Summary of Multi-Boson Intereactions 2023

C.-P. Yuan
Wu-Ki Tung Endowed Professor
Michigan State University

September 1, 2023 @ UCSD

The 10th MBI international conference

What a relief!

- Thanks to all the speakers for making many excellent presentations.
- Hence, there is no need for me to "repeat" what has been presented in their talks.
- I shall only common on a few physics topics in my "summary" which by no means are the most important results presented by the individual speaker in this conference.
- Hence, you are encouraged to review the posted talk files to find out all the presented results.

Speakers of MBI 2023

ATLAS & CMS:

Aram Apyan
Michael Schmitt
Prachi Atmasiddha
Ulascan Sarica

Theory:

Linda Carpenter
Samuel Homiller
Julie Pages
Minho SON
Haoyang Li
Daniel Whiteson
Antonio Vagnerini

ATLAS:

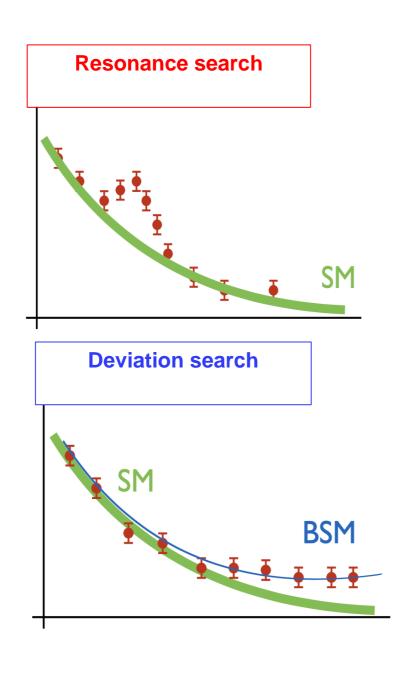
Bing Zhou
Joseph Earl Lambert
Christophe Pol A Roland
Abraham Tishelman-Charny

CMS:

Ulascan Sarica Andrew Michael Levin Garyfallia Paspalaki

The physics goals of the LHC

- Test the Standard Model (SM)
- Search for physics beyond the SM (BSM)



This conference focus on multi-boson final states, with N=1,2,3,... for boson= W, Z, H, photon,...

Test the Standard Model

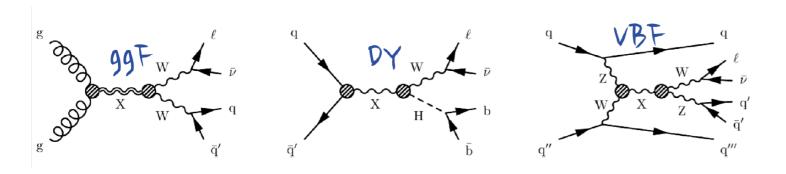
Talk by Bing Zhou

- Need precision QCD and EW calculations. Higher order corrections are important for reaching a better agreement with experimental data.
- Comparing to various differential cross sections can provide more detailed tests of the SM.
- Comparing exclusive and inclusive measurements, such as W+W- production in di-lepton mode, with or without jet veto. Requiring jet veto usually leads to a larger theoretical error.

Search For New Physics

Top-down

Bottom-up

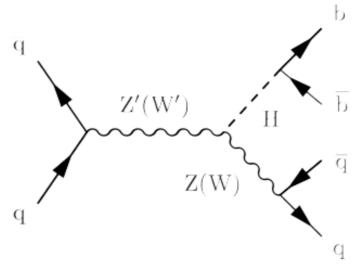


(to be discussed later)

Talk by Aram Apyan

- > Consider some specific model
- > Assume narrow width
- > Simultaneous analysis of various production channels
- > Can do search in fully hadronic final state
 - Highly boosted bosons
 - ❖ Use large-radius jets (R=0.8 with large pT)

(I will comment on this process later.)



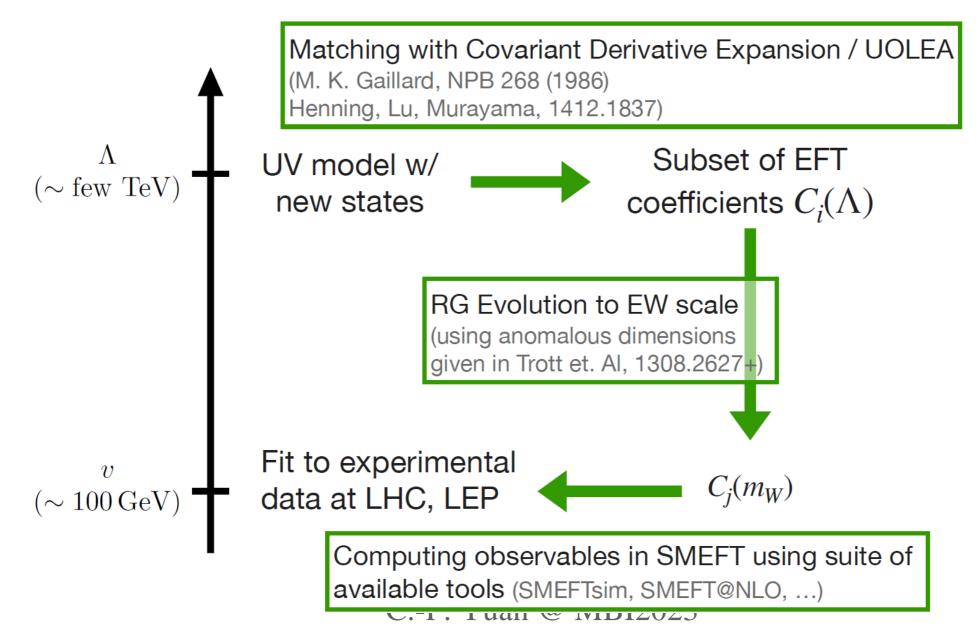
Search For New Physics

Bottom-up

Talk by Samuel Homiller

In the SMEFT framework

Interpreting Models in the SMEFT



In the SMEFT framework

Talk by Samuel Homiller

- Lessons learned from studying some simple UV models about the importance of "higher-order" effects:
 - One-loop matching effects
 - * RGE-induced (new) contributions
 - Higher order QCD and EW corrections
- Given a UV model, some EWPO requires the inclusion of the square of dim-6 contribution $(1/\Lambda^4)$ in the SMEFT prediction to agree with the full UV model prediction. Some others even require the inclusion of dim-8 operator contribution.

This information is generally not known from the bottom-up approach.

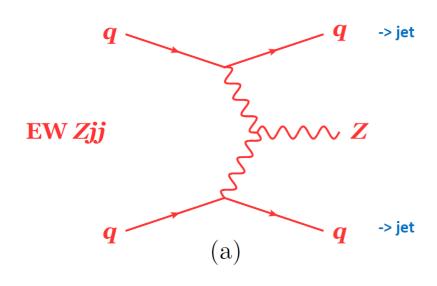
In the SMEFT framework

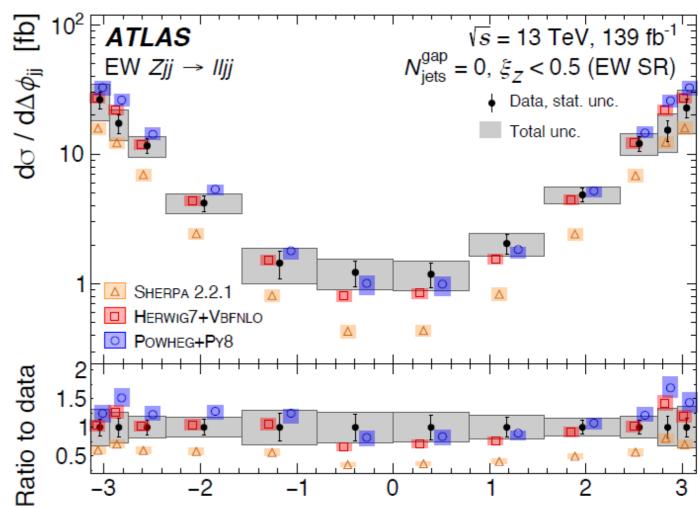
- Automated one-loop matching tools (Talk by Julie Pages)
- Multi-boson production sensitivity to dim-6 and dim-8 operators (Talk by Antonio Vagnerini)
- Experimental searches in multi-boson final states (Talk by Michael Schmitt)
 - 1. dim-6 and the impact of differential cross sections
 - 2. trying to deal with unitarity violation
 - 3. dealing with dim-8 when dim-6 is unknown
 - 4. global combined fits

The power of polarization (or correlation) observables

(See talk by Michael Schmitt)

EW Zjj production





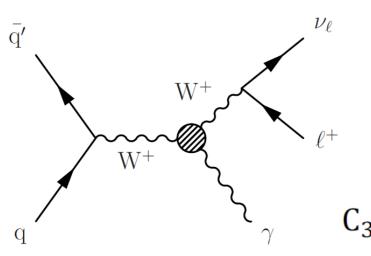
- Effects of QCD soft gluon radiations in the initial and $^{\Delta\phi_{\parallel}}$ final states are important for predicting $\Delta\phi_{ij}$.
- The QCD showering of event generators does not model the full color coherence effects of the event.

(arXiv:1802.02980)

The power of polarization (or correlation) observables

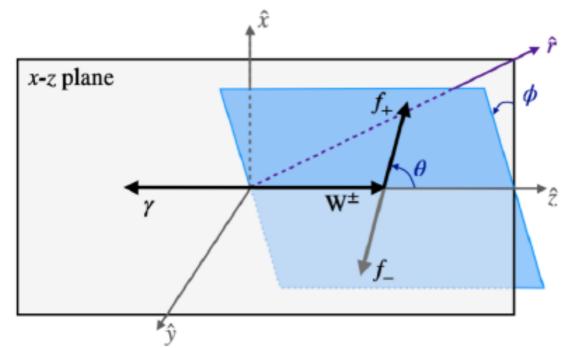
a.u.

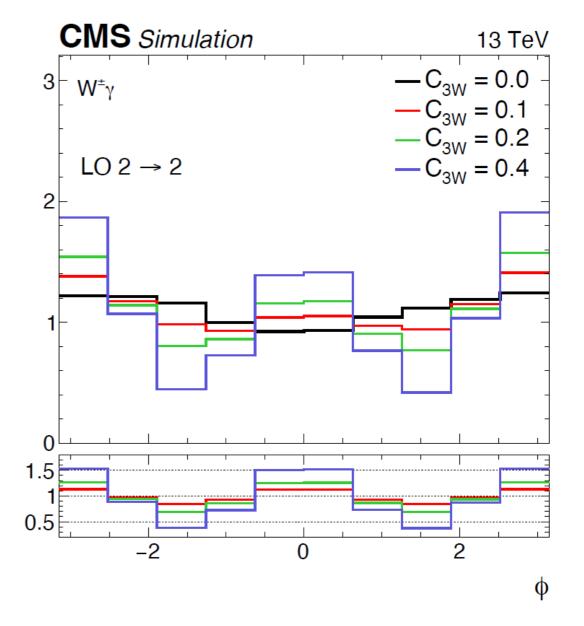
(See talk by Michael Schmitt)



 $C_{3W}\epsilon_{ijk}W_{\mu\nu}^{i}W_{\nu\rho}^{j}W_{\rho\mu}^{k}$

(See talk by Minho Son)





Ratio to SM

What caused this ϕ dependence?

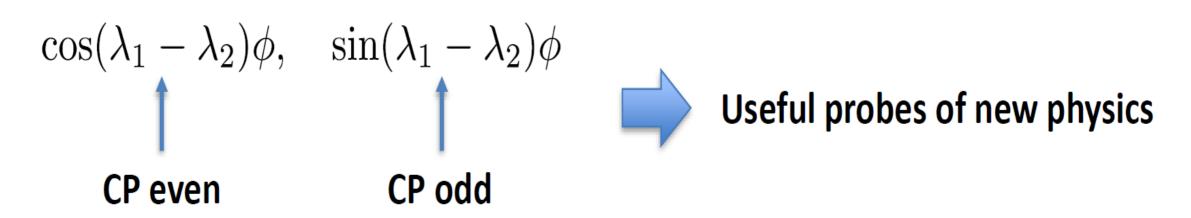
Polarization observables in bosonic final states

☐ Linear polarization vs. helicity/circular polarization

helicity pol.
$$|\pm 1\rangle$$
 linear pol.
$$|x\rangle = -\frac{1}{\sqrt{2}}\Big[|+\rangle - |-\rangle\Big], \quad |y\rangle = \frac{i}{\sqrt{2}}\Big[|+\rangle + |-\rangle\Big]$$

$$|e^{+i\phi} \pm e^{-i\phi}|^2 \rightarrow 2(1\pm\cos2\phi)$$

Interference of helicity λ_1 and λ_2 causes azimuthal distributions



Azimuthal dependence

Production of a particle \rightarrow Decay of this particle (has azimuthal dependence)

Decay amplitude:

$$\langle \mathbf{D}, \phi | \lambda \rangle = \langle \mathbf{D}, 0 | U^{\dagger}(R_z(\phi)) | \lambda \rangle = e^{i\lambda\phi} \langle \mathbf{D}, 0 | \lambda \rangle = A_{\lambda}(D) e^{i\lambda\phi}$$

 $| \mathbf{D}, \phi \rangle = \text{state of decay products with an overall azimuthal angle } \phi$

Unstable particle V can be thought of an intermediate state that decays into D:

$$\mathcal{M}(D,\phi) = \langle D,\phi|i\rangle = \sum_{\lambda} \langle D,\phi|V_{\lambda}\rangle\langle V_{\lambda}|i\rangle = \sum_{\lambda} e^{i\lambda\phi} \mathcal{M}_{\lambda}(V) A_{\lambda}(D)$$

• Azimuthal distribution results from the interference of V_{λ_1} and V_{λ_2}

$$|\mathcal{M}(D,\phi)|^2 = \sum_{\lambda} |\mathcal{M}_{\lambda}(V)A_{\lambda}(D)|^2 + 2\sum_{\lambda_1 < \lambda_2} \operatorname{Re} \left\{ e^{i(\lambda_1 - \lambda_2)\phi} \mathcal{M}_{\lambda_1}(V)A_{\lambda_1}(D) \mathcal{M}_{\lambda_2}^*(V)A_{\lambda_2}^*(D) \right\}$$

$$\operatorname{Re}\left[\mathcal{M}_{\lambda_{1}}(V)A_{\lambda_{1}}(D)\mathcal{M}_{\lambda_{2}}^{*}(V)A_{\lambda_{2}}^{*}(D)\right]\cos(\lambda_{1}-\lambda_{2})\phi-\operatorname{Im}\left[\mathcal{M}_{\lambda_{1}}(V)A_{\lambda_{1}}(D)\mathcal{M}_{\lambda_{2}}^{*}(V)A_{\lambda_{2}}^{*}(D)\right]\sin(\lambda_{1}-\lambda_{2})\phi$$

More details: Zhite Yu, Ph.D. Thesis, MSU, arXiv: 2308.13080

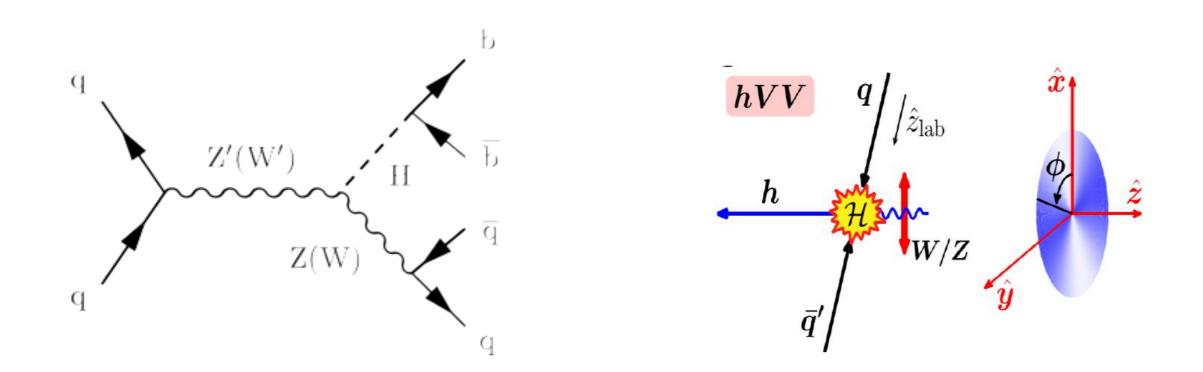
Search in fully hadronic final state

Talk by Aram Apyan

Talk by Daniel Whiteson:

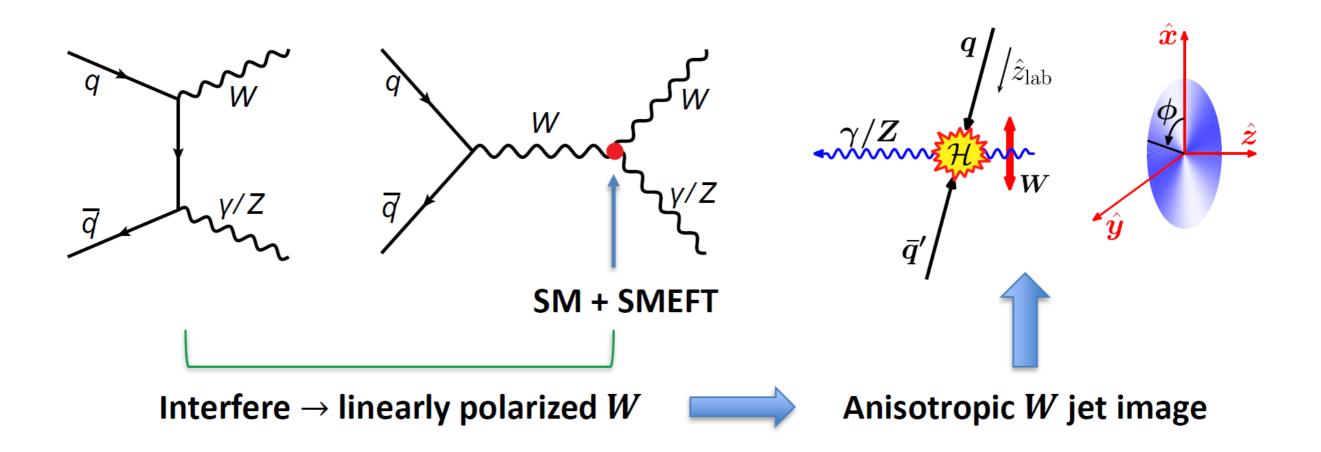
Jet substructure, taggers, and Machine Learning

- Highly boosted bosons
- ❖Use large-radius jets (R=0.8 with large pT)



ightharpoonup Hadronic mode energy deposition is $\cos 2\phi$ for CP-even and $\sin 2\phi$ for CP-odd SMEFT operator.

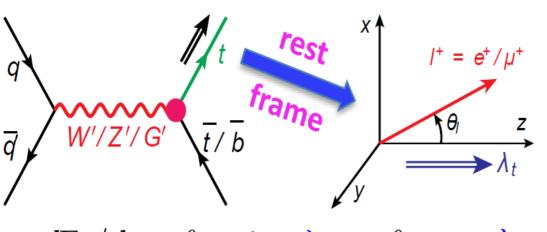
W/Z polarization and VVV coupling



- ightharpoonup Hadronic mode energy deposition is $\cos 2\phi$ for CP-even and $\sin 2\phi$ for CP-odd SMEFT operator.
- The square of dim-6 operator can only come from the s-channel diagram which does not lead to $\cos 2\phi$ distribution.

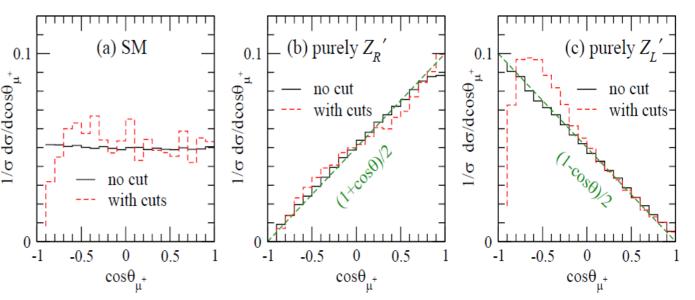
W boson polarization in boosted tops

lacksquare Example: $pp o (W', Z', G') o t\, ar t/t\, ar b$



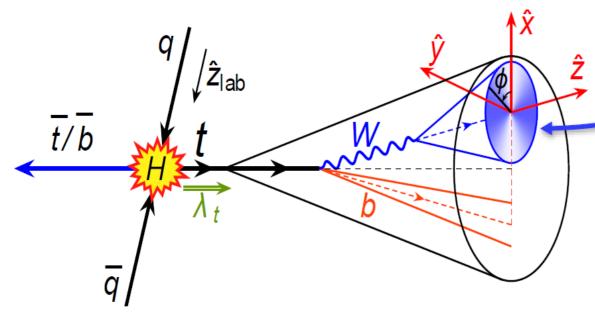
$$d\Gamma_t/d\cos\theta_l \propto 1 + \lambda_t \cos\theta_l \implies \lambda_t$$

[Berger et. al. PRD 83, 114026 (2011)]



Boosted top quark (hadronic mode)

[Yu & Yuan, PRL 129, 112001 (2022)]



$$=rac{\mathrm{d}E}{\mathrm{d}\phi}=rac{E_{\mathrm{tot}}}{2\pi}\left[1+\pmb{\xi}\cos2\phi
ight]$$
 Infrared safe

Boosted limit:
$$\xi = \xi(\lambda_t) = 0.145(\lambda_t - 1)$$

[Assuming SM tbW coupling]

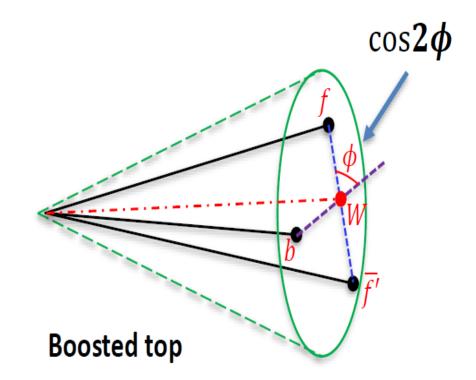
Azimuthal correlation

Boosted top polarization

A New Boosted Top Jet Substructure

- ☐ A new observable for boosted top quark jet
 - $\cos 2\phi$ angular correlation
 - Only exists in boosted top frame
 - Due to W linear polarization
 - Asymmetry of azimuthal energy deposits

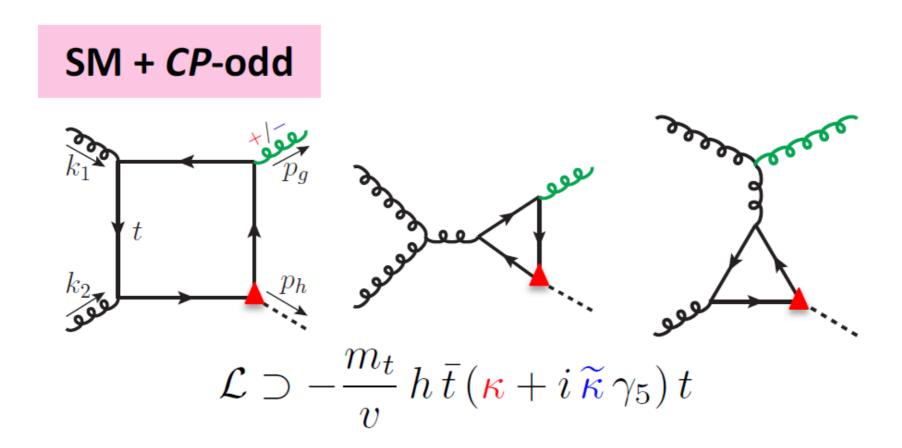
- Phenomenological significance
 - Measuring longitudinal polarization of boosted top
 - New top tagger against QCD jets



Gluon is also a Boson!

- \triangleright Consider $gg \rightarrow hg$
- How to make use of the polarization of gluon for probing new physics?

Linearly polarized gluon jet in gg o hg process



Linear polarization of a gluon

☐ Linear polarization vs. helicity/circular polarization

helicity pol.
$$\left| \frac{\pm 1}{2} \right| = 1$$

linear pol.
$$|x\rangle = -\frac{1}{\sqrt{2}} \left[|+\rangle - |-\rangle \right], \quad |y\rangle = \frac{i}{\sqrt{2}} \left[|+\rangle + |-\rangle \right]$$

$$\rho_{\lambda\lambda'} = \frac{1}{2} (1 + \boldsymbol{\xi} \cdot \boldsymbol{\sigma})_{\lambda\lambda'} = \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 + i\,\boldsymbol{\xi}_2 & 1 - \xi_3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 + i\,\boldsymbol{\xi}_2 & 1 - \xi_3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 + i\,\boldsymbol{\xi}_2 & 1 - \xi_3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 + i\,\boldsymbol{\xi}_2 & 1 - \xi_3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 + i\,\boldsymbol{\xi}_2 & 1 - \xi_3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 + i\,\boldsymbol{\xi}_2 & 1 - \xi_3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 + i\,\boldsymbol{\xi}_2 & 1 - \xi_3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 + i\,\boldsymbol{\xi}_2 & 1 - \xi_3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 + i\,\boldsymbol{\xi}_2 & 1 - \xi_3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 + i\,\boldsymbol{\xi}_2 & 1 - \xi_3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 + i\,\boldsymbol{\xi}_2 & 1 - \xi_3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 + i\,\boldsymbol{\xi}_2 & 1 - \xi_3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \boldsymbol{\xi}_1 - i\,\boldsymbol{\xi}_2 \end{pmatrix}$$

$$\xi_{3} = \rho_{++} - \rho_{--}$$
 net helicity

 $\xi_{1,2} \sim \rho_{+-}$ helicity <u>interference</u>

Two independent linear pol. dof

Gluon polarization and htt coupling

Gluon polarization and $htar{t}$ coupling

 \square Example: *CP* property of $ht\bar{t}$ coupling

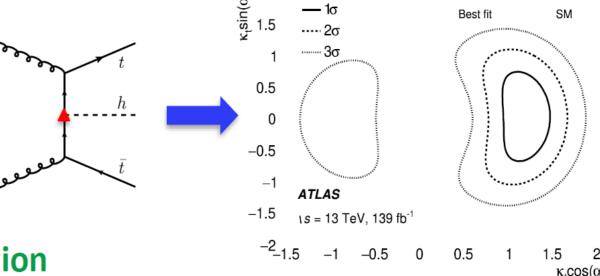
$$\mathcal{L} \supset -\frac{m_t}{v} h \, \bar{t} \left(\kappa + i \, \tilde{\kappa} \, \gamma_5 \right) t$$
$$= -\kappa_t \frac{m_t}{v} h \, \bar{t} \left(\cos \alpha + i \sin \alpha \, \gamma_5 \right) t$$

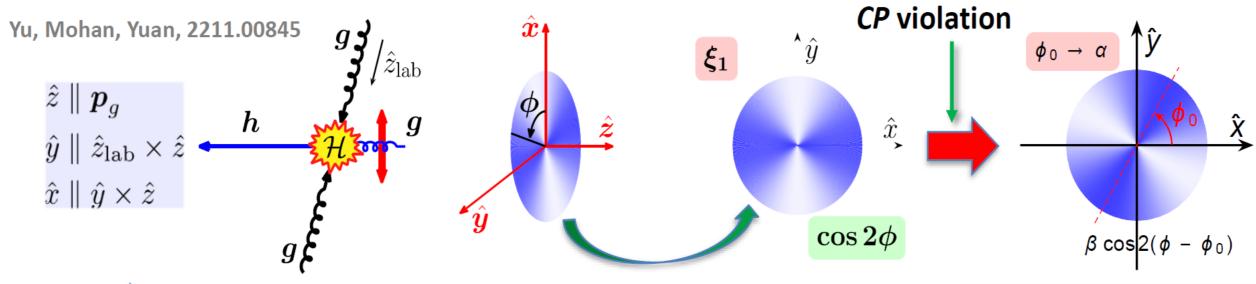
with
$$\kappa_t = \sqrt{\kappa^2 + \widetilde{\kappa}^2}$$
, $\alpha = \mathit{CP}$ phase

lacksquare "Missing" observable in h+g production

[See also: CMS PRL 125, 061801 (2020), 2208.02686, ATLAS 2303.05974]

ATLAS, PRL 125, 061802 (2020)



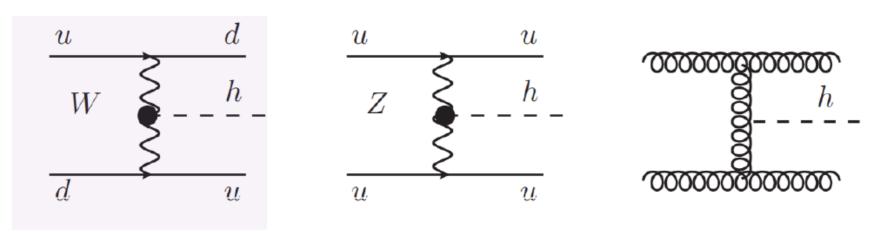


CP phase = rotation of anisotropy axis

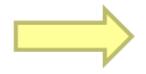
 $\xi_1(\alpha)\cos 2\phi + \xi_2(\alpha)\sin 2\phi$

A novel tool to discriminate Higgs production mechanisms

Discriminating W-boson fusion, Z-boson fusion and gluon fusion Higgs production



Hai Tao Li, Bin Yan, C.-P. Yuan, PRL, 2023



Separating the W boson's contribution from the VBF Higgs production is an important task for determining the Higgs gauge coupling

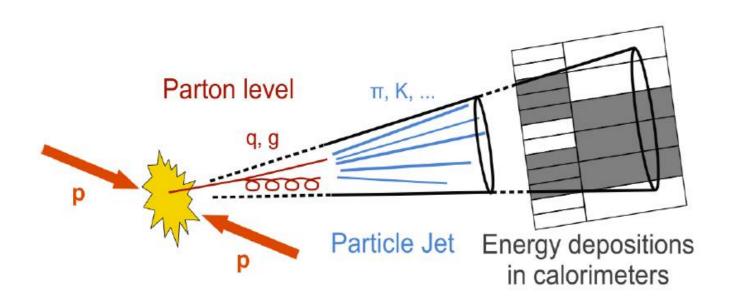
The key observable: Jet Charge

W: opposite sign for the two jet charges

Z: same or opposite sign for the two jet charges

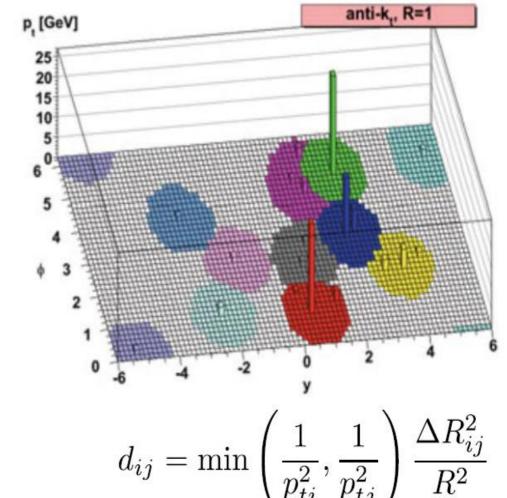
G: the sign of the jet charge is arbitrary

Jet charge definition



Transverse-momentum-weighting scheme:

$$Q_J = \frac{1}{(p_T^j)^{\kappa}} \sum_{i \in jet} Q_i(p_T^i)^{\kappa}, \ \kappa > 0$$



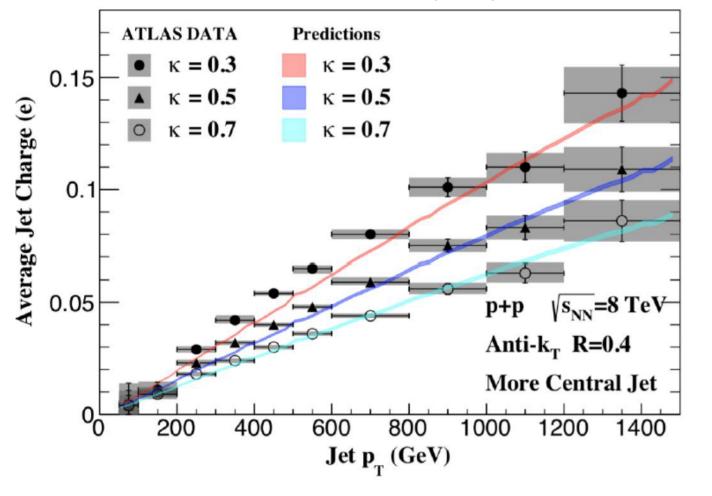
K: To regulate the sensitivity of the soft gluon radiation

R.D. Field and R.P. Feynman, NPB136,1(1978)

Jet charge @ LHC

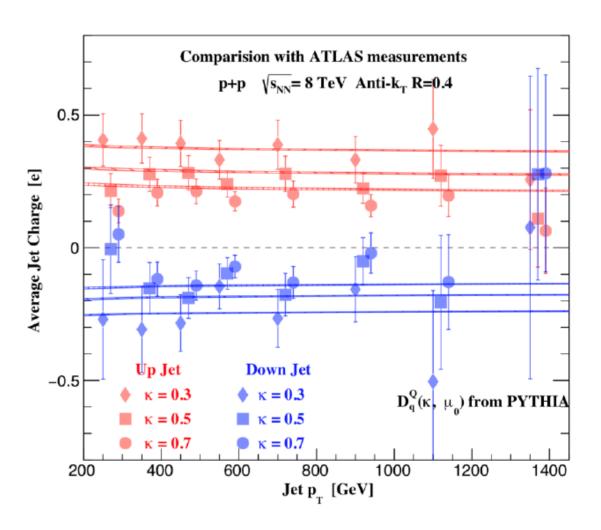
$$\langle Q_k^q \rangle = \frac{1}{\sigma_{q-jet}} \int d\sigma_{q-jet} Q_{\kappa}(\sigma_{q-jet})$$

H. T. Li and I. Vitev, PRD 101(2020)076020

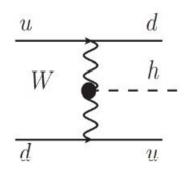


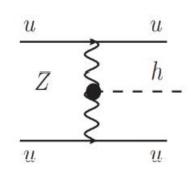
D. Krohn, M. D. Schwartz, T. Lin, W.J. Waalewijn, PRL 110(2013)21,212001

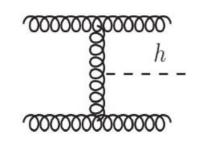
W.J.Waalewijn, PRD86(2012)094030



Various Higgs production mechanisms

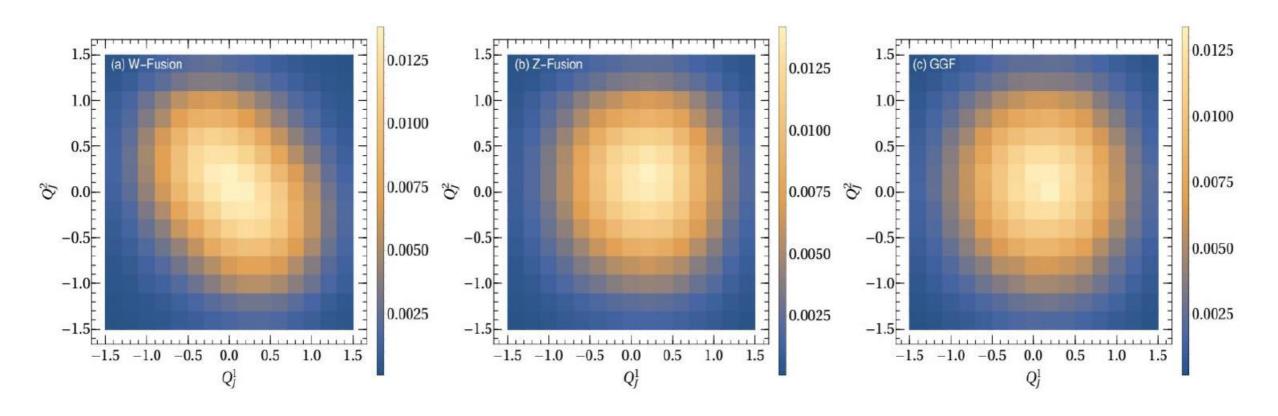






$$p_T^j > 30 \text{ GeV}, \qquad 1 < |\eta_j| < 4.5,$$

 $m_{jj} > 120 \text{ GeV}, \qquad |\Delta \eta_{jj}| > 3.5, \qquad |\eta_h| < 2.5,$

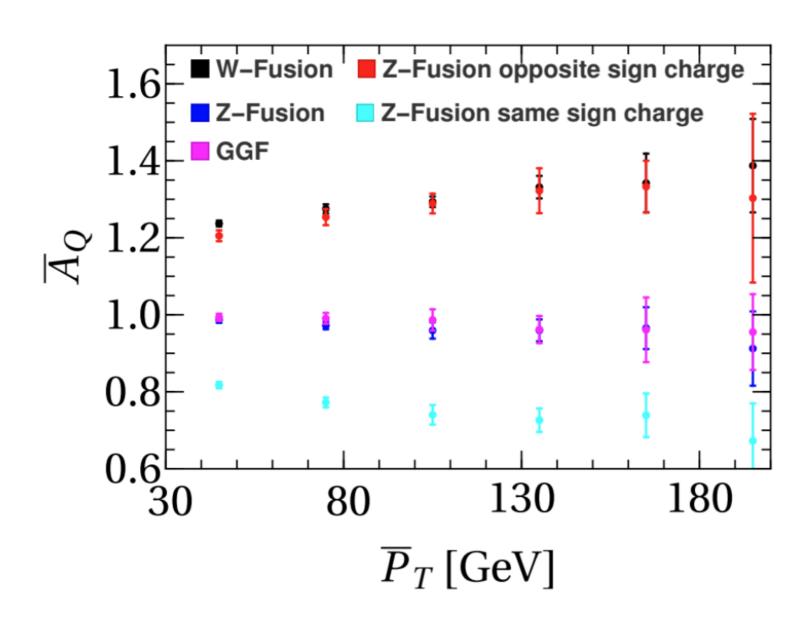


opposite sign for the two jet charges

same or opposite sign

the sign of the jet charge is arbitrary

Jet charge asymmetry



$$\mathcal{L} = 300 \text{ fb}^{-1}$$

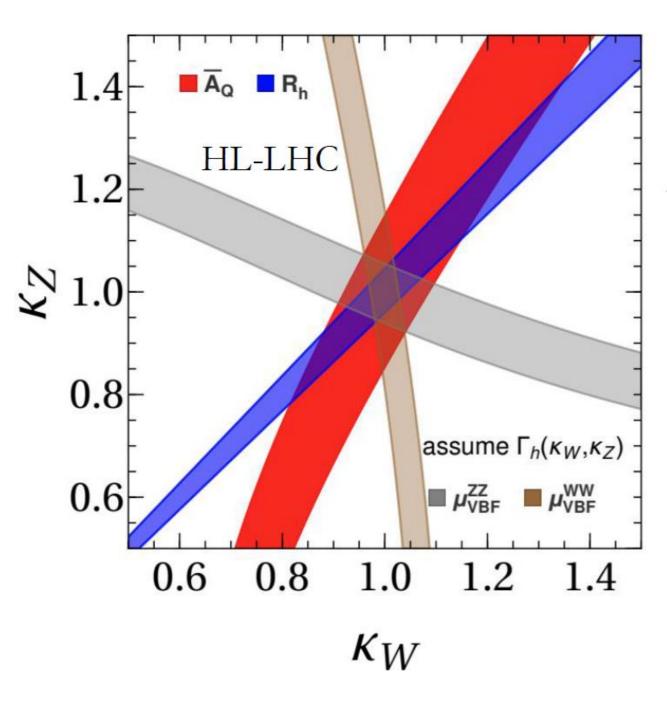
<Q> means the Average value

$$\overline{A}_Q = \frac{\langle |Q_J^1 - Q_J^2| \rangle}{\langle |Q_J^1 + Q_J^2| \rangle}$$

$$\bar{P}_T = \frac{p_T^1 + p_T^2}{2}$$

Various Higgs production mechanisms

$$h \to 4\ell/2\ell 2v_\ell$$



$$\overline{A}_Q^{\text{tot}} = \frac{f_W \langle Q^- \rangle_W + f_Z \langle Q^- \rangle_Z + f_G \langle Q^+ \rangle_G}{f_W \langle Q^+ \rangle_W + f_Z \langle Q^- \rangle_Z + f_G \langle Q^+ \rangle_G}$$

$$R_h = \frac{\mu(gg \to h \to WW^*)}{\mu(gg \to h \to ZZ^*)} = \frac{\kappa_W^2}{\kappa_Z^2}$$

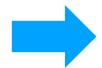
$$\kappa_V = \frac{g_{hVV}}{g_{hVV}^{SM}}$$

The limits from R_h and jet charge asymmetry do not depend on the assumption of the Higgs boson width.

Di-Higgs and HHH productions

(Talk by Abraham Tishelman-Charny)

- Important for measuring hhh and hhhh couplings
- to probe Higgs potential
- Challenging in experimental measurements
- use transformer to optimize reconstruction efficiency for both resolved and boosted cases (Talk by Haoyang Li)



How to distinguish a boosted $h \rightarrow bb$ from $g \rightarrow bb$ using jet substructure?

(Talk by Daniel Whiteson)

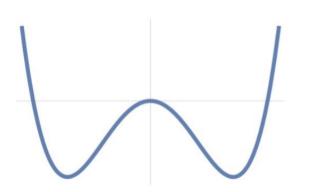
Li, Li, Yuan, PRL 107 (2011) Isaacson, Li, Li, Yuan, PLB 771 (2017)

Which EFT for New Physics?

Next mission: probing the nature of Higgs Boson!

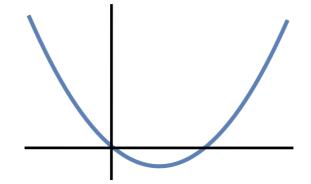
To find out the Higgs potential!

Landau-Ginzburg Higgs



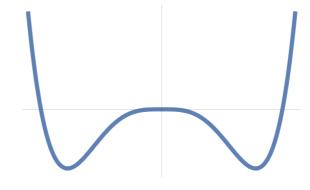
$$V(\phi) = -m^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

Tadpole-induced Higgs



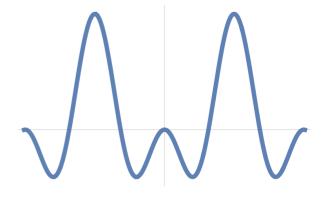
$$V(\phi) = -\mu^3 \sqrt{\phi^{\dagger} \phi} + m^2 \phi^{\dagger} \phi$$

Coleman Weinberg Higgs



$$V(\phi) = \lambda(\phi^{\dagger}\phi)^{2} + \epsilon(\phi^{\dagger}\phi)^{2} \log \frac{\phi^{\dagger}\phi}{\mu^{2}}$$

Pseudo-Goldstone Higgs



$$V(\phi) = -a\sin^2(\phi/f) + b\sin^4(\phi/f)$$

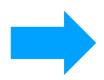
Fundamental particle

Partial Fundamental (condensate)

Conformal particle

Composite particle

Not all of these scenarios can be described in SMEFT



Need to use hEFT

[Agrawal, Saha, Xu, Yu, Yuan, 1907.02078]

SMEFT vs Higgs EFT

Standard model EFT

 $SU(3) \times SU(2) \times U(1)$

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \frac{C_i^{(5)}}{\Lambda_{NP}} Q_i^{(5)} + \frac{C_i^{(6)}}{\Lambda_{NP}^2} Q_i^{(6)} + \cdots$$

approximate custodial symmetry SU(2) x SU(2)

$$\langle \Sigma
angle = egin{pmatrix} v & 0 \ 0 & v \end{pmatrix}
eq 0$$
 $\Sigma \equiv (\Phi^c, \Phi) = egin{pmatrix} \Phi^0 & \Phi^0 \ -\Phi^- & \Phi^0 \end{pmatrix}
ightarrow g_L \ \Sigma \ g_R^\dagger$

EW Chiral Lagrangian

$$\Phi \equiv \frac{1}{\sqrt{2}} \vec{\sigma} \cdot \vec{\varphi} = \begin{pmatrix} \frac{1}{\sqrt{2}} \varphi^0 & \varphi^+ \\ \varphi^- & -\frac{1}{\sqrt{2}} \varphi^0 \end{pmatrix}$$

SM fields and Goldstone

CCWZ formalism

EFT Framework

UV model

Integrate out TeV heavy states

 $\mathcal{L} = \mathcal{L}_{ ext{Gravity}}^{ ext{eff}} + \underbrace{\mathcal{L}_{ ext{QCD}} + \mathcal{L}_{ ext{QED}} + \mathcal{L}_{ ext{EW}}}_{\mathcal{L}_{ ext{SM}}} + \mathcal{L}_{ ext{heavy}}^{ ext{NP}}$

 $\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \frac{C_i^{(5)}}{\Lambda_{NP}} Q_i^{(5)} + \frac{C_i^{(6)}}{\Lambda_{NP}^2} Q_i^{(6)} + \cdots$

SMEFT

Electroweak symmetry breaking

Higgs EFT

 m_W

$$egin{aligned} \mathcal{L} &= rac{1}{2}(\partial_{\mu}h)^2{-}V(h) \ &+ rac{v^2}{4}\mathrm{Tr}\Big[(\partial_{\mu}U)^{\dagger}\partial^{\mu}U\Big]\Big(1+2arac{h}{v}+brac{h^2}{v^2}+\cdots\Big) \ &- rac{v}{\sqrt{2}}\Big(ar{t}_L,ar{b}_L\Big)U\Big(1+c_1rac{h}{v}+c_2rac{h^2}{v^2}+\cdots\Big)inom{y_tt_R}{y_bb_R}+\mathrm{h.\,c.} \end{aligned}$$

EFT

$$\mathcal{L}_{ ext{LEFT}} \ = \ \mathcal{L}_{ ext{QED+QCD}} + rac{C_i^{(5)}}{M_W} O_i^{(5)} + rac{C_i^{(6)}}{M_W^2} O_i^{(6)} + \cdots$$

Multiboson SMEFT/hEFT

$$\mathcal{F}(h) = 1 + 2\frac{h}{v} + \frac{h^2}{v^2}$$

 $\operatorname{Tr}\left[\widehat{W}_{\mu\nu}\widehat{W}^{\nu\beta}\right] \times \left[\left(D_{\beta}\Phi\right)^{\dagger}D^{\mu}\Phi\right]$

 $\left[(D_{\mu} \Phi)^{\dagger} \widehat{W}_{\beta \nu} D^{\nu} \Phi \right] \times B^{\beta \mu} + \text{h.c.}$

 $\left[B_{\mu\nu}B^{\nu\beta}\right] \times \left[\left(D_{\beta}\Phi\right)^{\dagger}D^{\mu}\Phi\right]$

$$\widetilde{B}_{\mu\nu} \langle D^{\mu}D_{\alpha}W^{\alpha\beta}W_{\beta}^{\nu} \rangle
\widetilde{B}_{\mu\nu} \langle D_{\beta}D_{\alpha}W^{\alpha\mu}W^{\beta\nu} \rangle
\widetilde{B}_{\mu\nu} \langle D_{\alpha}W^{\alpha\mu}D_{\beta}W^{\beta\nu} \rangle
\widetilde{B}_{\mu\nu} \langle D_{\alpha}W^{\alpha\beta}D_{\beta}W^{\mu\nu} \rangle
\widetilde{B}_{\mu\nu} \langle D_{\alpha}W^{\alpha\beta}D^{\mu}W_{\beta}^{\nu} \rangle
\operatorname{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right]
\left[B_{\mu\nu}B^{\mu\nu} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right]
\left[(D_{\mu}\Phi)^{\dagger} \widehat{W}_{\beta\nu}D^{\mu}\Phi \right] \times B^{\beta\nu}
\left[(D_{\mu}\Phi)^{\dagger} \widehat{W}_{\beta\nu}\widehat{W}^{\beta\mu}D^{\nu}\Phi \right]$$
Dim-8

Dim-8

HEFT

$$\mathcal{F}(h) = 1 + a\frac{h}{v} + b\frac{h^2}{v^2} + \cdots$$

$$Tr[V^{\mu}V_{\mu}]Tr[V^{\nu}V_{\nu}]\mathcal{F}_{6}(h)$$

$$Tr[V^{\mu}V^{\nu}]Tr[V_{\mu}V_{\nu}]\mathcal{F}_{11}(h)$$

$$Tr[V^{\mu}V_{\mu}](Tr[TV_{\nu}])^{2}\mathcal{F}_{23}(h)$$

$$Tr[V^{\mu}V^{\nu}]Tr[TV_{\mu}]Tr[TV_{\nu}]\mathcal{F}_{24}(h)$$

$$(Tr[TV_{\mu}]Tr[TV_{\nu}])^{2}\mathcal{F}_{26}(h)$$

$$Tr[T\mathcal{D}_{\mu\nu}]Tr[T\mathcal{D}^{\mu\nu}]Tr[TV^{\alpha}]Tr[TV_{\alpha}]$$

$$Tr[T\mathcal{D}_{\mu}^{\mu}]Tr[T\mathcal{D}_{\nu}^{\nu}]Tr[TV^{\alpha}]Tr[TV_{\alpha}]$$

$$-g^{2}Tr[T\widehat{W}_{\mu\nu}]Tr[T\widehat{W}^{\mu\nu}]Tr[TV^{\alpha}]Tr[TV^{\alpha}]$$

$$i g Tr[T\widehat{W}_{\mu\nu}]Tr[T\mathcal{D}^{\mu\alpha}]Tr[TV^{\nu}]Tr[TV_{\alpha}]$$
P6

 $-g'^2 B_{\mu\nu} B^{\mu\alpha} \text{Tr}[TV^{\nu}] \text{Tr}[TV_{\alpha}]$

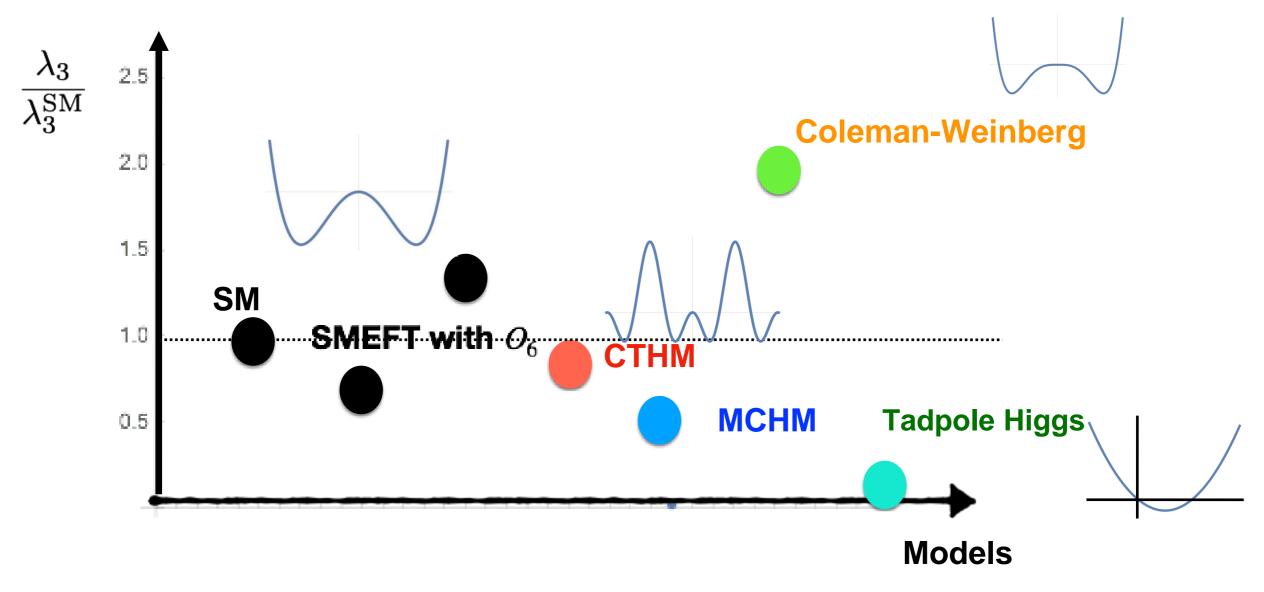
 $-gg'B_{\mu\nu}\mathrm{Tr}[T\widehat{W}^{\mu\nu}]\mathrm{Tr}[TV^{\alpha}]\mathrm{Tr}[TV_{\alpha}]$

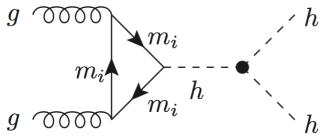
Dim-8 of SMEFT are partially included in p4 of hEFT.

Higgs Self Coupling

[Agrawal, Saha, Xu, Yu, Yuan, 2020]

Make use of large difference in Higgs self coupling





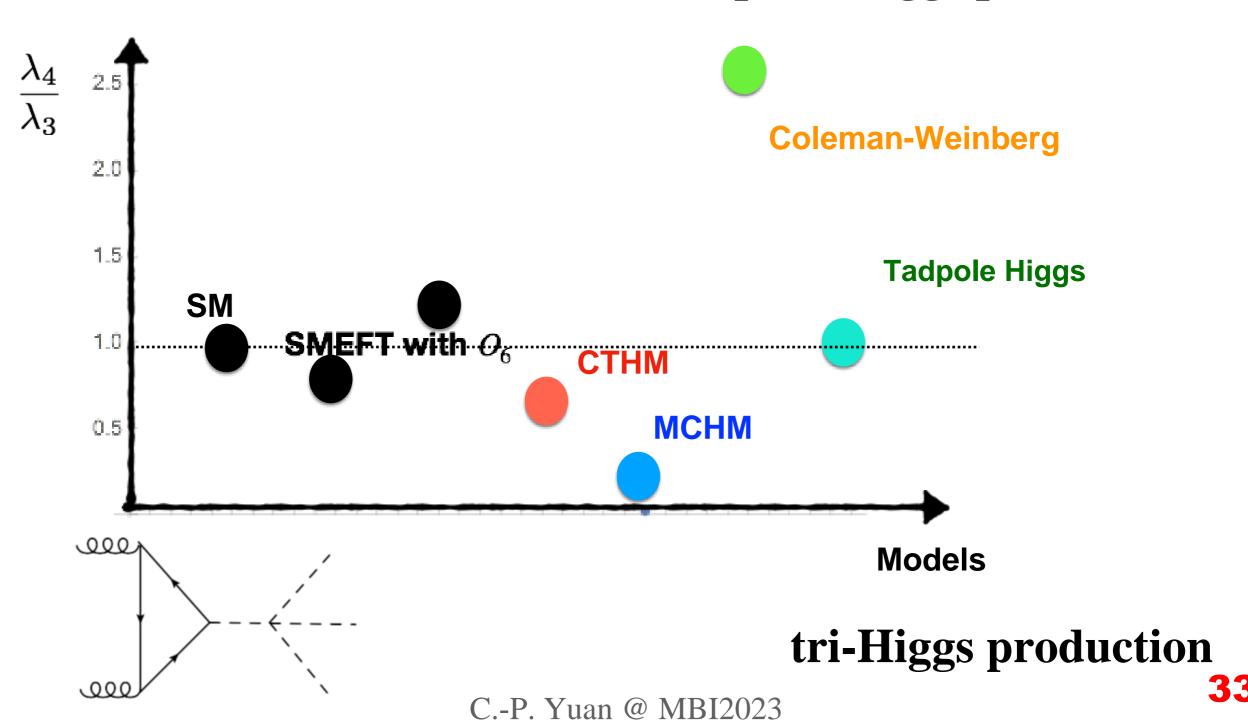
Di-Higgs production

Quartic Higgs Coupling

[Agrawal, Saha, Xu, Yu, Yuan, 2020]

Confirm quartic coupling

Further determine shape of Higgs potential



SMEFT vs. hEFT

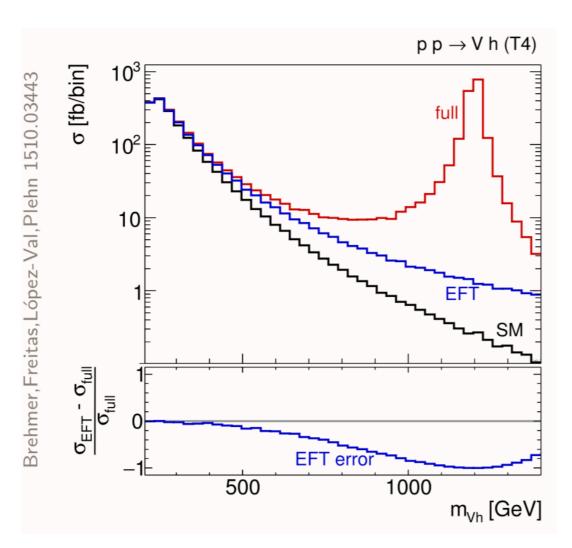
- In SMEFT, h is contained in SU(2) doublet, same as SM.
- hEFT is useful for probing non-SM Higgs potential
- ➤ hEFT is more useful for global combination including studying hhh and hhhh couplings.

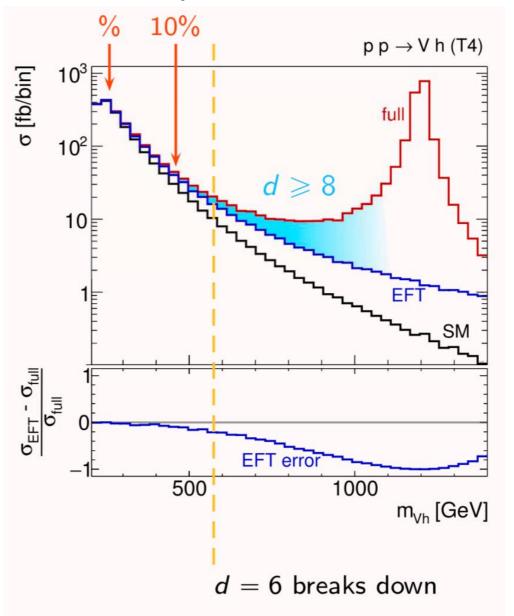
(Talk by Abraham Tishelman-Charny)

What if data sees a fast growing $VV \rightarrow VV$ cross sections in the high energy region, maybe induced by some broad resonances of UV models?

Need Dim-8 of SMEFT for Broad Resonances

Close to resonances, dim-8 contribution becomes important.



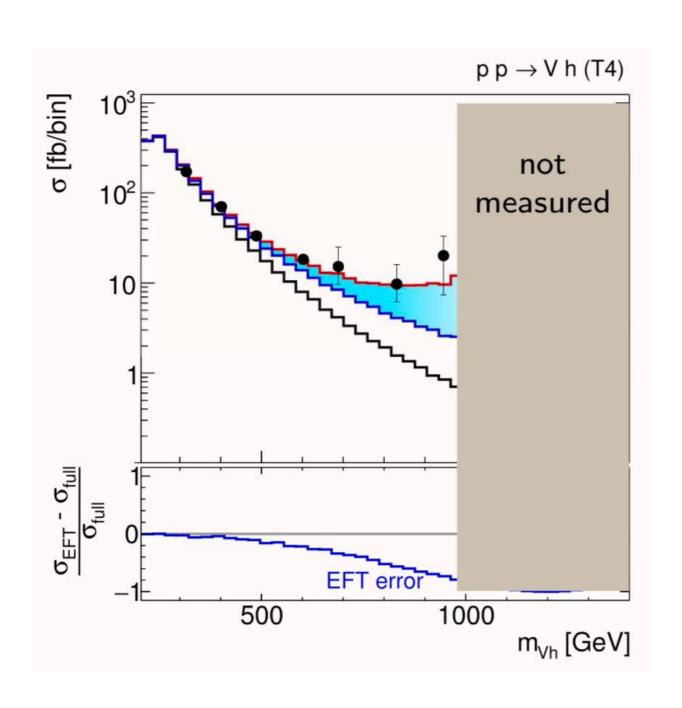


Brehmer, Freitas, L'opez-Val, Plehn 1510.03443

(Add a vector triplet under SU(2), couples to a scalar and fermion currents, and kinetically mixes with the weak gauge bosons of the SM.)

Need Dim-8 of SMEFT for Broad Resonances

Add dim-8 contribution to extend the validity range.



Given a UV model, some experimental observables require the inclusion of the square of dim-6 contribution $(1/\Lambda^4)$ in the SMEFT prediction to agree with the full UV model prediction. Some others even require the inclusion of dim-8 operator contribution.

This information is generally not known from the bottom-up approach.

Similar to the EWPO study in the Talk by Samuel Homiller

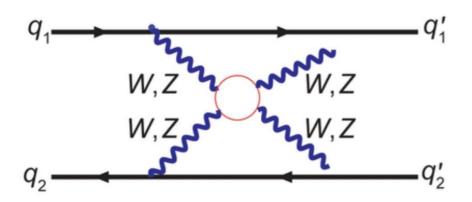
Sharing some thoughts

- ➤ Analyzing data using both SMEFT and hEFT.
- ➤If they can describe data equally well, then the SMEFT (and hEFT) result is valid for interpreting the data.
- If they give different predictions of the data, then it is likely that higher order contributions, from the square of dim-6 operators and some dim-8 operators of SMEFT, need to be included. The result of hEFT should also be reported to compare to the data.
- ➤Yet, it would generally be challenging to find out which dim-8 operators of SMEFT to be included without knowing the underlying UV physics?
- > Yet, problems related to unitarity breakdown remain.
- ➤ Hence, it is important to keep in mind the top-down approach, based on some UV models, when data shows different agreement with SMEFT and hEFT analyses.
- ➤ Most likely, a novel idea is needed in this case.

Recall an old study

hep-ph/9504426

LHC Analysis of the Strongly Interacting WW System: Gold-Plated Modes



J. Bagger, $^{(a)}$ V. Barger, $^{(b)}$ K. Cheung, $^{(c)}$ J. Gunion, $^{(d)}$ T. Han, $^{(d)}$ G. A. Ladinsky, $^{(e)}$ R. Rosenfeld $^{(f)}$ and C.-P. Yuan $^{(e)}$

Table 4: Number of years (if < 10) at LHC required for a 99% confidence level signal.

	Model									
Channel		Scalar	O(2N)	Vec 1.0	Vec 2.5	LET CG	LET K	Delay K		
$ZZ(4\ell)$		2.5	3.2							
$ZZ(2\ell 2\nu)$		0.75	1.0	3.7	4.2	3.5	4.0	5.7		
W^+W^-		1.5	2.5	8.5		9.5				
$W^{\pm}Z$				7.5						
$W^{\pm}W^{\pm}$		3.0	4.2	1.5	1.5	1.2	1.2	2.2		

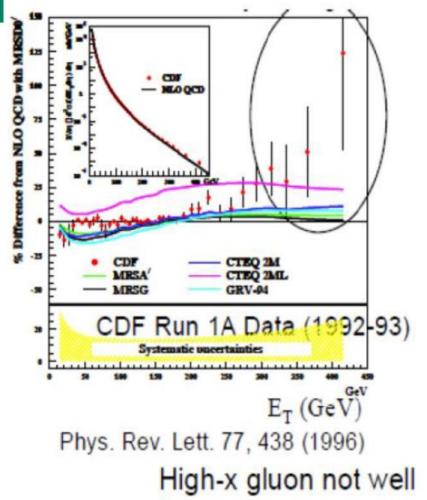
➤ Maybe, one can extend that "old" study with today's higher order calculations and machine learning tools, etc., for studying broad resonances with certain spin and isospin.

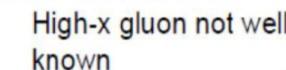
PDF matters!

- Paron distribution functions (PDFs) are needed for making theory predictions to compare with high pT data at the LHC.
- The error estimate of PDFs obtained from global analysis is important for predicting uncertainty of theory predictions induced by PDFs.

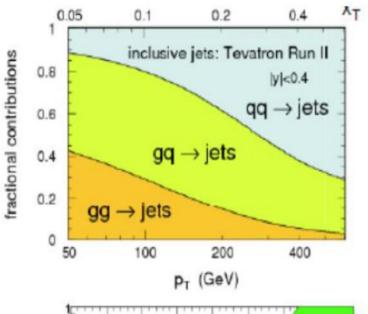
More details: See talk by C.-P. Yuan @ Pheno 2023

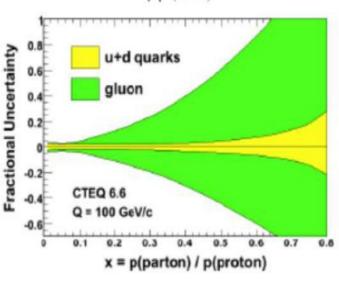
New Physics Found (in 1996)?





...can be accommodated in the Standard Model





Explained by having better determined PDFs from global analysis; no need for NP scenario yet.

J. Huston, E. Kovacs, S. Kuhlmann, J.L. Lai, J.F. Owens, D. Soper, W.K. Tung, Phys. Rev. Lett. 77 (1996) 444.

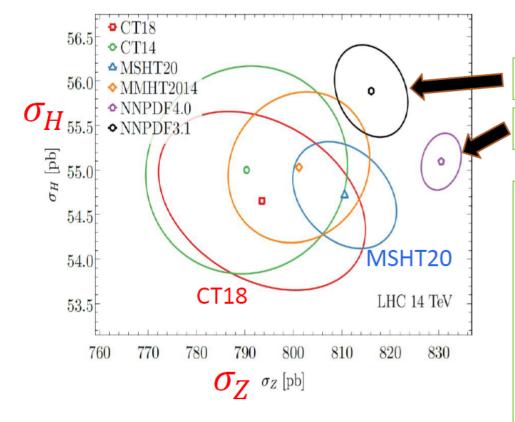
C.-P. Yuan, Pheno 23 4

Comparing predictions from various QCD global analysis groups

Snowmass 2021, 2203.13923

The PDF-induced errors @ 68% CL in

 $gg \to h$ and $q \overline{q} \to Z$ NNLO cross sections



NNPDF3.1

NNPDF4.0

Their predictions do not overlap at 1σ level.

Different (though mostly consistent) predictions on

- central values and error estimates of PDFs,
- parton luminosities,
- physical cross sections, and
- various correlations among PDFs and data ...

Due to different choices of

Experiment

New collider and fixed-target measurements

Theory

Precision PDFs. specialized **PDFs**

Statistics

Hessian, Monte-Carlo techniques, AI/ML neural networks. reweighting, meta-

Components of a global QCD fit

C.-P. Yuan, Pheno 23

9

Hessian profiling of CT and MSHT PDFs cannot use $\Delta \chi^2 = 1$

ATLAS-CONF-2023-015

The statistical analysis for the determination of $\alpha_s(m_Z)$ is performed with the xFitter framework [60]. The value of $\alpha_s(m_Z)$ is determined by minimising a χ^2 function which includes both the experimental uncertainties and the theoretical uncertainties arising from PDF variations:

$$\chi^{2}(\beta_{\exp}, \beta_{th}) = \sum_{\substack{N_{data} \\ \sum_{i=1}}}^{N_{data}} \frac{\left(\sigma_{i}^{\exp} + \sum_{j} \Gamma_{ij}^{\exp} \beta_{j, \exp} - \sigma_{i}^{th} - \sum_{k} \Gamma_{ik}^{th} \beta_{k, th}\right)^{2}}{\Delta_{i}^{2}} + \sum_{j} \beta_{j, \exp}^{2} + \sum_{k} \beta_{k, th}^{2}.$$

profiling of CT and MSHT PDFs requires to include a tolerance factor $T^2 > 10$ as in the ePump code

arXiv: 1907.12177

arXiv:1912.10053

- \triangleright xFitter profiling uses $\Delta \chi^2 = 1$, by default.
- For CT (or MSHT) PDFs, using $\Delta \chi^2 = 1$ in profiling is equivalent to assigning a weight of about 30 (or 10) to the new data included in the fit. Hence, it will overestimate the impact of new data.
- ightharpoonup CT: $T^2 \sim 30$; MSHT: $T^2 \sim 10$

When profiling a new experiment with the prior imposed on PDF nuisance parameters $\lambda_{\alpha,th}$:

$$\chi^{2}(\vec{\lambda}_{\mathrm{exp}}, \vec{\lambda}_{\mathrm{th}}) = \sum_{i=1}^{N_{pt}} \frac{\left[D_{i} + \sum_{\alpha} \beta_{i,\alpha}^{\mathrm{exp}} \lambda_{\alpha,\mathrm{exp}} - T_{i} - \sum_{\alpha} \beta_{i,\alpha}^{\mathrm{th}} \lambda_{\alpha,\mathrm{th}}\right]^{2}}{s_{i}^{2}} + \sum_{\alpha} \lambda_{\alpha,\mathrm{exp}}^{2} + \sum_{\alpha} T^{2} \lambda_{\alpha,\mathrm{th}}^{2}. \qquad \beta_{i,\alpha}^{\mathrm{th}} = \frac{T_{i}(f_{\alpha}^{+}) - T_{i}(f_{\alpha}^{-})}{2},$$

new experiment

$$+\sum_{\alpha} \lambda_{\alpha, \exp}^2 + \sum_{\alpha} T^2 \lambda_{\alpha, \th}^2.$$

32 C.-P. Yuan, Pheno 23

Machine Learning in CTEQ-TEA analysis: SMEFT

It is a simultaneous fit of PDFs and SMEFT couplings.

The machine-learning (ML) approach ensures efficient scans over the full PDF parameter space, especially the Lagrange Multiplier scans of χ^2 , as demonstrated for a study on the constraint of SMEFT couplings.

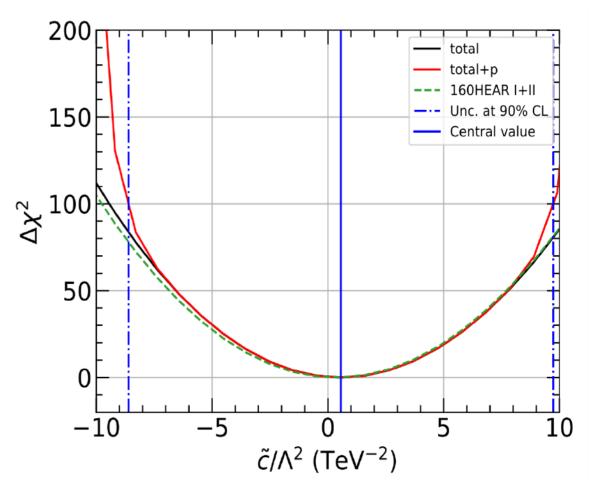
arXiv:2201.06586

Lepton-quark contact interactions of SMEFT

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_{i,j} rac{c_{ij}}{\Lambda^2} (ar{q}_i \gamma_\mu q_i) (ar{l}_j \gamma^\mu l_j)$$

$$= \mathcal{L}_{ ext{SM}} + rac{ ilde{c}}{\Lambda^2} \sum_{i,j} e_{q_i} e_{l_j} (ar{q}_i \gamma_\mu q_i) (ar{l}_j \gamma^\mu l_j)$$

LM scans on SMEFT couplings



C.-P. Yuan, Pheno 23 38

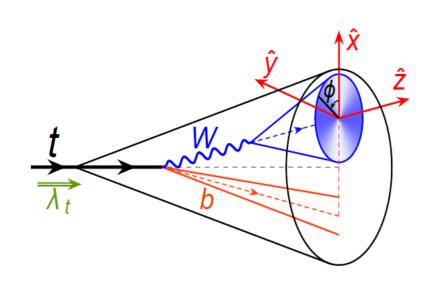
Final remarks

- This is a very productive conference with plenty of discussions, and many well-prepared talks which not only nicely present the results of recent data and/or theory predictions, but also many well-thought-out physics questions.
- Thanks again to all the speakers.
- Special thanks go to the organizers who brought us together at this beautiful site of UCSD!

Backup slides

Pythia simulation

Pythia simulation: $pp \rightarrow t\bar{t}$ production (unpolarized top)

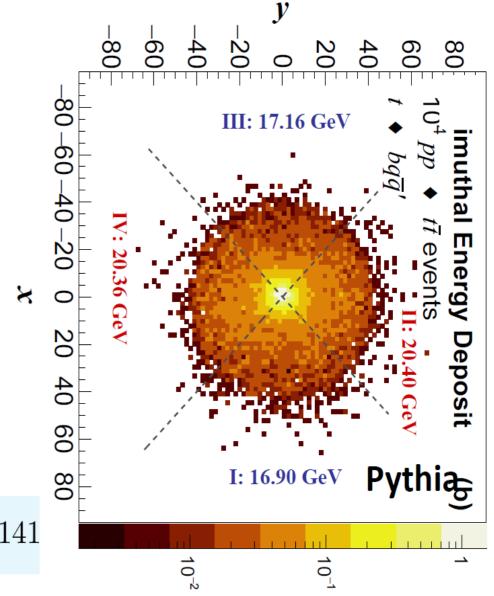


$$\frac{\mathrm{d}E}{\mathrm{d}\phi} = \frac{E_{\mathrm{tot}}}{2\pi} \left[1 + \xi \cos 2\phi \right]$$

SM prediction: $\xi = \xi(\lambda_t) = 0.145(\lambda_t - 1)$

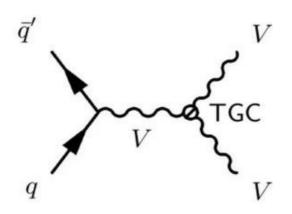
Pythia simulation:
$$\xi = \frac{\pi}{2} \cdot \frac{(E_1 + E_3) - (E_2 + E_4)}{(E_1 + E_3) + (E_2 + E_4)} = -0.141$$

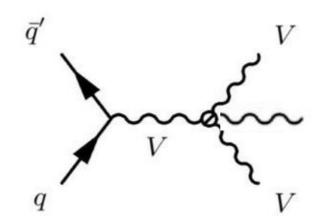
Agrees with SM prediction for $\lambda_t = 0$: unpolarized top

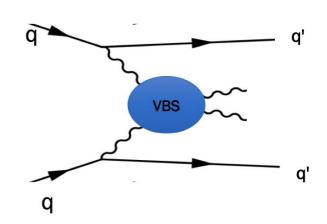


New Physics for Multiboson

Various new physics models







Extended gauge sector

U(1) extensions

G221

Pati-Salam

...

Extended Higgs sector

Higgs Singlet

Higgs Doublet

Higgs Triplet

•••

Naturalness scenarios

MSSM

Randall-Sundrum

Composite Higgs

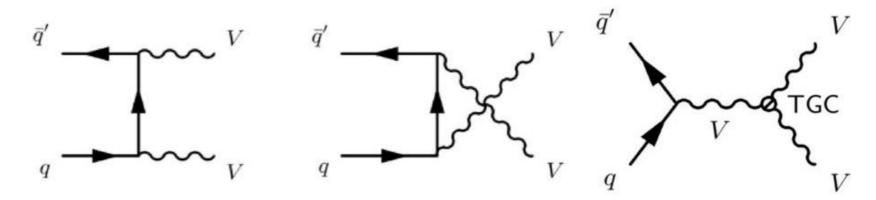
Higher Dim SMEFT Operators

Expect much smaller effects for dim > 7

$$|\mathcal{A}|^2 \sim \left| A_{
m SM} + rac{A_{
m dim-6}}{\Lambda^2} + rac{A_{
m dim-8}}{\Lambda^4} + \ldots
ight|^2 \ \sim \left| A_{
m SM}
ight|^2 + rac{2}{\Lambda^2} A_{
m dim-6} A_{
m SM}^* + rac{1}{\Lambda^4} |A_{
m dim-6}|^2 + rac{2}{\Lambda^4} A_{
m dim-8} A_{
m SM}^*$$

Some LHC data start to probe dim-8.

Leading operators appear as dim-8 in some processes.



Neutral triple gauge boson ZZZ, ZZA, ZAA couplings

Dim-8 SMEFT

Complete/independent dim-8 operator basis

TGC/QGC relevant operators

[Li, Ren, Shu, Xiao, Yu, Zheng, 2005.00008] [Murphy, 2005.00059]

N	(n,\tilde{n})	Subclasses	$\mathcal{N}_{ ext{type}}$	$\mathcal{N}_{ ext{term}}$	$\mathcal{N}_{ ext{operator}}$	Equations	
4 (4,0)		$F_{\rm L}^4 + h.c.$	14	26	26	(4.19)	
	(3, 1)	$F_{\rm L}^2 \psi \psi^{\dagger} D + h.c.$	22	22	$22n_f^2$		
		$\psi^4 D^2 + h.c.$	4 <u>+4</u>	18 <u>+14</u>	$12n_f^4 + n_f^3(5n_f - 1)$	000	
		$F_{\rm L}\psi^2\phi D^2 + h.c.$	16	32	$32n_f^2$	1993	
		$F_{\rm L}^2 \phi^2 D^2 + h.c.$	8	12	12		
	(2, 2)	$F_{ m L}^2 F_{ m R}^2$	14	17	17	(4.19)	
		$F_{ m L}F_{ m R}\psi\psi^\dagger D$	27	35	$35n_f^2$	(4.50, 4.51)	
		$\psi^2 \psi^{\dagger 2} D^2$	17 <u>+4</u>	54 <u>+8</u>	$\frac{1}{2}n_f^2(75n_f^2+11)+6n_f^4$	(4.74, 4.79-4.81)	
		$F_{\rm R}\psi^2\phi D^2 + h.c.$	16	16	$16n_f^2$	(4.44)	
		$F_{\rm L}F_{\rm R}\phi^2D^2$	5	6	6	(4.14)	
		$\psi \psi^{\dagger} \phi^2 D^3$	7	16	$16n_f^2$	(4.31, 4.32)	
		$\phi^4 D^4$	1	3	3	(4.8)	
5	(3,0)	$F_{\rm L}\psi^4 + h.c.$	12 <u>+10</u>	66+54	$42n_f^4 + 2n_f^3(9n_f + 1)$	(4.86, 4.88, 4.89, 4.91	
		$F_{\rm L}^2 \psi^2 \phi + h.c.$	32	60	$60n_f^2$	(4.47, 4.48)	
		$F_{\rm L}^3 \phi^2 + h.c.$	6	6	6	(4.16)	
	(2,1)	$F_{\rm L}\psi^2\psi^{\dagger 2} + h.c.$	84+24	172 <u>+32</u>	$2n_f^2(59n_f^2-2)+24n_f^4$	(4.84-4.85), (4.88-4.9	
		$F_{\rm R}^2 \psi^2 \phi + h.c.$	32	36	$36n_f^2$	(4.47, 4.48)	
		$\psi^3 \psi^\dagger \phi D + h.c.$	32 + 14	180 + 56	$n_f^3(135n_f - 1) + n_f^3(29n_f + 3)$	(4.66, 4.69-4.72)	
		$F_{\rm L}\psi\psi^{\dagger}\phi^2D + h.c.$	38	92	$92\overline{n_f^2}$	(4.39, 4.40)	
		$\psi^2 \phi^3 D^2 + h.c.$	6	36	$36n_f^2$	(4.28)	
		$F_{\rm L}\phi^4D^2 + h.c.$	4	6	6	(4.10)	
6	(2,0)	$\psi^4\phi^2 + h.c.$	12 <u>+4</u>	48 <u>+18</u>	$5(5n_f^4 + n_f^2) + \frac{2}{3}(8n_f^4 + n_f^2)$	(4.55, 4.59, 4.62, 4.64	
		$F_{\rm L}\psi^2\phi^3 + h.c.$	16	22	$22n_f^2$	(4.36)	
		$F_{\rm L}^2 \phi^4 + h.c.$	8	10	10	(4.12)	
	(1, 1)	$\psi^2 \psi^{\dagger 2} \phi^2$	23 <u>+10</u>	57 <u>+14</u>	$n_f^2(42n_f^2 + n_f + 2) + 3n_f^3(3n_f - 1)$	(4.54, 4.55, 4.59-4.63	
		$\psi \psi^\dagger \phi^4 D$	7	13	$13n_f^2$	(4.24, 4.25)	
		$\phi^6 D^2$	1	2	2	(4.8)	
7	(1,0)	$\psi^2 \phi^5 + h.c.$	6	6	$6n_f^2$	(4.21)	
8	(0,0)	ϕ^8	1	1	1	(4.8)	
,	Total	48	471 <u>+70</u>	1070+196	$993(n_f = 1), 44807(n_f = 3)$		

$$\begin{split} \widetilde{B}_{\mu\nu} \langle D^{\mu} D_{\alpha} W^{\alpha\beta} W_{\beta}^{\nu} \rangle \\ \widetilde{B}_{\mu\nu} \langle D_{\beta} D_{\alpha} W^{\alpha\mu} W^{\beta\nu} \rangle \\ \widetilde{B}_{\mu\nu} \langle D_{\alpha} W^{\alpha\mu} D_{\beta} W^{\beta\nu} \rangle \\ \widetilde{B}_{\mu\nu} \langle D_{\alpha} W^{\alpha\beta} D_{\beta} W^{\mu\nu} \rangle \\ \widetilde{B}_{\mu\nu} \langle D_{\alpha} W^{\alpha\beta} D^{\mu} W_{\beta}^{\nu} \rangle \end{split}$$

$$\operatorname{Tr}\left[\widehat{W}_{\mu\nu}\widehat{W}^{\mu\nu}\right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right]$$

$$\left[B_{\mu\nu}B^{\mu\nu} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right]$$

$$\left[(D_{\mu}\Phi)^{\dagger} \widehat{W}_{\beta\nu}D^{\mu}\Phi \right] \times B^{\beta\nu}$$

$$\left[(D_{\mu}\Phi)^{\dagger} \widehat{W}_{\beta\nu}\widehat{W}^{\beta\mu}D^{\nu}\Phi \right]$$

$$\operatorname{Tr}\left[\widehat{W}_{\mu\nu}\widehat{W}^{\nu\beta}\right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\mu}\Phi \right]$$
$$\left[B_{\mu\nu}B^{\nu\beta} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\mu}\Phi \right]$$
$$\left[(D_{\mu}\Phi)^{\dagger} \widehat{W}_{\beta\nu}D^{\nu}\Phi \right] \times B^{\beta\mu} + \text{h.c.}$$

SMEFT is not Enough

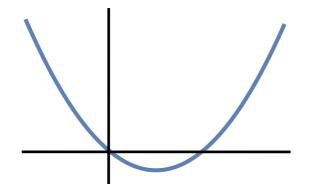
Not all of these scenarios can be described in SMEFT

[Agrawal, Saha, Xu, Yu, Yuan, 1907.02078]

Also [Falkowski, Rattazzi 2019]
[Cohen, Craig, Lu, Sutherland, 2021]
[Gomez-Ambrosio, etc, 2022]

Electroweak symmetry breaking by Higgs mechanism or not?

Tadpole-induced Higgs

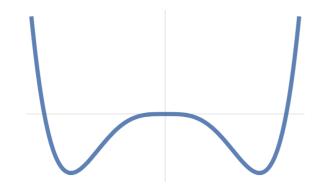


$$V(\phi) = -\mu^3 \sqrt{\phi^{\dagger} \phi} + m^2 \phi^{\dagger} \phi$$

Partly by Condensation

Non-decoupling: New particle obtains mass from Higgs VEV or not?

Coleman Weinberg Higgs



$$V(\phi) = \lambda(\phi^{\dagger}\phi)^{2} + \epsilon(\phi^{\dagger}\phi)^{2} \log \frac{\phi^{\dagger}\phi}{\mu^{2}}$$

Classical scale invariance

Similarly, 2HDM non-decoupling scenarios

Higgs EFT

EW chiral Lagrangian

EWChL with light Higgs

Higgs EFT

LO and NLO boson

2012

NLO fermion sector

Full NLO and NNLO

237 (8595) operators for one (three)

[Sun, Xiao, **Yu**, 2206.07722]

LO Lagrangian

[Weinberg, 1979]

NLO Fermionic Lagrangian

Complete NLO Lagrangian (p4)

[Buchalla, Cata, Krause, 2014]

NLO Bosonic Lagrangian

[Pich, Rosell, Santos, Sanz-Cillero, 2015, 2018]

[Appelquist, Bernard, 1980]

[Longhitano, 1980, 1981]

[Feruglio, 1993]

 $\mathcal{O}_{33}^{Uh\psi^4} = (\overline{q}_{L_s}\gamma_\mu \tau^I \mathbf{T} q_{L_p}) (\overline{q}_{R_r}\gamma^\mu \mathbf{U}^\dagger \tau^I \mathbf{U} q_{R_t}) \mathcal{F}_{33}^{Uh\psi^4}(h),$ $\mathcal{O}_{34}^{Uh\psi^4} = (\overline{q}_{L_s}\gamma_{\mu}\lambda^A \tau^I \mathbf{T} q_{L_p}) (\overline{q}_{R_r}\gamma^{\mu}\lambda^A \mathbf{U}^{\dagger} \tau^I \mathbf{U} q_{R_t}) \mathcal{F}_{34}^{Uh\psi^4}(h),$ $\mathcal{O}_{119}^{Uh\psi^4} = (\bar{l}_{Rs}\gamma_\mu \mathbf{U}^{\dagger}\tau^I \mathbf{T} \mathbf{U} l_{Rp})(\bar{q}_{Lt}\gamma^\mu \tau^I q_{Lr})\mathcal{F}_{119}^{Uh\psi^4}(h),$ $\mathcal{O}_{125}^{Uh\psi^4} = (\bar{l}_{L_s}\gamma_\mu \tau^I \mathbf{T} l_{L_p})(\bar{q}_{R_t}\gamma^\mu \mathbf{U}^\dagger \tau^I \mathbf{U} q_{R_r}) \mathcal{F}_{125}^{Uh\psi^4}(h),$ $\mathcal{O}_{140}^{Uh\psi^4} = \mathcal{Y}[\underline{r}] \epsilon^{abc} \epsilon^{ln} \epsilon^{km} ((\mathbf{T}l_L^T)_{pm} C(\mathbf{T}q_L)_{ran}) (q_L^T \epsilon^{km} Cq_{Ltcl}) \mathcal{F}_{159}^{Uh\psi^4} (h),$ $\mathcal{O}_{160}^{Uh\psi^4} = \mathcal{Y}[\underline{r}]_{s} \epsilon^{abc} \epsilon^{km} \epsilon^{ln} ((\mathbf{T}l_R^T)_{pm} C(\mathbf{T}q_R)_{ran}) (q_{Rsbk}^T Cq_{Rtcl}) \mathcal{F}_{160}^{Uh\psi^4}(h)$

Complete NNLO Lagrangian (p5, p6)

11506(1927574) NNLO operators with flavor number 1(3).

[Sun, Xiao, **Yu**, 2110.14939]

SMEFT vs HEFT

Correlation between tri-/quartic couplings

[Agrawal, Saha, Xu, Yu, Yuan, 1907.02078]

		Tigrawari Sarraj Maj Tuj Taarrij 1907					
	a	b	c_1	c_2	c_3	d_3	d_4
relevant couplings	hVV	hhVV	$har{t}t$	$hhar{t}t$	$hhhar{t}t$	hhh	hhhh
SM	1	1	1	0	0	1	1
SMEFT (with O_6)	1	1	1	0	0	$1 + c_6 \frac{v^2}{\Lambda^2}$	$1 + c_6 \frac{6v^2}{\Lambda^2}$
MCH_{5+5}	$1-\frac{\xi}{2}$	$1-2\xi$	$1 - \frac{3}{2}\xi$	-2ξ	$-\frac{2}{3}\xi$	$1 - \frac{3}{2}\xi$	$1 - \frac{25}{3}\xi$
CTH_{8+1}	$1-\frac{\xi}{2}$	$1-2\xi$	$1 - \frac{1}{2}\xi$	$-\frac{1}{2}\xi$	$-\frac{1}{6}\xi$	$1 - \frac{3}{2}\xi$	$1 - \frac{25}{3}\xi$
CW Higgs (doublet)	1	1	1	0	0	$\frac{5}{3}(1.75)$	$\frac{11}{3}(4.43)$
CW Higgs (singlets)	1	1	1	0	0	$\frac{5}{3}(1.91)$	$\frac{11}{3}(4.10)$
Tadpole-induced Higgs	≥ 1	$\simeq 1$	≥ 1	0	0	$\simeq 0$	$\simeq 0$

Curvature in Higgs field space

[Alonso, Jenkins, Manohar, **2016**] [Cohen, Craig, Lu, Sutherland, **2020**]