EW Multiboson Production from ATLAS

"Wandering the immeasurable", a sculpture designed by Gayle Hermick welcomes the CERN visitors. From the Mesopotamians' cuneiform script to the mathematical formalism behind the discovery of the Higgs boson, the sculpture narrates the story of how knowledge is passed through the generations and illustrates the aesthetic nature of the mathematics behind physics. (Image: J. Guillaume/CERN)

MBI2023 in San Diego Bing Zhou U. of Michigan

LERN

Introduction

- Study multi-boson interactions, by high-precision measurements and probing rare processes, to test SM and search for its breakdown.
- Particularly, by studying vector boson scattering, physicists can investigate the Higgs mechanism in the highest energy domain accessible, where there may be signs of new physics.

ATLAS WWIJ Event Display

Single Z and W production -- Standard Candles

Large production cross-section, enabling high-precision measurements of SM parameters, m_Z , m_W , $\sin^2\theta_W$, $\alpha_{s'}$ PDF, detector calibration, E, and P scales, ...

 $Z \rightarrow \ell \ell$ and $W \rightarrow \ell \nu$

 $m_{\ell\ell} \text{ of two high } p_{\tau} \text{ isolated leptons } (e,\mu):$ $m_{\ell\ell}^2 = (E_{\ell 1} + E_{\ell 2})^2 - (\vec{p}_{\ell 1} + \vec{p}_{\ell 2})^2$ $\approx 2E_{\ell 1}E_{\ell 2} (1 - \cos\alpha)$

For $W \rightarrow \ell \nu$ decays, full mass reconstruction is not possible. Instead, a transverse mass is reconstructed:

 $m_{\tau} = \sqrt{2E_{\tau}^{\ell} E_{\tau} \left(1 - \cos \phi_{\ell_{\nu}}\right)}$

- Eur. Phys. J. C 77 (2017) 367 2 GeV ATLAS 700 total (stat) $\sqrt{s} = 7 \text{ TeV}. 4.6 \text{ fb}^{-1}$ $W \rightarrow \mu \nu$ Events / $600 \vdash W^+ \rightarrow \mu^+ \nu$ $Z/\gamma^* \rightarrow \mu\mu$ $W \rightarrow \tau \nu$ Multiiet **500** 400 300 200 100 50 60 40 70 80 90 100 120 110 m_⊤ [GeV]
- m_w (ATLAS-CONF-2023-004)
 - $\alpha_s(m_Z)$ (ATLAS-CONF-2023-015)
 - Z pT and Y at 8 TeV(ATLAS-CONF-2023-013)
- W pT and Z pT with low pile-up data (ATLAS-CONF-2023-028)

ATLAS-CONF-2023-004

W mass re-measurement from ATLAS

m_w =80360 ± 5 (stat.) ± 15 (syst.) = 80360 ± 16 MeV (0.02% uncertainty)

- The revisited measurement from 2017, using the same data, to determine m_W from the distributions of p_{T}^{I} and m_{T}
- Using a more advanced physics model and profile likelihood fitting: Reduce systematic uncertainties from 19 MeV to 16 MeV

Physics modeling

Baseline: Pythia AZ tune (based on Z boson) • Z boson data, Parton Shower variations

New verifications:

- AZ tune describes hadronic recoils spectrum of W's in low-pileup data at 5 TeV within experimental uncertainties
- DTRurbo (resumption) agrees with AZ tune

Treatment of angular coeff. Unchanged

Parton Distribution Functions:

- Studied full set of available PDF Sets at NNLO: CT10, CT14, CT18, MMHT2014, MSHT20, NNPDF3.1, NNPDF4.0
 - New Baseline: CT18

Analysis improvements

Multijet background estimation

- Systematic shape variations using PCA
- New transfer function from CR to SR
- Reduction of uncertainty by 2 MeV

EWK uncertainty evaluated at reco. level: • Increased uncertainty by 1-2 MeV

Recovery data in the electron channel • Increased statistics by 1.5%

Add W width as NP parameter

Improving random generator setup for the electron energy calibration

ATLAS-CONF-2023-013 $p_T^{\mathbf{Z}}$ and $\alpha_s(M_{\mathbf{Z}})$ Measurement (8 TeV) ATLAS-CONF-2023-015

[GeV

Differential cross-section measurements: pT and rapidity Y

- The first comparison to N³LO QCD predictions and N⁴LL resummation
- Stringent test of the state-of-art QCD theories
- * Measurement of $\alpha_s(m_z)$ from the Z pT
 - Z bosons produced in hadron collisions recoil against QCD initial-state radiation: ISR gluons will boost the Z in the transverse plane
 - Most precise experimental determination of $\alpha_s(m_z)$ (uncertainty~0.7%)

$\alpha_{s}(M_{Z}) = 0.11828^{+0.00084}_{-0.00088}$

W and Z Production at 5 and 13 TeV

Precision pT measurement

ATLAS-CONF-2023-028

Diboson Production at the LHC

- Studying of VV (V= W/Z/γ) production has been an active research area at the LHC
 Vector-boson scattering and fusion is the production of VV involving EW triple and quartic gauge couplings, and Higgs boson exchange at tree level. Provides a test of EW Symmetry Breaking - still to be proven that the presence of discovered Higgs boson preserves the unitarity of the longitudinal polarized VV scattering.
- VBS/VBF processes measurement at the energy frontier is important to test the SM through the interplay of electroweak and QCD
- Strong (+ EW) interactions result in the irreducible background for pure EW processes
- Clean signature with two forward jets with large dijet invariant mass and |Δη | gap

Total ZZ production cross-section vs \sqrt{s}

Diboson ZZ Production at 13.6 TeV

ATLAS-CONF-2023-062 Fiducial phase space Total lepton phase space Muon selection Bare, $p_{\rm T} > 5 \, {\rm GeV}$, $|\eta| < 2.5$ Born Electron selection Dressed, $p_{\rm T} > 7 \text{ GeV}$, $|\eta| < 2.47$ Born ≥ 2 SFOC pairs Four-lepton signature ≥ 2 SFOC pairs Lepton kinematics $p_{\rm T} > 27/10 \,{\rm GeV}$ Lepton separation $\Delta R(\ell_i, \ell_j) > 0.05$ J/ψ veto $m_{ii} > 5 \text{ GeV}$ $m_{ii} > 5 \text{ GeV}$ Z mass window $66 < m_{\ell\ell,1}, m_{\ell\ell,2} < 116 \text{ GeV}$ $66 < m_{\ell\ell,1}, m_{\ell\ell,2} < 116 \text{ GeV}$ ZZ on-shell $m_{4l} > 180 \text{ GeV}$ $q\bar{q} \rightarrow ZZ$ $gg \rightarrow ZZ$ EW $qq \rightarrow ZZ + 2j$ tīΖ VVV Reducible Total Data Process $29 \, \text{fb}^{-1}$ Yield 514.8 ± 49.6 73.6 ± 44.3 4.7 ± 1.0 5.5 ± 0.8 2.1 ± 0.2 25.4 ± 8.1 626.1 ± 88.4 625

The measurements are well described by the calculations from fixed-order calculations with accuracies up to NNLO QCD+NLO EW

9

Observation and Cross-section Measurement of EW VBS ZZ Production

1st obsservation [Nature Physics 19 (2023) 237-253]; Differential cross-section: arVix:2308.12324

- Extracting inclusive cross-section in two SRs
- SR: EW selection + Z-mass (II) window; 2 jets with
- $y_{i_1} \cdot y_{i_2} < 0, m_{i_1} > 400/300 \text{ GeV}, |\Delta y_{i_1}| > 2$
- Large bkg. from WZ and non-resonant II in Ilvvjj
- Using BDT to separate EW and QCD ZZjj
- Also fitting QCD CR to constrain background
- EW ZZjj cross-section : 0.70 ± 0.18 fb

(one of the smallest measured by ATLAS)

Significance of EV	∨ <i>ZZjj</i> pro	cesses: 5.7
Process	llll j j	llvvjj
EW ZZjj	31.4 ± 3.5	15.0 ± 0.8
QCD ZZjj	77 ± 25	17.2 ± 3.5
QCD ggZZjj	13.1 ± 4.4	3.5 ± 1.1
Non-resonant- $\ell\ell$	_	21.4 ± 4.8
WZ	_	24.6 ± 1.1
Others	3.2 ± 2.1	1.2 ± 0.9
Total	124 ± 26	82.9 ± 6.4
Data	127	82

Unfolded differential cross sections

Boosted decision trees MI

ATLAS-CONF-2023-038

Evidence of longitudinally polarized Z_LZ_L production

The polarization measurement of massive weak bosons is a direct probe of the EWSB, through which the W and Z bosons obtain the longitudinally polarized state. Diboson polarization measurements and especially those probing longitudinally polarized vector bosons provide unique sensitivity to new physics beyond the SM.

First measurement of joint W_LZ_L polarization PLB 843 (2023) 137895

- Measure joint/individual helicity fractions. Observed 7% W_LZ_L events
- Use WZ rest frame to extract fraction of events where both bosons are longitudinally/transversally polarized or mixed states

• Derive DNN sensitive to 00, 0T, T0, and TT in 4 categories of $|\cos\theta_{\rm IW}| |\cos\theta_{\rm IZ}|$ using W, Z and WZ transverse momenta and angular variables

	Data	Powheg+Pythia	NLO QCD
		$W^{\pm}Z$	
f_{00}	0.067 ± 0.010	0.0590 ± 0.0009	0.058 ± 0.002
f_{0T}	0.110 ± 0.029	0.1515 ± 0.0017	0.159 ± 0.003
$f_{\rm T0}$	0.179 ± 0.023	0.1465 ± 0.0017	0.149 ± 0.003
$f_{\rm TT}$	0.644 ± 0.032	0.6431 ± 0.0021	0.628 ± 0.004
		W^+Z	
f_{00}	0.072 ± 0.016	0.0583 ± 0.0012	0.057 ± 0.002
f_{0T}	0.119 ± 0.034	0.1484 ± 0.0022	0.155 ± 0.003
$f_{\rm T0}$	0.152 ± 0.033	0.1461 ± 0.0022	0.147 ± 0.003
$f_{\rm TT}$	0.66 ± 0.04	0.6472 ± 0.0026	0.635 ± 0.004
		W^-Z	
f_{00}	0.063 ± 0.016	0.0600 ± 0.0014	0.059 ± 0.002
f_{0T}	0.11 ± 0.04	0.1560 ± 0.0027	0.166 ± 0.003
$f_{\rm T0}$	0.21 ± 0.04	0.1470 ± 0.0027	0.152 ± 0.003
$f_{\rm TT}$	0.62 ± 0.05	0.6370 ± 0.0033	0.618 ± 0.004

ATLAS-CONF-2023-012

Most Precise W⁺W⁻ Production Cross-Section Measurement

- Measurement of inclusive WW and VBS WW productions has been a high-profile physics program. The first WW crosssection measurement was based on 8 observed events at 7 TeV (PRL 107 (2011) 041802). ATLAS conducted many measurements on WW+jets (including HF) with much-improved precision since then. These measurements provide a test of the predictions of perturbative QCD, PDF, and the electroweak theory.
- The latest measurements in ATLAS are performed using 140 fb⁻¹ data at from LHC pp collisions at \sqrt{s} = 13 TeV

Salast avants contain	Category	Event yield		b/GeV]	10 ² AT	LAS Preliminary = 13 TeV, 140 fb ⁻¹	♦ Dat Tot	a and Stat. Uncertainty al Uncertainty	[qj] 10⁴ v	ATLAS Preliminary	Data	Uncertainty
	Data	144221		d. lep. [fl	10 pp	$\rightarrow e^{\pm}\nu\mu^{\mp}\nu$	∲ She ¢ Miľ ₫ MA	erpa 2.2.12 * INLO+Pythia8 * TRIX 2.0 nNNLO QCD	=10 ³	$pp \rightarrow e^{\pm}\nu\mu^{\mp}\nu$	Total Unc	ertainty
isolated $e^{\pm}\mu^{+}$ (no 3 rd	Total SM	130700 ± 2400		:/dp ^{leac}			↓ nNl	NLO QCD \otimes NLO EW pa 2.2.2 gg \rightarrow WW \times 1.7		This measurement 707 ± 7 (stat) ± 20 (syst) fb	Prediction	S
epton), and $m_{e\mu} >$		139700 ± 2400		ф	1		+ Sher	pa 2.2.12 EW qq → WWjj	10 ²	Powheg MiNNLO + Pythia8	, NNPDF3.0 (*)	
85 GeV yets h jets	WW	56900 ± 1100	41%		10-1			0	10	Sherpa 2.2.12 (0-1j@NLO,) ™ 2-3j@LO), NNPDF3	.0 (*)
bb dev, velo b-leis.	Total bkg.	82600 ± 2100	59%							660 ± 10 (PDF) ± 48 (scale) fb	
	Тор	66500 ± 1900	48%		10 ⁻² =			-γο-□ <u></u> _	1	MATRIX 2.0 nNNLO, NNPL 711±7 (PDF)±16 (scale))⊢3.1 b	<mark>⊢∎∎∓</mark> I
	Drell-Yan	6500 ± 400	5%	ata	1.4	+ + + + + + + + - + - + - + - + - + - +				MATRIX 2.0 nNNLO ⊗ NL0 688 ± 7 (PDF) ± 15 (scale)	EW, NNPDF3.1	⊢+ <mark>●</mark> +→
First use of fully lef-	Fakes	5000 ± 1300	4%	on/Da	1.2	<u></u>		¢4		(*) + Sherpa 2.2.2 gg→WW	× 1.7	
inclusive phase space	$WZ,ZZ,V\gamma$	4500 ± 600	3%	Predict	0.8	-v p p p p p p p p p p p p p p p p p p p	2/02/02/10		-	500 550	600	650 700
Mast prosiso W/W cross	Uncertaint	y source	Effect		30	40 50 60 10 ²	2×10	² ≥5×10 p ^{lead. lep.} [Ge\	2 /]	ATLAS Preliminan		Theory Prediction
mosi precise ww cross	Total uncer	rtainty	3.1%	[%]		Total Uncertainty	ΔΤΙ	AS Preliminary	-	$\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$		PDF Uncertainty
section measurement in	Stat. uncer	tainty	1.1%	ainty		Jet Calibration	√s =	13 TeV, 140 fb ⁻¹		$pp \rightarrow W^+W^-$		→ Measurements
hadron-hadron	Top model	ling	1.6%	Incert	35	Fake Lepton Estin	nate PP -	$\rightarrow e^{\pm} \nu \mu^{\mp} \nu$		MATRIX 2.0 nNNLO \otimes NL(123 ± 1 (pdf) ± 2 (scale) pt) EW	
collisions: 3.1%	Fake leptor	n background	1.5%	live L	25	Statistical Uncerta	inty		-	This measurement $127 \pm 1 \text{ (stat.)} \pm 4 \text{ (syst.) p}$	o H	+++++++++++++++++++++++++++++++++++++++
	Flavour tag	gging	0.7%	Selat	20					CMS 36 fb ⁻¹ [1]		
uncertainty vs o-7 %	Other back	ground	0.9%		15	$m_{e\mu}$				118 ± 1 (stat.) ± 7 (syst.) p		
from previous	Signal mod	delling	1.0%		10					$137 \pm 2 \text{ (stat.)} \pm 10 \text{ (syst.)}$	ob	· · · · · · · · · · · · · · · · · · ·
monsuromonts	Jet calibrat	10n	0.6%		5					[1] Phys. Rev. D 102 (2020 [2] Eur. Phys. J. C 79 (2011) 092001 9) 884	
meusorements	Other system	y matic uncertainties	0.0%		0	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		403	-	80 90 100		
			0.7%		10 ²			10 [~] m _{eu} [O	SeV]	00 00 100	110 120	Total cross-section [pb]

Observation of EW VBS W+W-jj Production

W⁺W⁻jj measurement is sensitive to the scattering of W bosons, which is of particular interest as it can be used to probe the electroweak symmetry-breaking mechanism of the SM. This signal has been observed for the first time in the ATLAS experiment with a significance of 7.1 σ (expected 6.2 σ). The observed cross-section has been determined in a signal-enriched fiducial volume and is found to be 2.65^{+0.52}_{-0.48} fb, while the theoretical prediction from POWHEG is 2.20^{+0.13}_{-0.14} fb.

Observation and Measurement of VBS $Z\gamma$ jj Production

Observation and Measurements of EW W[±]W[±]jj

Evidence (4.5 σ): PRL 113, 141803 (2014), Observation (6.5 σ): PRL 123, 161801 (2019), <u>Measurements: ATLAS-CONF-2023-023</u> The analysis is performed by selecting two same-charge $e^{\pm}\mu^{\pm}$, $e^{\pm}e^{\pm}$, $\mu^{\pm}\mu^{\pm}$, and at least two jets with a large invariant mass ($m_{ij} > 500 \text{ GeV}$) and rapidity difference ($|\Delta y_{ij}| > 2$). No b-jet in the event.

Process Pre-fit yield Post-fit yield 235 ± 27 $W^{\pm}W^{\pm}ii$ EW 278 ± 30 27 + 7 $W^{\pm}W^{\pm}jj$ QCD 24 ± 6 $W^{\pm}W^{\pm}jj$ Int 7.6 ± 0.6 8.1 ± 0.7 $W^{\pm}Z_{jj}$ 98 ± 11 71 + 8Non-prompt 56 ± 11 55 ± 11 13 + 5 $V\gamma$ 11 ± 4 Charge misid. 10.1 ± 3.4 11.0 ± 3.5 Other prompt 7.1 ± 2.4 6.7 ± 1.9 Total Expected 448 ± 34 470 ± 40

475

Data

Description	$\sigma_{ m fid}^{ m EW}$, fb	$\sigma_{\rm fid}^{\rm EW+Int+QCD}$, fb
Measured cross section	2.88 ± 0.21 (stat.) ± 0.19 (syst.)	3.35 ± 0.22 (stat.) ± 0.20 (syst.)
MG_AMC@NLO+Herwig	$2.53 \pm 0.04 (PDF) \pm_{0.19}^{0.22} (scale)$	$2.93 \pm 0.05 (PDF) \pm_{0.27}^{0.34} (scale)$
MG_AMC@NLO+Pythia	$2.55 \pm 0.04 (PDF) \pm \frac{0.22}{0.19} (scale)$	$2.94 \pm 0.05 (PDF) \pm_{0.27}^{0.33} (scale)$
Sherpa	$2.44 \pm 0.03 (PDF) \pm _{0.27}^{0.40} (scale)$	$2.80 \pm 0.03 (PDF) \pm_{0.36}^{0.53} (scale)$
POWHEG BOX +PYTHIA	2.67	_

The measurements are used to constrain anomalous quartic gauge couplings by extracting confidence level intervals of 95% on dimension-8 operators.

3500

16

m_∥ [GeV]

Limits on anomalous QGC

ATLAS-CONF-2023-023

- Data agree with the prediction
- Limits on dim-8 EFT operators to probe aQGC

- Limits are set w/and w/o UVpreservation treatment (cut-off scale of 1.5TeV and compare with UV bound)
- Limit evolution vs cut-off scale is scanned

m_{ww} cut-off [TeV]

ATLAS Preliminary

2.5

-2.5

-5.0

0.0

 $f_{T0}/\Lambda^4 \, [1/\text{TeV}^4]$

5.0

7.5

17

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

ATL-PHYS-PUB-2023-002

The aQGC EFT interpretation of Combined Measurements $W^{\pm}Zjj \& W^{\pm}W^{\pm}jj$

An EFT interpretation of the two fully leptonic $W^{\pm}Zjj$ and $W^{\pm}W^{\pm}jj$ measurements is performed to constrain anomalous Quartic Gauge Couplings. Both measurements are based on 36.1 fb⁻¹ data collected at \sqrt{s} = 13TeV. Confidence Level intervals of 95% on dimension-8 EFT operators are extracted for the individual channels and for the combination.

Hunting for new physics in the scattering of the same-sign W bosons

ATLAS-CONF-2023-023

Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at a center-of-mass energy of 13 TeV with the ATLAS detector

Data

ATLAS

The First Observation of Triboson – WWW Production

PRL 129 (2022) 061803 Measurements of triboson production at colliders directly probe the strength of gauge boson self-interactions within the SM via triple gauge couplings and quartic gauge couplings

σ=820±100(stat.)±80(syst.)820±100(stat.)±80(syst.) fbSM σ (511±18511±18 fb)

Two analysis channels 1) $WWW \rightarrow l^{\pm}\nu \ l'^{\pm}\nu'$ jj 2) $WWW \rightarrow l^{\pm}\nu \ l'^{\mp}\nu' l^{\mp}\nu$

	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	3ℓ
WWW signal	28.4 ± 4.3	124 ± 19	82 ± 12	34.8 ± 5.2
WZ	81.1 ± 5.7	346 ± 22	170 ± 10	16.4 ± 1.5
Charge-flip	31.1 ± 7.3	19± 5	-	1.7 ± 0.4
γ conversions	60.8 ± 8.5	139 ± 15	-	1.5 ± 0.1
Nonprompt	17.0 ± 4.0	145 ± 23	104 ± 21	26.6 ± 2.9
Other	22.3 ± 2.4	100 ± 10	58 ± 6	8.0 ± 0.9
Total predicted	241 ±11	873 ± 22	415 ± 17	89.0 ± 5.4
Data	242	885	418	79

BDT is used to fit SR and CRs simultaneously

Fit	$\mu(WWW)$	Significance observed (expected)
$e^{\pm}e^{\pm}$	1.54 ± 0.76	$2.2 (1.4) \sigma$
$e^{\pm}\mu^{\pm}$	1.44 ± 0.39	4.1 (3.0) σ
$\mu^{\pm}\mu^{\pm}$	2.23 ± 0.46	5.6 (2.7) σ
2ℓ	1.75 ± 0.30	$6.6~(4.0)~\sigma$
3ℓ	1.32 ± 0.37	4.8 (3.8) σ
Combined	1.61 ± 0.25	$8.0~(5.4)~\sigma$

Triboson Production Involving Photons: Wγγ, Ζγγ, WZγ

Joseph Lambert will report the "Multiboson Physics with Photons in ATLAS" in this conference

- Observation Wγγ production (5.6s) arXiv:2308.03041
- Observation WZγ production (6.3s)

arXiv:2305.16994

Measurement of Zγγ production cross-section
 EPJC 83 (2023) 539

Event display: $W\gamma\gamma$ candidate event

Summary

- Studying multiboson production and interactions is a very active research area at the LHC. Precision SM parameters, such as m_W, sin²θ_W, and α_s, are measured; Many rare processes are observed for the first time, and differential cross-sections are measured to study the process in depth. So far, the data is consistent with SM prediction (with state-of-art calculations). Search for new physics, directly and indirectly (through the EFT framework) are performed
- These remarkable measurements significantly advance our understanding of EW interactions and were enabled due to
 - Excellent LHC performance at 7, 8, 13, and 13.6 TeV, luminosity has doubled the designed luminosity
 - Accurate detector calibrations on luminosity, leptons, photons, and jets (including b-jet) to reduce the systematic uncertainties
 - Active involvement from the theoretical community, providing precise cross-section prediction (fixed-order, mixed QCD/EW, with resummation), development of precise event generators for complex multi-scale processes
 - Development of the most powerful analysis techniques: profile-likelihood fits can deal with multiple floating "signals" and "background", state-of-art machine learning algorithms to maximize separation between signal and background to probe the smallest experimental signals

Spare slides

Diboson Cross Se	ection Measurements	Status: February 2022	∫£ dt [fb ⁻¹]	Reference
	$\sigma = 31.4 \pm 0.1 \pm 2.4 \text{ pb (data)}$ NNLOjet (NNLQ) (theory)		139	JHEP 11 (2021) 169
γγ	$\sigma = 16.82 \pm 0.07 \pm 0.75 - 0.78 \text{ pb (data)}$ 29NNLO + CT10 (theory)		20.2	PRD 95 (2017) 112005
Also Same	$\sigma = 44 + 3.2 - 4.2 \text{ pb} (\text{data})$ $2\gamma \text{NNLO} (\text{theory})$ $\sigma = 2.77 + 0.03 + 0.35 \text{ pb} (\text{data})$		4.9	JHEP 01, 086 (2013) PBD 87, 112003 (2013)
$VV\gamma \rightarrow \ell V\gamma$	$\sigma = 1.76 \pm 0.03 \pm 0.22 \text{ pb (data)}$	AILAS Preliminary	4.6	arXiv:1407.1618
$-[n_{jet} = 0]$	NNLO (theory) $\sigma = 533.7 \pm 2.1 \pm 15.4$ fb (data)		4.6	PRD 87, 112003 (2013)
$Z\gamma \rightarrow \ell \ell \gamma$	$ \begin{array}{c} \text{Matrix NNLO QCD + NLO EW (theory)} \\ \sigma = 1.507 \pm 0.01 + 0.083 - 0.078 \text{ pb} (data) \\ \text{NNLO (theory)} \\ \sigma = 1.31 \pm 0.02 \pm 0.12 \text{ pb} (data) \\ \sigma = 0.022 \pm 0.02 \text{ pb} (data) \\ \sigma = 0.022 \pm 0.022 pb$	$\sqrt{s} = 7,8,13 \text{ TeV}$	20.3 4.6	PRD 93, 112003 (2013) arXiv:1407.1618 PRD 87, 112003 (2013) arXiv:1407.1618
$-[n_{\rm jet}=0]$	$ \sigma = 1.189 \pm 0.0009 \pm 0.073 - 0.067 \text{ pb (data)} \\ \text{NNLO (theory)} \\ \sigma = 1.05 \pm 0.02 \pm 0.11 \text{ pb (data)} $	÷	20.3	PRD 93, 112002 (2016) PRD 87, 112003 (2013)
	$\sigma = 83.7 + 3.6 - 3.5 + 7.1 - 6.5$ fb (data)		36.1	JHEP 12 (2018) 010
$-Z\gamma \rightarrow \nu\nu\nu$	$\sigma = 68 \pm 4 + 33 - 32 \text{ fb} (data)$		20.3	PRD 93, 112002 (2016)
_//	$\sigma = 0.133 \pm 0.013 \pm 0.021 \text{ pb (data)}$	NNLO QCD	4.6	PRD 87, 112003 (2013)
	$\sigma = 130.04 \pm 1.7 \pm 10.6 \text{ pb} (\text{data})$ NNI O (theory)	D	36.1	EPJC 79 (2019) 884
ww	$\sigma = 68.2 \pm 1.2 \pm 4.6 \text{ pb (data)}$ NNLO (theory)	<u>∧</u> ∞∞∞∞	20.3	PLB 763, 114 (2016)
	$\sigma = 51.9 \pm 2 \pm 4.4 \text{ pb (data)}$		4.6	Phys. Rev. D 87 (2013) 112001 arXiv:1408.5243
	$\sigma = 379.1 \pm 5 \pm 27$ fb (data) NNLO + NLO EW (theory)		36.1	EPJC 79 (2019) 884
$-$ WW \rightarrow e μ , [n _{jet} = 0]	$\sigma = 3/4 \pm 7 \pm 20 - 24 \text{ fb} (\text{data})$ approx. NNLO (theory) $\sigma = 2622 \pm 122 \pm 22 \pm 16 \text{ (data)}$		20.3	JHEP 09 (2016) 029
	$\sigma = 202.3 \pm 12.3 \pm 23.1 \text{ (b (data)}$ MCFM (theory) $\sigma = 563 \pm 78 \pm 70^{\circ}$ = 85 fb (data)	χ_{s} C LHC pp γ_{s} = 13 TeV	4.6	PRD 87, 112001 (2013)
$-vvvv \rightarrow e\mu$, $\ln_{jet} \geq 0$	MCFM (theory) ar = 136 + 6 + 14 3 th (data)	Data	4.6	PRD 91, 052005 (2015)
$-$ vv vv $\rightarrow e\mu$, $\ln_{jet} = 1$	NLO (theory) $\sigma = 258 \pm 4 \pm 25$ (b (data)	stat	20.3	PLB 763, 114 (2016)
$=$ vvvv \rightarrow $e\mu$, $[\Pi_{jet} \geq 1]$	NLO (theory) $\sigma = 51 \pm 0.8 \pm 2.3$ pb (data)	stat ⊕ syst -	139	ATL-COM-PHYS-2020-574
A/7	$\sigma = 24.3 \pm 0.6 \pm 0.9 \text{ pb (data)}$		30.1	PRD 93, 092004 (2016)
	$\sigma = 19 + 1.4 - 1.3 \pm 1 \text{ pb (data)}$	LHC pp $\sqrt{s} = 8$ TeV	4.6	EPJC 72 (2012) 2173
14/7 0.00	$\sigma = 255 \pm 1 \pm 11 \text{ fb} (\text{cheary})$	Data	36.1	EPJC 79 (2019) 535
$-\mathbf{VV}\mathbf{Z} \rightarrow \ell \nu \ell \ell$	$\sigma = 140.4 \pm 3.8 \pm 4.6$ ib (data)	stat	20.3	PRD 93, 092004 (2016)
	$\sigma = 17.3 \pm 0.6 \pm 0.8 \text{ pb} (\text{data})$ Matrix (NNLO) & Sherpa (NLO) (theory)	stat ⊕ svst	36.1	PRD 97 (2018) 032005
ZZ	$\sigma = 7.3 \pm 0.4 + 0.4 - 0.3 \text{ pb (data)}$		20.3	JHEP 01, 099 (2017)
	$\sigma = 6.7 \pm 0.7 + 0.5 - 0.4 \text{ pb} (\text{data})$	LHC pp $\sqrt{s} = 7$ TeV	4.6	JHEP 03, 128 (2013) PLB 735 (2014) 311
A.P.	$\sigma = 49.3 \pm 0.8 \pm 1.1$ fb (data) Sherpa (NLO) (theory)		139	JHEP 07 (2021) 005
— → <i>t</i> inclusive (60 GeV <m4<i>t < 200 GeV)</m4<i>	$\sigma = 25.4 + 3.3 - 3 + 1.6 - 1.4$ fb (data) PowhegBox & gg2ZZ (theory)		4.6	JHEP 03, 128 (2013)
	$\sigma = 25.4 \pm 1.4 \pm 1$ fb (data) Matrix (NNLO) & Sherpa (NLO) (theory)	stat ⊕ svst	36.1	JHEP 10 (2019) 127
$-ZZ \rightarrow \ell\ell\nu\nu$	$\sigma = 9.7 + 1.9 - 1.4 + 1.0.00 (data)$ PowhegBox & gg2ZZ (theory) $\sigma = 12.7 + 3.1 - 2.9 + 1.8 th (data)$		20.3	JHEP 10 (2019) 127
	PowhegBox & go2ZZ (theory) $\sigma = 88.9 \pm 1.1 \pm 2.74$ fb (data)		4.6	JHEP 03, 128 (2013)
77* . 10	Sherpa (NLO) (theory) $\sigma = 73 \pm 4 \pm 5$ fb (data)	×.	139	JHEP 07 (2021) 005
$- \Sigma \Sigma \rightarrow 4l$	PowhegBox norm: to NNLO & gg2ZZ (theory) $\sigma = 29.8 + 3.8 - 3.5 + 2.1 - 1.9$ fb (data)		20.3	HEP 03, 128 (2013)
	PowhegBox & gg2ZZ (theory) $\sigma = 209 \pm 28 \pm 45$ fb (data)		20.2	EPJC 77 (2017) 563
WV→ℓvjj	$\sigma = 1.37 \pm 0.14 \pm 0.37 \text{ pb (data)}$		4.6	JHEP 01, 049 (2015)
$-WV \rightarrow \ell \nu$	$\sigma = 30 \pm 11 \pm 22 \text{ fb} \text{ (data)}$	8888666666	20.2	EPJC 77 (2017) 563
	$\sigma = 2719 + 947 - 810$ fb (data)		36.1	JHEP 12 (2017) 024
<u>-</u>	$\sigma = 1.03 + 0.37 - 0.36 + 0.26 - 0.21 \text{ pb (data)}$ NNLO(QCD)+NLO(EW) (theory)		20.3	JHEP 12 (2017) 024
– H→bb	$\sigma = 1190 \pm 130 + 160 - 140 \text{ fb} \text{ (data)}$ Powheg Box NLO(QCD) (theory)		139	ATLAS-CONF-2020-027
$ H \rightarrow \gamma\gamma$	$\sigma = b + 1.3 - 1.4 + 0.4 - 0.5$ to (data) Powheg Box NLO(QCD) (theory)	*	139	ATLAS-CONF-2021-053
	0.0 0.2 0.4 0.6 0.8	1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4		
		data/thoory		
		uala/ineury		

Experimental results demanded higher precision theoretical calculations

VBE VBS and 1	Friboson Cross S	ection Measur	ements	Status: Fobr	uary 2022	tr را ا	
			emente	Status. Tebr	uary 2022	$ [fb^{-1}]$	Reference
γγγ	$\sigma = 72.6 \pm 6.5 \pm 9.2$ fb (data) NNLO (theory)					20.2	PLB 781 (2018) 55
$Z\gamma\gamma \rightarrow \ell\ell\gamma\gamma$	$\sigma = 5.07 + 0.73 - 0.68 + 0.42 - 0.39$ fb (data) MCFM NLO (theory)	ATLAS Preliminary				20.3	PRD 93, 112002 (2016)
$-[n_{iet}=0]$	$\sigma = 3.48 + 0.61 - 0.56 + 0.3 - 0.26$ fb (data) MCFM NLO (theory)	-				20.3	PRD 93, 112002 (2016)
$W\gamma\gamma \rightarrow \ell \nu\gamma\gamma$	$\sigma = 6.1 + 1.1 - 1 \pm 1.2$ fb (data) MCFM NLO (theory)	$\sqrt{s} = 7,8,13 \text{ TeV}$		A		20.3	PRL 115, 031802 (2015)
$-[n_{jet}=0]$	$\sigma = 2.9 + 0.8 - 0.7 + 1 - 0.9$ fb (data) MCFM NLO (theory)	• • • •	_	A		20.3	PRL 115, 031802 (2015)
$WW\gamma \rightarrow ev\mu v\gamma$	$\sigma = \underbrace{1.5 \pm 0.9 \pm 0.5}_{\text{VBFNLO+CT14}} \underbrace{\text{(NLO)}}_{\text{(theory)}}$					20.2	EPJC 77 (2017) 646
WWW. (tot.)	$\sigma = 0.82 \pm 0.01 \pm 0.08 \text{ pb (data)}$ NLO QCD (theory) $\sigma = 230 \pm 200 \pm 150 \text{ m} (data)$					139	arXiv:2201.13045
	$\frac{1}{2} = 230 \pm 200 \pm 100$ Madgraph5 + aMCNLO (theory) = 0.24 + 0.39 = 0.33 + 0.19 th (data)		A			20.3	EPJC 77 (2017) 141
$-$ VV VV $\rightarrow \ell \nu \ell \nu j j$	Madgraph5 + aMCNLO (theory)		A			20.3	EPJC 77 (2017) 141
$\frac{-\nabla \nabla \nabla \nabla \nabla \nabla \rightarrow \ell \nu \ell \nu \ell \nu}{\nabla (2 - \ell)^{1/2}}$	$madgraph5 + aMCNLO (theory)$ $\sigma = 0.55 + 0.14 + 0.15 - 0.13 \text{ pb} (data)$		A			20.3	EPJC 77 (2017) 141
VVVZ, (tot.)	$\sigma = 0.13 \pm 0.14 + 0.15 = 0.13 \text{ pb} (\text{data})$ Sherpa 2.2.2 (theory) $\sigma = 4 \pm 0.3 \pm 0.3 = 0.4 \text{ pb} (\text{data})$	Theory				79.8	PLB /98 (2019) 134913
Hji VBF	LHC-HXSWG (theory) $\sigma = 2.43 \pm 0.5 = 0.49 \pm 0.33 = 0.26 \text{ pb} (data)$					139	ATLAS-CONF-2021-053
55	LHC-HXSWG YR4 (theory) $\sigma = 0.79 \pm 0.11 - 0.1 \pm 0.16 - 0.12 \text{ pb} (data)$	LHC pp $\sqrt{s} = 13$ TeV		A		20.3	EPJC 76 (2016) 6
– H(→WW)jj VBF	NNLO QCD and NLO EW (theory) $\sigma = 0.51 + 0.17 - 0.15 + 0.13 - 0.08 \text{ pb} (data)$	Data		A		20.3	AILAS-CONF-2021-014 PRD 92, 012006 (2015)
	$\sigma = 65.2 \pm 4.5 \pm 5.6 \text{ fb} (\text{data})$	stat	- 6			139	ATLAS-CONE-2019-029
$-\mathbf{H}(\rightarrow \gamma \gamma)\mathbf{i}\mathbf{i}$ VBF	$\sigma = 42.5 \pm 9.8 + 3.1 - 3$ fb (data)	$stat \oplus syst$				20.3	ATLAS-CONF-2015-060
	$\sigma = 49 \pm 17 \pm 6 \text{ fb} (\text{data})$	LHC pp $\sqrt{s} = 8$ TeV		•		4.5	ATLAS-CONF-2015-060
Wij EWK $(M(ii) > 1 \text{ TeV})$	$\sigma = 43.5 \pm 6 \pm 9 \text{ fb} \text{ (data)}$ $\rho_{\text{owhere}} P_{\text{owhere}} P_{\text{vibra}} \text{ 8 NI O (theory)}$	Data				20.2	EPJC 77 (2017) 474
	$\sigma = 159 \pm 10 \pm 26 \text{ fb (data)}$ $Powheg+Pythia8 NI O (theory)$	stat		-		20.2	EPJC 77 (2017) 474
-M(J) > 500 GeV	$\sigma = 144 \pm 23 \pm 26 \text{ fb (data)}$ Powheg+Pythia8 NLO (theory)	$stat \oplus syst$	0			4.7	EPJC 77 (2017) 474
	$\sigma = 37.4 \pm 3.5 \pm 5.5$ fb (data) Herwio 7+VBFNLO (theory)	LHC pp $\sqrt{s} = 7$ TeV				139	EPJC 81 (2021) 163
	$\sigma = 10.7 \pm 0.9 \pm 1.9 \text{ fb} \text{ (data)}$ PowhegBox (NLO) (theory)	Data				20.3	JHEP 04, 031 (2014)
	$\sigma = 4.49 \pm 0.4 \pm 0.42$ fb (data) Madgraph5 + aMCNLO (theory)	stat				139	ATLAS-CONF-2021-038
	$\sigma = 1.1 \pm 0.5 \pm 0.4$ fb (data) VBFNLO (theory)	stat 🕀 syst				20.3	JHEP 07 (2017) 107
	$\sigma = 3.13 \pm 0.31 \pm 0.28$ fb (data) MG5_aMCNLO+Pythia8 × Surv. Fact (0.82)	(theory)				139	PLB 816 (2021) 136190
$\gamma\gamma \rightarrow \mathbf{V}\mathbf{V}\mathbf{V}$	$\sigma = 6.9 \pm 2.2 \pm 1.4$ fb (data) HERWIG++ (theory)			Δ		20.2	PRD 94 (2016) 032011
(WV+ZV)jj EWK	$\sigma = 45.1 \pm 8.6 + 15.9 - 14.6$ fb (data) Madgraph5 + aMCNLO + Pythia8 (theory)					35.5	PRD 100, 032007 (2019)
	$\sigma = 2.89 + 0.51 - 0.48 + 0.29 - 0.28$ fb (data) PowhegBox (theory)					36.1	PRL 123, 161801 (2019)
	$\sigma = 1.5 \pm 0.5 \pm 0.2$ fb (data) PowhegBox (theory)			▲		20.3	PRD 96, 012007 (2017)
	$\sigma = 0.57 + 0.14 - 0.13 + 0.07 - 0.05$ fb (data) Sherpa 2.2.2 (theory)					36.1	PLB 793 (92019) 469
	$\sigma = \underbrace{0.29 + 0.14 - 0.12 + 0.09 - 0.1}_{\text{VBFNLO (theory)}} \text{ (data)}$					20.3	PRD 93, 092004 (2016)
ZZjj EWK	$\sigma = 0.82 \pm 0.18 \pm 0.11 \text{ fb (data)} \\ \text{Sherpa 2.2.2 (theory)}$					139	arXiv:2004.10612
			<u> </u>	1 -		U	
		0.0	0.5 1.0	1.5 2.0	2.5 3.0	3.5	2

data/theory

Observation of WZy Production Submitted to PRL

- Select events: $Z \rightarrow l^+l^-$ ($m_{ll} > 81 \text{ GeV}$), $W \rightarrow l'\nu$, isolated γ
- Non-prompt γ/l : estimation from data; ZZ(γ) SF from CR

Process	SR	$ZZ\gamma$ CR	$ZZ(e \rightarrow \gamma) CR$
$WZ\gamma$	92 ± 15	0.21 ± 0.07	0.56 ± 0.14
$ZZ\gamma$	10.7 ± 2.3	23 ± 5	1.8 ± 0.4
$ZZ(e \rightarrow \gamma)$	3.0 ± 0.6	0.028 ± 0.020	30 ± 6
Ζγγ	1.05 ± 0.32	0.15 ± 0.06	0.29 ± 0.10
Nonprompt background	30 ± 6	-	-
Pileup γ	1.9 ± 0.7	-	-
Total yield	139 ±12	23 ± 5	33 ±6
Data	139	23	33

Observation of Zyy Production

Observation of Wyy Production

Ω

The first observation of $W(\rightarrow l\nu)\gamma\gamma$ (5.6 observed and predicted)!

Source	SR	TopCR
Ψγγ	410 ± 60	28 ± 5
Non-prompt $j \rightarrow \gamma$	420 ± 50	42 ± 20
Misidentified $e \rightarrow \gamma$	155 ± 11	120 ± 9
Multiboson ($WH(\gamma\gamma)$, $WW\gamma$, $Z\gamma\gamma$)	76 ± 13	5.2 ± 1.7
Non-prompt $j \to \ell$	35 ± 10	_
Top $(tt\gamma, tW\gamma, tq\gamma)$	30 ± 7	136 ± 32
Pileup	10 ± 5	-
Total	1136 ± 34	332 ± 18
Data	1136	333

arXiv:2308.03041

Submitted to PLB

The Standard Model only allows a specific set of combinations of fourgauge-boson self-interactions: WWWW, WWYY, WWZY and WWZZ, forbidding interactions among four neutral bosons.

	wwww	WWyy	WWZy	wwzz
W±W±jj	~			
WZjj				~
ZZjj				~
Ζγjj			~	
WW (via γγ)		~		