

led: 2018-Sep-05 02:34:43.377600 GMT t / LS: 322252 / 1709547104 / 982

Multiboson physics with photons (Vγ, Vγγ, and VVγ) in CMS

Andrew Levin on behalf of the CMS Collaboration

31 August 2023

Multi-Boson Interactions 2023, UC San Diego

Andrew Levin

Introduction

- This talk will focus on our WWγ analysis released for Moriond 2023, based on the full 13 TeV dataset (138 fb⁻¹)
- Title of <u>preliminary result</u>: Observation of WWγ production and search for Hγ production generated by the coupling of the Higgs boson to light quarks
- "WW γ " includes FSR photons
- Analysis strategy
 - Select eµ final state using double lepton high-level triggers
 - Perform WWγ measurements assuming SM for everything
 - Perform combined H γ and WW γ assuming SM for everything else

Relevant Feynman diagrams

Two triple gauge couplings (TGCs)

Initial state radiation (ISR)

Quartic gauge coupling (QGC)

Outline of rest of talk

- Related experimental studies
- Theoretical background
- Signal sample generation
- Experimental methods
- WW γ results
- Hy results
- Conclusions

Related studies (WW γ)

- <u>Last measurement of WWy from CMS</u> is based on 8 TeV data and focuses on dimension 8 operator limits
- Most recent measurement of WWy from ATLAS is also based on 8 TeV data and reports a significance of 1.4 σ (compared to 1.6 σ expected) for WVy, where V = W/Z
- On the other hand, <u>WZy has been measured by ATLAS using the 13</u> <u>TeV data</u>, with an observed significance of 5.0 σ (compared with 6.3 σ expected)
- No ZZγ results from either collaboration

Related studies (Higgs to u/d/s/c couplings)

- <u>Direct Higgs-charm coupling</u> <u>analysis from ATLAS based on VH</u> <u>production</u>
 - $|\kappa_c| < 8.5$ observed, $|\kappa_c| < 12.4$ expected
- <u>Direct Higgs-charm coupling</u> <u>analysis from CMS based on VH</u> <u>production</u>
 - $1.1 < |\kappa_c| < 5.5$ observed, $|\kappa_c| < 3.4$ expected

к framework analysis

- The κ framework scales Higgs coupling strengths without modifying the tensor structure
- κ_X scales the coupling of the Higgs to X, where X can be W, Z, γ , V, etc.
- κ_{χ} = 1 for all X in the SM
- Moving a single κ_{χ} away from 1 affects other Higgs measurements
- We use the "flat direction" method, which preserves the cross section times branching fraction for all other Higgs processes
- Method does not preserve total Higgs width
- Proper way would be to redo global fit (way too computing intensive)

Flat direction scenario

 The term "flat direction" comes from a 2019 paper by Coyle, Wagner, and Wei: While performing a fit to the Higgs couplings based on only the currently measured production rates, we found that no meaningful bound on κ_c could be obtained. The reason for this behavior is the existence of a flat direction in the fit for which all κ's increase along with the increasing κ_c. This

• yield =
$$\frac{\kappa_q \kappa_H}{\left(1 - BR(H \to qq)\right)\kappa_H^2 + BR(H \to qq)\kappa_q^2}$$

where

$$\kappa_H^2 = \left(1 - \text{BR}(H \to qq) + \sqrt{(1 - \text{BR}(H \to qq))^2 + 4 \cdot \text{BR}(H \to qq)\kappa_q^2}\right)/2$$

BR(H \Rightarrow uu) = 10⁻⁸, BR(H \Rightarrow dd) = 10⁻⁸, BR(H \Rightarrow ss) = 0.000246, BR(H \Rightarrow cc) = 0.029

Signal sample generation

- Generated with MadGraph_aMC@NLO
 - use loop_sm model
 - generate p p > e+ ve mu- vm[~] a [QCD]
 - add process p p > mu+ vm e- ve~ a [QCD]
 - min p_T = 10 GeV
- For cc \rightarrow Hy signal
 - use model based on loop_sm that takes into account the running of the c quark mass
 - generate cc \rightarrow h a [QCD]
 - decay the Higgs boson using JHU generator
 - min $p_T = 5 \text{ GeV}$
- For other $qq \rightarrow H\gamma$ (where q = u, d, s) signal
 - use Higgs Effective Lagrangian model (HEL)
 - generate $qq \rightarrow h a NP == 0$
 - decay the Higgs boson using the JHU generator
 - min $p_T = 5 \text{ GeV}$

Main theory reference for Hy part of analysis

More light on Higgs flavor at the LHC: Higgs couplings to light quarks through $h + \gamma$ production

J. A. Aguilar-Saavedra, 1,2,* J. M. Cano, 2,3,† and J. M. No 2,3,‡

hadron colliders, $pp \rightarrow h\gamma$ (see [31–37] for other Higgs + photon LHC studies). This is a rare process in the SM, with the leading order (LO) gluon-initiated contribution $gg \rightarrow h\gamma$ (see Fig. 1–left) vanishing due to Furry's theorem [38, 39]. The largest contributions to the in-

arxiv:2008.12538

Furry's theorem

A Symmetry Theorem in the Positron Theory

W. H. FURRY Physics Research Laboratory, Harvard University, Cambridge, Massachusetts (Received October 26, 1936)

The photon one-point function also vanishes for a second reason: chargeconjugation invariance. Recall that C is a symmetry of QED, so $C |\Omega\rangle = |\Omega\rangle$. But $j^{\mu}(x)$ changes sign under charge conjugation, $Cj^{\mu}(x)C^{\dagger} = -j^{\mu}(x)$, so its vacuum expectation value must vanish:

$$\left|\Omega\right|Tj^{\mu}(x)\left|\Omega\right\rangle = \left\langle\Omega\right|C^{\dagger}Cj^{\mu}(x)C^{\dagger}C\left|\Omega\right\rangle = -\left\langle\Omega\right|Tj^{\mu}(x)\left|\Omega\right\rangle = 0.$$

The same argument applies to any vacuum expectation value of an odd number of electromagnetic currents. In particular, the photon three-point function, Fig. 10.2d, vanishes. (This result is known as Furry's theorem.) It is not hard to check explicitly that the photon one- and three-point functions vanish in the leading order of perturbation theory (see Problem 10.1).

Source: An Introduction to Quantum Field Theory by Peskin and Schroeder

II. STATEMENT OF THEOREM AND OUTLINE OF PROOF

Theorem: In calculations using plane wave functions as a basis ("Born approximation") for processes in which the appearance of electrons and positrons is transitory only, the odd order contributions vanish identically.

Application of Furry's theorem to pp \rightarrow Hy

Non-prompt photon sources

• Includes both instrumental and genuine photons produced during fragmentation

Method to estimate non-prompt photons

- Our non-prompt photon background estimate is based on per-photon factors: rate_{our γ selection}/rate_{mutually exclusive γ selection}
- These factors are calculated in $Z(\rightarrow ee)$ +jets events
- The method relies on two variables to obtain the numerator:
 - A relative isolation variable (where the isolation sum is restricted to charged particles, as defined using the particle flow algorithm, cone size = 0.3)
 - A variable that quantifies the transverse spread of the photon's electromagnetic shower
- We use a sideband of the first variable to obtain the shape of the second variable for non-prompt photons, and then perform a fit of the prompt and non-prompt fractions
- Assumes the variables are independent, systematic uncertainties are applied to cover the extent this is not true

Photon shower width variable

- π^0 decays deposit energy over broader area than promptly-produced photons
- Width of photon shower is different in and η and φ because of bending of bremsstrahlung/conversion legs in magnetic field

•
$$\sigma_{\eta\eta}^2 = \frac{\sum_{i}^{5\times 5} w_i (\eta_i - \eta_{5\times 5})^2}{\sum_{i}^{5\times 5} w_i}$$

- η_i = pseudorapidity of the ith crystal within the 5×5 cluster
- $\eta_{5\times 5}$ = pseudorapidity of the entire 5×5 cluster
- $w_i = \max(0, 4.7 + \log^{E_i}/E_{5\times 5})$
- E_i = energy of the ith crystal within the 5×5 cluster
- $E_{5\times 5}$ = energy of entire 5×5 cluster
- Discrete sum found to have better performance near cracks

Schematic of fit to photon shower width

Non-prompt lepton sources

- Again includes both instrumental and genuine leptons produced during fragmentation
 - Punch-through
 Ran or pion
 Decay-in-flight
 HCAL mugnet
 HCAL mugnet
 HCAL mugnet

Non-prompt lepton estimate

- Similar to the non-prompt estimate, our non-prompt lepton background estimate is based on per-lepton factors: rate_{our lepton selection}/rate_{mutually exclusive} lepton selection
- However, one difference is that the nonprompt lepton background includes both single and double fake lepton events (we assume that the two factorize)
- The mutually exclusive lepton selection involves adjusting the isolation or quality requirements (such as on the number of hits or the electromagnetic shower width)
- The per-lepton factors are calculated as a function of lepton η and p_T in a region with one lepton and low missing energy and transverse mass

Fitting strategy

- Perform a simultaneous fit of the signal region and the two control regions
- For WWy signal extraction: WWy and top background normalizations are freely floating
- For Hγ signal extraction: Hγ, WWγ, and top background normalizations are freely floating
- Binning
 - Topγ CR: single bin
 - SSWWγ CR: 4 m_T bins ([0,40,70,110,∞] GeV)
 - SR: 4 m_T bins ([0,40,70,110,∞] GeV) × 3 m_{IIγ} bins ([20,150,250,∞] GeV) × 2 jet bins (0 or ≥ 1 jet with p_T > 20 GeV)

Composition of signal and control regions

Process	Signal region	SSWWγ CR	Τοργ CR
WWγ	254 ± 47	1.0 ± 0.2	12.8 ± 2.7
QCD Vy	167 ± 14	12.2 ± 2.2	12.6 ± 1.2
VV	36.7 ± 3.5	24.9 ± 1.7	2.0 ± 0.3
Тор	328 ± 32	2.4 ± 0.6	2434 ± 85
Nonprompt l	122.9 ± 9.7	197 ± 14	40 ± 11
Nonprompt γ	410 ± 32	19.9 ± 1.6	793 ± 62
Total	1318 ± 43	257 ± 14	3294 ± 57
Data	1330	259	3287

WWy significance and cross section

- Observed (expected) significance for WWy signal: 5.6 (4.7) σ
- Fiducial cross section measurement: 6.0 ± 0.7 (stat) ± 0.8 (syst) ± 0.6 (modeling) fb = 6.0 ± 1.2 fb
- MG5_aMC NLO-QCD prediction:
- 4.61 ± 0.34 (scale) ± 0.05 (PDF) fb
- Fiducial region definition
 - $p_T^e > 25 \text{ GeV}, |\eta^e| < 2.5$
 - p_T^{μ} > 20 GeV, $|\eta^{\mu}|$ < 2.4
 - m__ > 10 GeV
 - $p_T^{ll} > 15 \text{ GeV}$
 - $p_T^{\hat{\gamma}} > 20 \text{ GeV}$
 - $\Delta R(I,\gamma) > 0.5, \Delta R(I,I) > 0.5$

u/d/s/c cross section and к framework limits

process	obs (exp) limit on xs	obs (exp) limit on κ _q	obs (exp) limit on $\left \frac{y_q}{y_b^{SM}} \right $
uu→H+γ→eμν _e ν _µ γ	85 (67) fb	16000 (13000)	Not yet public
dd→H+γ→eμν _e ν _μ γ	72 (58) fb	17000 (14000)	Not yet public
cc→H+γ→eμν _e ν _µ γ	68 (49) fb	1700 (1300)	Not yet public
ss→H+γ→eμν _e ν _µ γ	87 (67) fb	200 (110)	Not yet public

Conclusions

- Reported first observation of the process pp \rightarrow WWy
- Main results
 - Observed (expected) significance: 5.6 (4.7) standard deviations
 - Measured fiducial cross section: 6.0 ± 0.7 (stat) ± 0.8 (syst) ± 0.6 (modeling) fb
 - Limits on Higgs couplings to light quarks based on pp \rightarrow H γ \rightarrow WW γ
- Paper in final stages before submission
- Working on both HepData entry and Rivet routine