

University of Victoria

Overview

- What will be covered
 - *WZ*γ CERN-EP-2023-095
 - *W*γγ CERN-EP-2023-037
 - *Ζ*γγ Eur. Phys. J. C 83 (2023) 539
 - *Ζ*γ JHEP 03 (2020) 054
- What will not be covered
 - EFT interpretation of $Z\gamma\gamma$
 - see Michael Schmitt's talk on EFT searches in multiboson final states in ATLAS and CMS from Wednesday
 - EW production (VBS/VBF):

 $\begin{array}{ll} Z(\rightarrow \ell \ell) \gamma j j & \mbox{ATLAS-CONF-2021-038} \ (m_{jj} > 150 \ {\rm GeV}) \\ & \mbox{STDM-2018-36} \ (m_{jj} > 500 \ {\rm GeV}) \\ Z(\rightarrow \nu \nu) \gamma j j & \mbox{EPJC 82} \ (2022) \ 105 \\ & \mbox{JHEP 06} \ (2023) \ 082 \end{array}$

Motivation

- Triboson final states are rare and some are only now becoming accessible at the LHC
- Probe of non-Abelian self couplings of the electroweak gauge bosons in the Standard Model (SM)
 - Sensitive to anomalous Quartic Gauge Coupling (aQGC) operators
 - Can be used to set limits within Effective Field Theory (EFT) parameters
- Backgrounds to SM processes like $ZH(\rightarrow \gamma\gamma)$ and $WH(\rightarrow \gamma\gamma)$ that will become accessible during run 3

PHYS-PUB-2022-009

August 31^{2t} 2023

$Z\gamma$ Production

• Process studied is $Z(\rightarrow \ell \ell)\gamma$ where $\ell = e, \mu$

- Signal modeled using Sherpa 2.2.4 with the NNPDF3.0 NNLO PDF set with $m_{\ell\ell} > 10 \,\text{GeV}$
- Can be used to search for new physics effects such as the direct coupling of *Z* bosons to photons.
- Important for searches for
 - the decay $H \rightarrow Z\gamma$ of the Higgs boson
 - other resonances in the $Z\gamma$ channel where non-resonant $Z\gamma$ production is a major background

$Z\gamma$ Event Selection

• Includes large contributions from FSR from the leptons

Increase sensitivity to EW couplings by selecting events with

 $m_{\ell\ell} + m_{\ell\ell\gamma} \geq 2m_Z$

August 31^{2t} 2023

MBI2023 August 31ST, 2023

$Z\gamma$ Background Estimation

- Major backgrounds include:
 - Z + jets and pile-up backgrounds, estimated using a data-driven method.
 - Remaining backgrounds are estimated using MC simulated samples:
 - Prompt photon: $t\bar{t}\gamma$, $Z(\rightarrow \tau\tau)\gamma$ and $WW\gamma$
 - $e \rightarrow \gamma$: $WZ \rightarrow \ell \ell \ell \nu$ and $ZZ \rightarrow \ell \ell \ell \ell$

$Z\gamma$ Cross-Section

 The ℓ[±]ℓ[∓]γ cross-section is measured in a fiducial phase-space region defined by particle level requirements.

Photons	Electrons/Muons			
$E_{\rm T}^{\gamma} > 30 { m ~GeV}$	$p_{\mathrm{T}}^{\ell} > 30, 25 \mathrm{GeV}$			
$ \eta^{\gamma} < 2.37$	$ \eta^\ell < 2.47$			
$E_{\rm T}^{\rm cone0.2}/E_{\rm T}^{\gamma} < 0.07$	dressed leptons			
$\Delta R(\ell,\gamma) > 0.4$				
Event selection				
$m(\ell\ell) > 40 GeV$				
$m(\ell\ell) + m(\ell\ell\gamma) > 182 GeV$				

			Cross-section [fb]
$e^+e^-\gamma$	530.4	\pm 9.0 (uncorr)	\pm 11.7 (corr) \pm 9.0 (lumi)
$\mu^+\mu^-\gamma$	535.0	\pm 6.1 (uncorr)	\pm 11.5 (corr) \pm 9.1 (lumi)
$\ell^+\ell^-\gamma$	533.7	\pm 5.1 (uncorr)	\pm 11.6 (corr) \pm 9.1 (lumi)
Sherpa LO	438.9	\pm 0.6 (stat)	
Sherpa NLO	514.2	\pm 5.7 (stat)	
MadGraph NLO	503.4	\pm 1.8 (stat)	
MATRIX NLO	444.2	\pm 0.1 (stat)	$\pm 4.3 (C_{\text{theory}}) \pm 8.8 (\text{PDF}) ^{+16.8}_{-18.9} (\text{scale})$
MATRIX NNLO	518.9	\pm 2.0 (stat)	$\pm 5.1 (C_{\text{theory}}) \pm 10.8 (\text{PDF}) ^{+16.4}_{-14.9} (\text{scale})$
MATRIX NNLO \times NLO EW	513.5	\pm 2.0 (stat)	$\pm 2.7 (C_{\text{theory}}) \pm 10.8 (\text{PDF})^{+16.4}_{-14.9} (\text{scale})$
MATRIX NNLO + NLO EW	518.3	\pm 2.0 (stat)	$\pm 2.7 (C_{\text{theory}}) \pm 10.8 (\text{PDF}) ^{+16.4}_{-14.9} (\text{scale})$

• The overall precision of the measurement is 2.9% (about 2X better than ATLAS $\sqrt{s} = 8$ TeV result)

August 31^{2t} 2023

MBI2023 August 31 st, 2023

$Z\gamma$ Differential Cross-Section

 The ℓ[±]ℓ[∓]γ differential cross-section in extracted for six variables using an iterative Bayesian method.

• $E_{\mathrm{T}}^{\gamma}, |\eta^{\gamma}|, m(\ell \ell \gamma), p_{\mathrm{T}}^{\ell \ell \gamma}, p_{\mathrm{T}}^{\ell \ell \gamma}/m(\ell \ell \gamma) \text{ and } \Delta \phi(\ell \ell, \gamma)$

August 31^{2t} 2023

MBI2023 August 31ST, 2023

$WZ\gamma$ Production

• Process being generated is $WZ\gamma \rightarrow \ell^{\pm}\nu\ell^{\pm}\ell^{\pm}\gamma$ where $\ell = e, \mu$

- Signal modeled using Sherpa 2.2.11 and the NNPDF3.0nnlo PDF set with the requirement $m_{\ell\ell} > 20 \text{ GeV}$.
- Events where the photon is radiated from a lepton are also considered signal
- Sensitive to the quartic interactions between EW gauge bosons
- Can be used to indirectly study physics beyond the Standard Model (BSM)

$WZ\gamma$ Background Estimation

- Major backgrounds:
 - Nonprompt lepton or photon from a hadronic decay or a jet misidentified as a photon:
 - $Z(\rightarrow \ell \ell)\gamma$, $t\bar{t}\gamma$, WZ, and ZZ
 - These backgrounds are estimated using a data-driven method
 - Other backgrounds include:
 - $ZZ\gamma$ and $ZZ(e \rightarrow \gamma)$
 - These backgrounds are modeled using MC simulated samples.
 - The normalization for these backgrounds are determined in separate CRs enriched in these events.

$W\!Z\gamma$ Cross-Section

• $WZ\gamma$ cross section is measured in a fiducial phase-space region.

	Photons	Leptons (e, μ)	Neutrino
$ \eta $	$ \eta^{\gamma} < 2.37$	$ \eta^{\ell} < 2.5$	_
p_{T}	$p_{\mathrm{T}}^{\gamma} > 15 GeV$	$p_{\mathrm{T}}^{\ell_1,\ell_2,\ell_3} > 30, 20, 20 GeV$	$p_{\rm T}^{\nu} > 20 GeV$
Isolation	$E_{\mathrm{T}}^{\mathrm{cone}0.2}/p_{\mathrm{T}}^{\gamma} < 0.07$	_	_
ℓ_Z assignment	for $eee/\mu\mu\mu$ channels, choose smallest $ m_{\ell\ell} - m_Z $		
ΔR	$\Delta R(\ell,\gamma) > 0.4$		
${\cal Z}$ invariant mass		$m_{\ell\ell} > 81 GeV$	

- The measured fiducial cross-section is $\sigma_{\rm fid} = 2.01 \pm 0.30 \; ({\rm stat}) \pm 0.16 \; ({\rm syst}) \; {\rm fb}$ where the significance of the measurement is 6.3 (5.0) σ measured(expected)
- The dominate uncertainty is due to statistical uncertainty at 15%
- The largest systematic uncertainties are due to the statistics in the CRs used to determine the ZZγ and ZZ(e → γ) normalizations

August 31^{2t} 2023

$W\gamma\gamma$ Production

• The process being studied is $W(\rightarrow \ell \nu)\gamma\gamma$ where $\ell = e, \mu$.

- The signal sample is modeled with Sherpa 2.2.10 with the NNPDF3.0nnlo PDF set
- This process is
 - sensitive to triple and quardic gauge boson couplings
 - an important background to to other measurements such as $WH(\rightarrow \gamma\gamma)$
- WH(→ γγ) is considered a background to isolate contributions sensitive to EW gauge boson interactions.

MBI2023 August 31st, 2023

$W\gamma\gamma$ Background Estimation

- Nonprompt photon estimated using data-driven methods
 - jet or neutral hadron decay being misidentified as a photon $(j \rightarrow \gamma)$, electrons being misidentified as a photon $(e \rightarrow \gamma)$, and pileup
- Nonprompt leptons from hadronic decay $(j \rightarrow \ell)$ estimated using a data-driven method
- Other backgrounds are estimated using MC simulated samples
 - Multiboson: $WH(\gamma\gamma)$, $WW\gamma$, $Z\gamma\gamma$
 - Top: $t\bar{t}\gamma$, $tW\gamma$, $tq\gamma$ (normalization constrained in separate CR)

August 31^{2t} 2023

MBI2023 August 31^{SI}, 2023

$W\gamma\gamma$ Cross-Section

- The cross-section is measured in a particle level fiducial phase-space region.
- The measured fiducial cross-section is 12.2 \pm 1.0 (stat) \pm $^{+1,9}_{-1,8}$ (syst) \pm 0.1 (lumi) fb with a statistical significance of 5.6 σ
- The leading systematic uncertainties are
 - $j \rightarrow \gamma$ background estimate (12%)
 - Photon efficiency (4.5%)

$Z\gamma\gamma$ Production

• The process being studied is $Z(\rightarrow \ell \ell)\gamma\gamma$ where $\ell = e, \mu$.

- The signal is modeled using Sherpa 2.2.10 with the NNPDF3.Onnlo PDF set
- Sensitive to neutral quartic gauge couplings
- Important background for $ZH(\rightarrow \gamma\gamma)$
- $ZH(\rightarrow \gamma\gamma)$ is considered a background

$Z\gamma\gamma$ Event Selection

• Includes large contributions from FSR from the leptons

August 31^{2t} 2023

MBI2023 August 3151, 2023

$Z\gamma\gamma$ Background Estimation

- Major backgrounds include:
 - jets misidentified as photons $(j \rightarrow \gamma)$ is estimated using a data-driven method
 - Other backgrounds are estimated using MC cimulated samples
 - $t\bar{t}\gamma\gamma$, $Z(\rightarrow \ell\ell)H(\rightarrow \gamma\gamma)$
 - $e \rightarrow \gamma$: $ZZ \rightarrow \ell\ell\ell\ell$, $WZ\gamma$
 - Pileup: $Z\gamma + \gamma$, $Z + \gamma\gamma$

Detector level distributions

MBI2023 August 31st, 2023

$Z\gamma\gamma$ Cross-Section

• The $Z(\rightarrow \ell \ell)\gamma\gamma$ cross section is determined in a fiducial phase-space region

Photons	Leptons	
$p_{\rm T}^{\gamma} > 20 { m GeV}$	$p_{\rm T}^{\ell 1} > 30 \text{ GeV}, p_{\rm T}^{\ell 2} > 20 \text{ GeV}$	
$ \dot{\eta}^{\gamma} < 2.37$	$ \eta^{\ell} < 2.47$	
$E_{\mathrm{T}}^{\mathrm{iso}}/p_{\mathrm{T}}^{\gamma} < 0.07$	dressed leptons	
Event		
$\Delta R(\gamma, \ell) > 0.4, \Delta R(\gamma, \gamma) > 0.4$		
$m_{\ell\ell} > 40 \text{ GeV}$		
$m_{\ell\ell} + \min(m_{\ell\ell\gamma_1}, m_{\ell\ell\gamma_2}) > 2m_Z$		

- The measured fiducial cross-section is 2.45 \pm 0.20 (stat) \pm 0.22 (syst) fb
- The cross-section measurement uncertainty is dominated by statistical uncertainty.

Integrated fiducial cross-section [fb]

- The largest systematic uncertainty is
 - $j \rightarrow \gamma$ backgrounds (7.6%)
 - Pileup reweighting (2.9%)
 - Photon efficiency (2.6%)

August 31^{2t} 2023

MBI2023 August 31st, 2023

$Z\gamma\gamma$ Differential Cross-Section

 The Z(→ ℓℓ)γγ differential cross-section in extracted for six variables using an iterative Bayesian method.

• $E_{\mathrm{T}}^{\gamma_1}$, $E_{\mathrm{T}}^{\gamma_2}$, $p_{\mathrm{T}}^{\ell\ell}$, $p_{\mathrm{T}}^{\ell\ell\gamma\gamma}$, $m_{\gamma\gamma}$, and $m_{\ell\ell\gamma\gamma}$

MBI2023 August 31st, 2023

Summary

- New observation of $WZ\gamma$ and $W\gamma\gamma$
- First differential cross section for $Z\gamma\gamma$
- Good agreement between data and the SM prediction observed.

Questions?