum_j \int_x^1 \frac{dz}{z} P_{j\to i}(z) f_j(\frac{x}{z},Q^2)$$

High energy factorization

BFKL evolution equation

$$\frac{\partial \mathcal{F}_g(x, k_T)}{\partial \ln 1/x} = \int d^2 k'_T \, \mathcal{K}(k_T, k'_T) \, \mathcal{F}_g(x, k'_T)$$

Cross sections from high energy factorization

High energy factorization

BFKL evolution equation

$$\frac{\partial \mathcal{F}_g(x, k_T)}{\partial \ln 1/x} = \int d^2 k'_T \, \mathcal{K}(k_T, k'_T) \, \mathcal{F}_g(x, k'_T)$$

Cross sections from high energy factorization

transverse momentum

 $Y = \frac{1}{2} \ln \frac{p^+}{p^-}$

Diffusion of transverse momenta towards IR and UV. For large energies momenta can diffuse to low scales even when starting from large scales.

 $Y = \frac{1}{2} \ln \frac{p^+}{p^-}$

Large non-perturbative effects for large energies.

Large non-perturbative effects for large energies.

BFKL evolution equation

$$\frac{\partial \mathcal{F}_g(x, k_T)}{\partial \ln 1/x} = \int d^2 k'_T \, \mathcal{K}(k_T, k'_T) \, \mathcal{F}_g(x, k'_T)$$

Solution:

 $\sigma^{\gamma^* p} \sim s^{\omega_{IP}}$ $\mathcal{F}_g(x, k_T) \sim x^{-\omega_{IP}}$ Rise of cross sections: $\omega_{IP}^{LLx} = \bar{\alpha}_s 4 \ln 2$ leading logarithmic Pomeron intercept

BFKL evolution equation

$$\frac{\partial \mathcal{F}_g(x, k_T)}{\partial \ln 1/x} = \int d^2 k'_T \, \mathcal{K}(k_T, k'_T) \, \mathcal{F}_g(x, k'_T)$$

Solution:

 $\sigma^{\gamma^* p} \sim s^{\omega_{IP}}$ $\mathcal{F}_g(x, k_T) \sim x^{-\omega_{IP}}$ Rise of cross sections: $\omega_{IP}^{LLx} = \bar{\alpha}_s 4 \ln 2$ Pomeron intercept leading logarithmic

 $\omega_{IP}^{NLLx} \simeq \bar{\alpha}_s 4 \ln 2(1 - 6.5 \bar{\alpha}_s)$ next-to-leading logarithmic

BFKL evolution equation

$$\frac{\partial \mathcal{F}_g(x, k_T)}{\partial \ln 1/x} = \int d^2 k'_T \, \mathcal{K}(k_T, k'_T) \, \mathcal{F}_g(x, k'_T)$$

 $\begin{array}{ll} \text{Solution:} \quad \mathcal{F}_g(x,k_T) \sim x^{-\omega_{IP}} & \text{Rise of cross sections:} \quad \sigma^{\gamma^*p} \sim s^{\omega_{IP}} \\ \\ \text{Pomeron intercept} & \omega_{IP}^{LLx} = \bar{\alpha}_s 4 \ln 2 & \text{leading logarithmic} \\ & \omega_{IP}^{NLLx} \simeq \bar{\alpha}_s 4 \ln 2 (1-6.5\bar{\alpha}_s) & \text{next-to-leading logarithmic} \\ \end{array}$

BFKL evolution equation

$$\frac{\partial \mathcal{F}_g(x, k_T)}{\partial \ln 1/x} = \int d^2 k'_T \, \mathcal{K}(k_T, k'_T) \, \mathcal{F}_g(x, k'_T)$$

Solution:

 $\sigma^{\gamma^* p} \sim s^{\omega_{IP}}$ $\mathcal{F}_q(x, k_T) \sim x^{-\omega_{IP}}$ Rise of cross sections: $\omega_{IP}^{LLx} = \bar{\alpha}_s 4 \ln 2$ leading logarithmic Pomeron intercept $\omega_{IP}^{NLLx} \simeq \bar{\alpha}_s 4 \ln 2(1 - \underline{6.5\bar{\alpha}_s})$ next-to-leading logarithmic

LLx vs NLLx BFKL solution for the gluon Green's function

BFKL evolution equation

$$\frac{\partial \mathcal{F}_g(x, k_T)}{\partial \ln 1/x} = \int d^2 k'_T \, \mathcal{K}(k_T, k'_T) \, \mathcal{F}_g(x, k'_T)$$

Solution:

 $\sigma^{\gamma^* p} \sim s^{\omega_{IP}}$ $\mathcal{F}_q(x, k_T) \sim x^{-\omega_{IP}}$ Rise of cross sections: $\omega_{IP}^{LLx} = \bar{\alpha}_s 4 \ln 2$ leading logarithmic Pomeron intercept $\omega_{IP}^{NLLx} \simeq \bar{\alpha}_s 4 \ln 2(1 - \underline{6.5\bar{\alpha}_s})$ next-to-leading logarithmic

BFKL evolution equation

$$\frac{\partial \mathcal{F}_g(x, k_T)}{\partial \ln 1/x} = \int d^2 k'_T \, \mathcal{K}(k_T, k'_T) \, \mathcal{F}_g(x, k'_T)$$

Solution:

 $\sigma^{\gamma^*p}\sim s^{\omega_{IP}}$ $\mathcal{F}_q(x, k_T) \sim x^{-\omega_{IP}}$ Rise of cross sections: $\omega_{IP}^{LLx} = \bar{\alpha}_s 4 \ln 2$ leading logarithmic Pomeron intercept next-to-leading logarithmic $\omega_{IP}^{NLLx} \simeq \bar{\alpha}_s 4 \ln 2(1 - \underline{6.5\bar{\alpha}_s})$

Ciafaloni, Colferai, Salam, AS Altarelli, Ball, Forte; Thorne; Thorne, White

General setup for resummation

- Kinematical constraints: impose constraints coming from the kinematics by the analysis of individual diagrams.
- DGLAP splitting function recovered at fixed order of large logarithms of scale.
- LLx and NLLx BFKL terms are included.
- Subtraction procedure in order to avoid the double counting.
- Momentum sum rule for the resummed splitting function must be satisfied.
- Running coupling in the BFKL evolution.

Resummation: results

 $\mathcal{F}_g(x, k_T) \sim x^{-\omega_{IP}}$ $\sigma^{\gamma^* p} \sim s^{\omega_{IP}}$

Stable result

$$\omega_{IP} \sim 0.2 - 0.3$$

Significant reduction with respect to LLx

Ciafaloni, Colferai, Salam, AS

Resummation impact on the DIS data

Ball, Bertoni, Bonvini, Marzani, Rojo, Rottoli

NNPDF3.1sx, HERA NC inclusive data

Resummation impact on the DIS data

1.16

Ball, Bertoni, Bonvini, Marzani, Rojo, Rottoli

Resummation leads to the improvement the description of the structure function data F_2 for low x and Q.

Better than fixed order NLO, NNLO.

Better description of the longitudinal structure function F_{L}

---- NNLO +-- NNLO+NLLX NNLO worsens as we include 1.14 more small-x data -ıö--- NLO ··⊡· NLO+NLLx 1.12 χ^2/N_{dat} 1.1 1.08 1.06 NNLO+NLLx best description everywhere 1.04 1.6 2.2 2.4 2.6 1.8 2.8 D. NNPDF3.1sx 0.8 0.6 8e-2 0.4 $F_L(x,Q^2)$ 0.2 0.0 **NNLO** -0.2NNLO+NLLx H1 -0.410¹ 10² 10³ Q^2 [GeV²]

NNPDF3.1sx, HERA NC inclusive data

Gedankenexperiment: proton colliding at high energy with some small probe

Virtual photon is a probe which fluctuates into quark-antiquark pair

Gedankenexperiment: proton colliding at high energy with some small probe

Gedankenexperiment: proton colliding at high energy with some small probe

Gedankenexperiment: proton colliding at high energy with some small probe

- Probability of interaction becomes very large.
- Totally absorbing target: black disk limit.
- Possible multiple interactions between the probe and the target.
- Possibility of the saturation of the gluon density.

Unitarity and high parton density

Probability of interaction in QCD at high energy

 $\mathcal{P} \sim 1$

Need to satisfy unitarity of scattering amplitudes

 $SS^{\dagger} = S^{\dagger}S = 1$

Need to take into account contributions from more complicated interactions: two, three, four etc. interactions possible and likely

Unitarity and high parton density

interactions: two, three, four etc. interactions possible and likely

Density or nonlinear effects:

Unitarity and high parton density

Density or nonlinear effects:

Multi-parton interactions Gluon saturation

Dipole picture

Dipole picture: suitable for small x physics (related to high energy factorization)

Cross section is calculated from the photon wave function and the dipole amplitude

$$\sigma_{T,L}(x,Q^2) = \int d^2 \mathbf{r} \int_0^1 dz \int d^2 \mathbf{b} \sum_f |\Psi_{T,L}^f(\mathbf{r},Q^2,z)|^2 2N(x,\mathbf{r},\mathbf{b})$$

z fraction of the lightcone momentum of the photon carried by the quark **r** transverse size of the quark-antiquark dipole

b impact parameter

 Ψ photon wave function

N dipole amplitude

Dipole picture especially suitable to address saturation. Multiple scattering of dipoles on a dense target.

Dipole picture

Dipole amplitude contains all the information about the interaction of the dipole with the target

When integrated over the impact parameter one obtains dipole cross section

$$\sigma(x,\mathbf{r}) = 2 \int d^2 \mathbf{b} \, N(x,\mathbf{r},\mathbf{b})$$

Dipole cross section

 $\sigma(x, \mathbf{r})$

Unintegrated gluon density

$$\mathcal{F}_g(x,k_T)$$

How to calculate dipole cross section?

Dipole cross section can be parametrized or obtained from evolution equation (eg. BK)

Dipole model cross sections:

 $\sigma(x,\mathbf{r})$

GBW IP-sat b-CGC IIM MV FGS

QCD equations for dipole cross section(dipole amplitude):

BK equation JIMWLK equation

Dipole cross section

Modeling dipole cross section $\sigma(x, \mathbf{r})$

Golec-Biernat and Wuesthoff model (GBW model)

$$\sigma(x,r) = \sigma_0 \left(1 - e^{-r^2 Q_s^2(x)/4} \right)$$

Saturation scale

$$Q_s^2(x) = Q_0^2 (x/x_0)^{-\lambda}$$

 $\frac{r^2 Q_s^2(x)}{4} \ll 1$

$$\sigma(x,r) \simeq \sigma_0 \frac{r^2 Q_s^2(x)}{4} \sim r^2 x^{-\lambda}$$

BFKL - like growth with a power

 $\frac{r^2 Q_s^2(x)}{4} \gg 1$

dense region

$$\sigma(x,r) \simeq \sigma_0$$

Saturation

Saturation scale provides boundary between **dense** and *dilute* regions

Dipole cross section: GBW model

Golec-Biernat and Wuesthoff model (GBW model)

$$\sigma(x,r) = \sigma_0 \left(1 - e^{-r^2 Q_s^2(x)/4} \right)$$

Saturation scale

$$Q_s^2(x) = Q_0^2 (x/x_0)^{-\lambda}$$

Dipole cross section: GBW model

Golec-Biernat and Wuesthoff model (GBW model)

$$\sigma(x,r) = \sigma_0 \left(1 - e^{-r^2 Q_s^2(x)/4} \right)$$

Effectively function of one combined variable

$$\sigma(x,r) = \sigma(rQ_s(x))$$

 O^2

GBW model: update and DGLAP evolution

GBW model does not contain DGLAP evolution, necessary for high Q^2

DGLAP improved saturation model

$$\sigma_{\rm dip}(r,x) = \sigma_0 \left\{ 1 - \exp\left(-\frac{\pi^2 r^2 \,\alpha_s(\mu^2) \, xg(x,\mu^2)}{3\sigma_0}\right) \right\}$$

Gluon density satisfies DGLAP evolution

Scale

$$\frac{\partial g(x,\mu^2)}{\partial \ln \mu^2} = \frac{\alpha_s(\mu^2)}{2\pi} \int_x^1 \frac{dz}{z} P_{gg}(x) g(x/z,\mu^2) \qquad \qquad \mu^2 = \frac{C}{r^2} + \mu_0^2$$

Dipole cross section for small dipole sizes

$$\sigma_{\rm dip} \approx \frac{\pi^2}{3} r^2 \alpha_s (C/r^2) x g(x, C/r^2)$$

Color transparency and connection to QCD result (DGLAP logarithms)

GBW model: update and DGLAP evolution

Hera data above Q²=10 GeV²

 $Q^2=22 \text{ GeV}^2$

 Q^2 =60 GeV²

Q²≒150 GeV²

 $Q^2 = 400 \text{ GeV}^2$

 10^{-4} 10^{-3} 10^{-2}

Hera data up to $Q^2=10 \text{ GeV}^2$

Good description in both models for data at $Q^2 < 10 \text{ GeV}^2$ Above that DGLAP needed, GBW model not shown since not fitted there

BK nonlinear evolution equation

Dipole amplitude from the QCD evolution equation

A.H.Mueller, Y. Kovchegov

BK nonlinear evolution equation

$$\begin{split} N(x,\mathbf{r},\mathbf{b}) &\rightarrow N(Y,\mathbf{x}_0,\mathbf{x}_1) & \text{dipole scattering amplitude} \\ \mathbf{X}_0,\mathbf{X}_1 & \text{coordinates of the dipole in the transverse space} \\ \begin{array}{l} \mathbf{x}_0,\mathbf{X}_1 & \text{coordinates of the dipole in the transverse space} \\ \mathbf{r} &= \mathbf{x}_0 - \mathbf{x}_1 & \mathbf{b} = \frac{\mathbf{x}_0 + \mathbf{x}_1}{2} \\ Y &= \ln \frac{1}{x} & \text{rapidity difference between the dipole and the target} \\ \mathbf{B} \mathbf{K} \text{ nonlinear evolution at leading logarithmic (in ln l/x) order:} \\ \frac{\partial N_{\mathbf{x}_0 \mathbf{x}_1}}{\partial Y} &= \overline{\alpha}_s \int \frac{d^2 \mathbf{x}_2}{2\pi} \frac{(\mathbf{x}_0 - \mathbf{x}_1)^2}{(\mathbf{x}_0 - \mathbf{x}_2)^2(\mathbf{x}_1 - \mathbf{x}_2)^2} \begin{bmatrix} N_{\mathbf{x}_0 \mathbf{x}_2} + N_{\mathbf{x}_1 \mathbf{x}_2} - N_{\mathbf{x}_0 \mathbf{x}_1} + N_{\mathbf{x}_0 \mathbf{x}_2} N_{\mathbf{x}_1 \mathbf{x}_2} \end{bmatrix} \\ & \text{inear part: equivalent to LLx BFKL} & \text{nonlinear part} \end{split}$$

Note that N=1 solves the equation, which is the black disk limit.

Balitsky, Kovchegov

Saturation scale

 $Y = \ln 1/x^4$

Saturation

DGLAP

BFKL

 $\ln \Lambda^2_{QCD}$

 $\int \ln Q_s^2(Y) = \lambda Y$ $Q_s^2(x) = Q_0^2 x^{-\lambda}$

 $\ln Q^2$

Dilute system

Solution to nonlinear evolution equation generates the characteristic scale: saturation scale which divides the dense and dilute region.

$$Q_s(x)^2 \simeq Q_0^2 x^{-\lambda_s}$$

 λ_s related to (but not exactly equal) to the BFKL Pomeron intercept

If the target is nucleus, there is additional enhancement due to nuclear number A:

$$Q_s(x)^2 \simeq A^{1/3} Q_0^2 x^{-\lambda_s}$$

Diffusion properties of BFKL and BK

Investigate the solution in the momentum space

$$\phi(k,Y) := \int_0^\infty \frac{dr}{r} J_0(k\,r)\,N(r,Y)$$

BK equation in momentum space (LO):

$$\frac{d\phi(k,Y)}{dY} = \bar{\alpha}_s \int \frac{dk'}{k'} \mathcal{K}(k,k') \phi(k',Y) - \bar{\alpha}_s \phi^2(k,Y)$$

Solution to the linear-BFKL equation

$$k\phi(k,Y) = \frac{1}{\sqrt{\pi\bar{\alpha}_s\chi''(0)Y}} \exp(\bar{\alpha}_s\chi(0)Y) \exp\left(-\frac{\ln^2(k^2/k_0^2)}{2\bar{\alpha}_s\chi''(0)Y}\right)$$

Diffusion into infrared (small k) region of transverse momenta

BFKL kernel eigenfunction (LO)

$$\chi(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1 - \gamma)$$

k [GeV]

$$k\phi^{(\text{lin})}(k,Y) \sim e^{\bar{\alpha}_s\chi(0)Y} e^{\left(-\frac{\ln^2(k^2/k_0^2)}{2\bar{\alpha}_s\chi''(0)Y}\right)}$$

Distribution in log of momentum Diffusion clearly visible

Diffusion suppression in BK equation

Red : BFKL Blue: BK

Suppression of diffusion into infrared for nonlinear solution

Peak moves from initial k_0 towards large k with increasing Y

Can define saturation scale as the position of the maximum

 $Q_s(Y) = k_{\max}(Y)$

Diffusion suppression in BK equation

Renormalized distribution

1

$$\Psi(k,Y) = \frac{k\phi(k,Y)}{k_{\max}(Y)\phi(k_{\max}(Y),Y)}$$

Diffusion suppression in BK equation

Nonlinear

Straight lines: $\xi = \ln k/k_0 - \lambda Y$

Scaling since solution only on ξ (when $\xi < \xi_s$)

Saturation scale $Q_s(Y)$ defined by the critical line ξ_s

Diffusion to the right of the critical line

However, things become more complicated when impact parameter is taken into account

Phenomenology with BK equation

Examples of HERA inclusive fits to proton reduced cross section using dipole picture and BK evolution

Albacete, Armesto, Milhano,

Beuf, Hanninen, Lappi, Manytsaari

Resummed BK with NLO impact factor

Running coupling BK with leading order impact factor

What about spatial distribution of partons ?

Usual approximation:

$$N(Y; \mathbf{x}_0, \mathbf{x}_1) = N(Y; |\mathbf{x}_0 - \mathbf{x}_1|)$$

- The target has infinite size, no impact parameter.
- Local approximation suggests that the system becomes more perturbative as the energy grows.
- But this cannot be true everywhere (IR in QCD)

 $Y = \ln 1/x$

What about spatial distribution of partons ?

Total size of system

Usual approximation:

$$N(Y; \mathbf{x}_0, \mathbf{x}_1) = N(Y; |\mathbf{x}_0 - \mathbf{x}_1|)$$

- The target has infinite size, no impact parameter.
- Local approximation suggests that the system becomes more perturbative as the energy grows.
- But this cannot be true everywhere (IR in QCD)

 $Y = \ln 1/x$

What about spatial distribution of partons ?

Usual approximation:

$$N(Y; \mathbf{x}_0, \mathbf{x}_1) = N(Y; |\mathbf{x}_0 - \mathbf{x}_1|)$$

- The target has infinite size, no impact parameter.
- Local approximation suggests that the system becomes more perturbative as the energy grows.
- But this cannot be true everywhere (IR in QCD)

 $Y = \ln 1/x$

By studying diffraction pattern one can learn about the size of the obstacle and its density

Diffraction in optics and in hadron physics

In optics: diffraction is analyzed in terms of angle θ

In particle physics: diffraction is analyzed in terms of Mandelstam invariant t : momentum transfer

Same process can be measured in UPC ! See talks in this conference

Exclusive diffraction

b (GeV^{-1})

(q, 1.6 X)X 0.4

0.2

 $0.0^{L}_{0.1}$

500

/)

 $x = 10^{-6}$

 $x = 10^{-1}$

 $x = 10^{-1}$

- Exclusive diffractive production of VM is an excellent process for extracting the dipole amplitude
- Suitable process for estimating the 'blackness' of interaction.
- t-dependence provides an information about the impact parameter profile of the amplitude.

Central black region growing with decrease of x.

Large momentum transfer t probes small impact parameter where the density of interaction region is most dense.

10

Extraction of density profile in impact parameter

At high energies:

Momentum transfer $t = -\Delta^2$

$$\frac{d\sigma}{dt} = \frac{1}{16\pi} |\mathcal{M}(\Delta)|^2$$

 \mathcal{M} amplitude for vector meson process elementary (quark dipole) amplitude

$$\begin{split} \mathcal{M}(x,Q,\Delta) &= \int d^2 \mathbf{r} \int dz \int d^2 \mathbf{b} \ \Psi_V^* \ N(x,\mathbf{r},\mathbf{b}) e^{-i(\mathbf{b}-(1-z)\mathbf{r})\cdot\Delta} \ \Psi_{\gamma^*} \\ & \Psi_{\gamma^*} & \text{photon wave function} \\ & \Psi_V & \text{vector meson wave function} \end{split}$$

N

Momentum transfer dependence of the cross section: impact parameter profile