

Electroweak Multiboson Production in CMS

Garyfallia Paspalaki

(Purdue University) On behalf of the CMS collaboration

Multi-boson Interactions Workshop 2023

29 August 2023 to 1 September 2023 UC San Diego

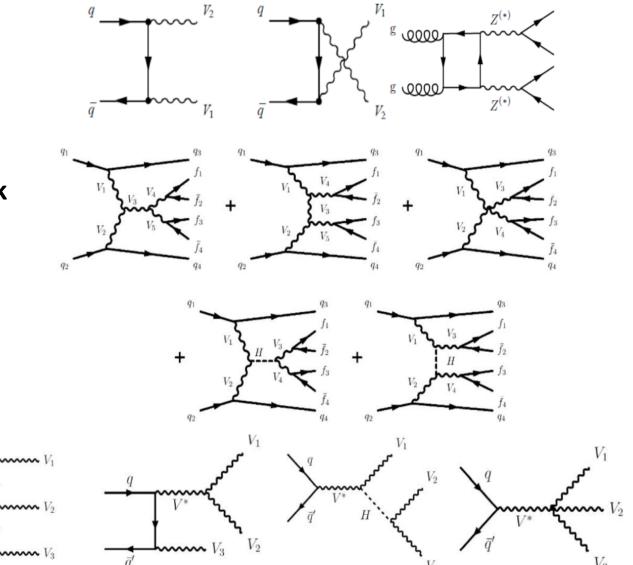
Multi-boson Measurements

Test the SM at TeV scale:

Differential cross-section:

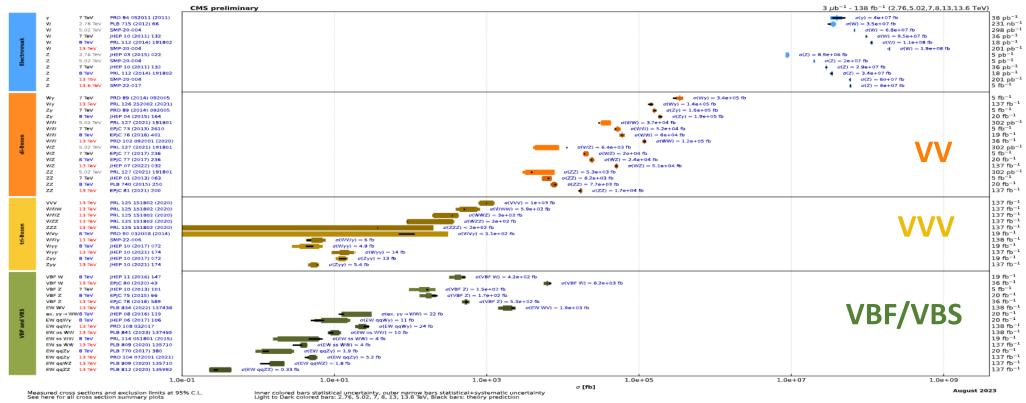
• measurement in validation of current models

Vector boson scattering/fusion (VBS/F):


 processes probe the mechanism of electroweak symmetry breaking

Triple/Quatric Gauge Couplings (T/QGC):

- search for anomalous couplings
- sensitive to new physics


EFT interpretation:

$$\mathcal{L}_{\text{SMEFT}} \approx \mathcal{L}_{\text{SM}}^{(4)} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} O_i^{(6)} + \sum_{j} \frac{c_j^{(8)}}{\Lambda^4} O_j^{(8)}$$

EWK results from CMS

Overview of CMS cross section results

Run3 of the LHC is ongoing. We expect to have doubled Run2 lumi by mid-2024 I will focus today on **new EWK CMS results with full Run2 dataset**

CMS Public Results

Diboson Production

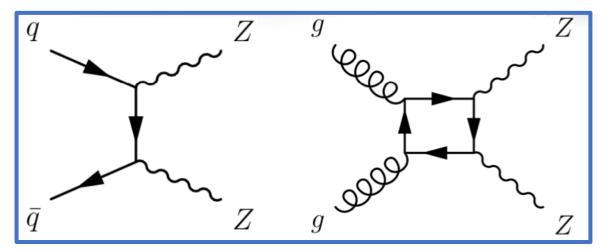
Precision Measurements

- Cross-section measure in fiducial volumes and extrapolated to total phase space
- Differential measurements performed to provide kinematic distributions of data subtracted from backgrounds and corrected form detector effect

EFT interpretation

- Anomalous triple/ quartic gauge couplings (aTGCs and aQGCs)
- Limits provided as functions of operators

Analyses presented today:


- $ZZ(4\ell + jets)$
- ssWW to τh (VBS)
- Wγ+2jets (VBS)
- osWW (VBS)
- Polarized WW

Aug 2023	CMS Preliminary
CMS measurements vs. NNLO (NLO) theory	5.02, 7, 8, 13 TeV CMS measurements (stat,stat+sys)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0 1 All results at: http://cern.ch/go/pNj7	Production Cross Section Ratio: $\sigma_{exp}^{4} / \sigma_{theo}^{4}$

ZZ(4ℓ)+jets analysis

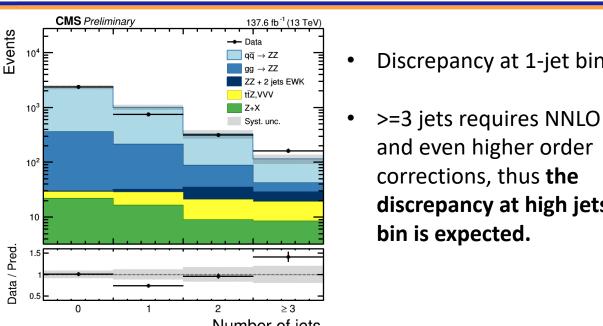
Measurement of ZZ production

- Process allows precision studies in the SM
- LO t-channel: s-channel forbitten in SM
- Gluon-gluon fusion via box diagram: 10% contribution

Differential distributions and normalized differential cross sections are measured as a function of:

- Number of jets
- Kinematic variables of jets
- M4 ℓ as a function of jet multiplicity

$ZZ(4\ell)$ +jets analysis

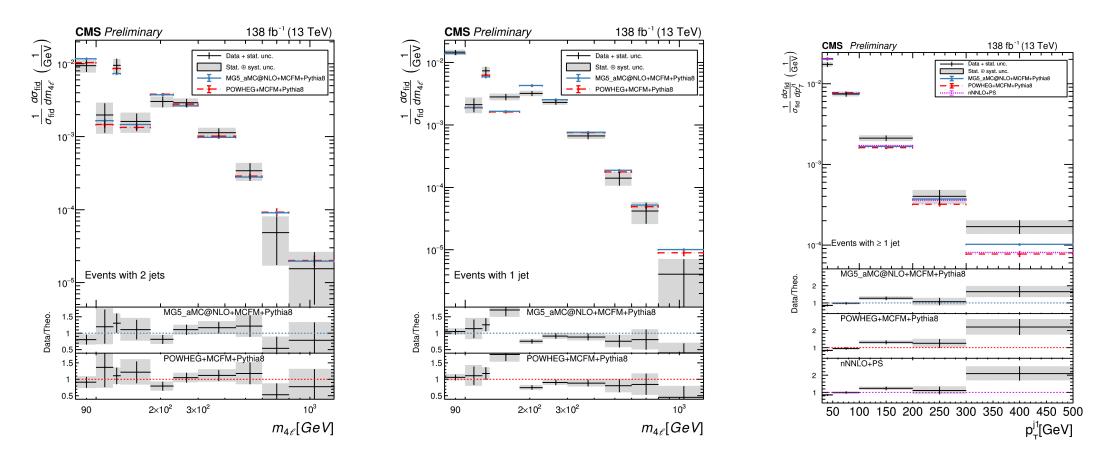

CMS-PAS-SMP-22-001

Selection

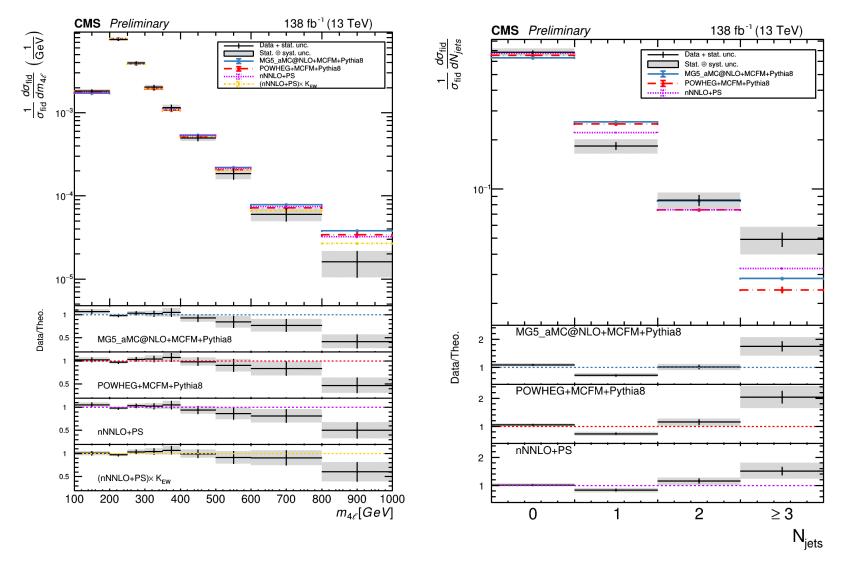
- on-shell leptonically decaying Z bosons
- Require 60 *GeV* < *m*4ℓ < 120 *GeV*
- ZZ $\rightarrow 2\ell 2\ell'$ ($\ell, \ell' = e \text{ or } \mu$)
- Background extremely suppress by 4-lepton requirement
- processes with 4 prompt leptons (ttZ,VVV): estimated with MC
- processes with fakes: jets or non-prompt leptons misidentified as signal leptons: estimated from the data

Main systematic uncertainties: jets, QCD scales

I	1 2 Numbe		discre bin is			gh jets
C	l					
[Systematic source	$m_{4\ell}$ with all jets	0 jet	1 jet	2 jets	3 and more jets
	Trigger	-	-	-	-	-
	Electron Efficiency	0.42 %	0.38 %	0.66 %	0.36 %	0.26 %
	Muon Efficiency	0.05 %	0.06 %	0.07 %	0.09 %	0.08 %
	Jet energy resolution	0.0	0.07 %	1.72 %	1.65 %	0.8 %
	JES correction	0.0	0.17 %	1.77~%	1.95~%	0.97 %
	Reducible background	0.18 %	0.18 %	0.32 %	0.33 %	0.96 %
	Pileup	0.02 %	0.05 %	0.11 %	0.13 %	0.35 %
	Luminosity	0.01 %	0.01 %	0.02 %	0.02 %	0.05 %
	Monte Carlo choice	0.35 %	0.65 %	0.94 %	0.48~%	0.35 %
	gg cross section	0.02 %	0.03 %	0.09 %	0.06 %	0.09 %
	QCD Scales	0.15 %	0.16 %	0.58 %	0.54~%	0.62 %
	PDF	0.05 %	0.05 %	0.15 %	0.15 %	0.21 %
	α _S	0.02 %	0.01 %	0.05 %	0.03 %	0.02 %


Discrepancy at 1-jet bin

and even higher order


corrections, thus the

ZZ(4ℓ)+jets analysis

- Differential cross sections normalized to the fiducial cross sections
- Theory predictions over-estimate data in some regions
- Large discrepancy at high jet p_T region

ZZ(4*l*)+jets analysis

 the modeling at higher jet multiplicities is not great but it improved when using nNNLO+PS MCs instead of NLO MCs

 the EW corrections help with modeling the high energy behavior

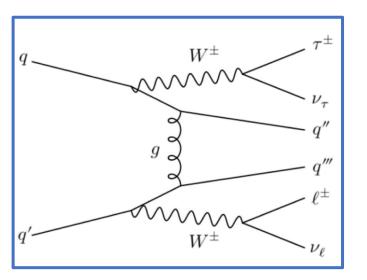
Vector (V) Boson (B) Scattering (S)

VBS: scattering between two vector bosons radiated from incoming partons.

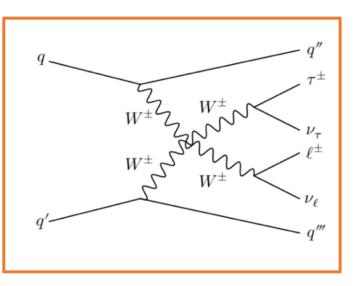
Unique topologies:

- two very forward jets, with large eta separation and invariant mass
- low hadronic activity in central region
- possible couplings: WWW/WWZZ/WWZ γ /WW $\gamma\gamma$...

Why is VBS interesting?

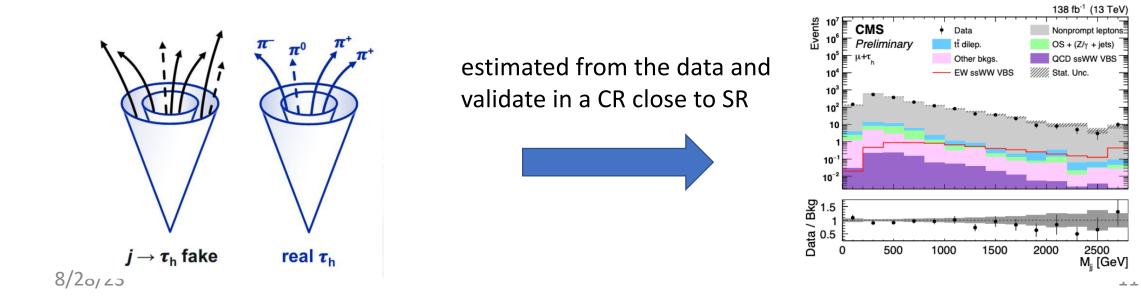

- very rare process (~ fbs), precision test of SM
- VBS with longitudinally polarized massive vector bosons is connected to the Higgs mechanism, help us have a better understanding on Higgs mechanism
- the SM could be extended with higher operators (dimension-8, typically studied in VBS) standing for anomalous couplings between vector bosons, model independent search of BSM

Present results from 4 VBS analyses


ssWW to τ_h

- Vector boson scattering (VBS) processes are crucial to understanding EWK symmetry breaking
- Possibility to access tau decay channel in ssWW VBS for the first time
- Same-charge W pair scattering (ssWW VBS): largest cross-section among the EW-mediated processes
- Possible Beyond-SM effects in EW vertices: Indirect search with SM Effective Field Theory (not covered for this PAS)
- $qq' \rightarrow WWq''q''' \rightarrow \ell \pm \tau \pm jj \nu \nu$

QCD interactions between partons 8/28/23

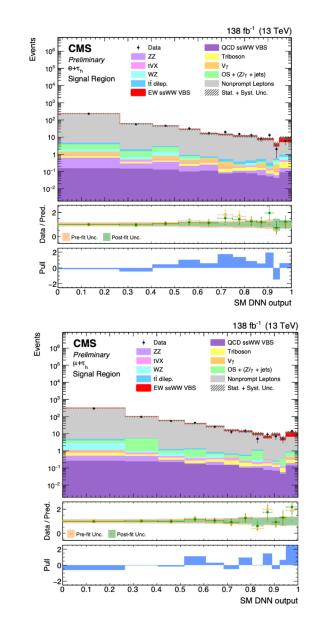


Pure EWK process

ssWW to τ_h

- Final state: $\ell \pm \tau \pm jj + MET (\ell = e, \mu)$
- two very energetic forward-backward jets \rightarrow VBS jets
- large large dijet mass (m_{ii}) and large **\eta** separation ($\Delta \eta_{ii}$) between the jets
- DNN discriminators to enhance signal sensitivity: 9 kinematic quantities describing of the ssWW VBS process
- **Main background:** no-prompt lepton/tau: jets are mis reconstructed as e,μ , or τh

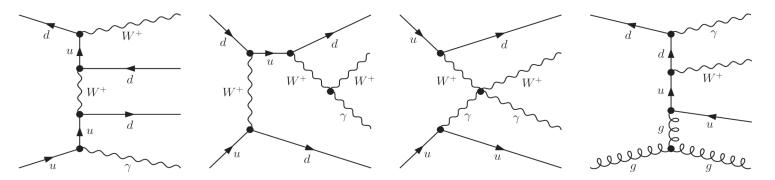
ssWW to τ_h



- dedicated DNN trained and tested to classify the events in signal and background categories
- ML fit using DNN templates from **SR** and **two enriched background CRs** to control opposite-sign, ZZ and tt rates
- ssWW purely-EW signal strength
- Simultaneous EW and QCD ssWW signal strength

Signal	Significance $[\sigma]$			
Signal	Expected	Observed		
pure EW ssWW VBS	1.94	2.74		
EW + QCD ssWW VBS	2.04	2.87		

Dominant uncertainty: data statistics and theoretical uncertainties



Electroweak Wyjj production

CMS-SMP-21-011 Phy.Ref.D

Electroweak production of a W boson, a photon (γ), and two jets (j)

Final states: $ev\gamma + 2$ jets and $\mu v\gamma + 2$ jets

VBS Signature: Large **dijet mass** (m_{ii}) and large **\eta separation** ($\Delta \eta_{ii}$) between the jets

Main results:

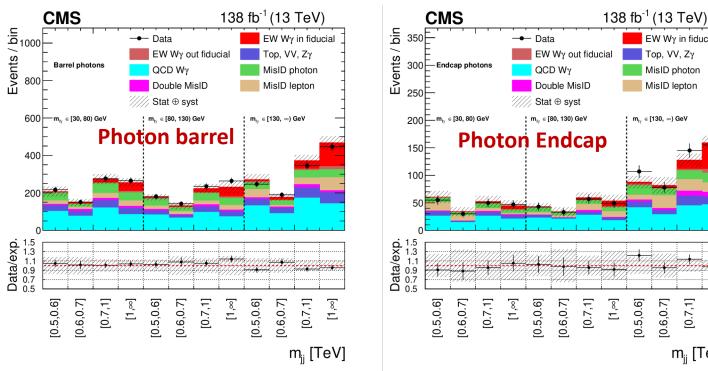
- Signal strength and significance
- Fiducial and differential cross-section measurements
- Limits on dimension 8 EFT coefficients

Major backgrounds from W+jets and processes where the jet constituents is misidentified as a photon

EW Wγ in fiducia

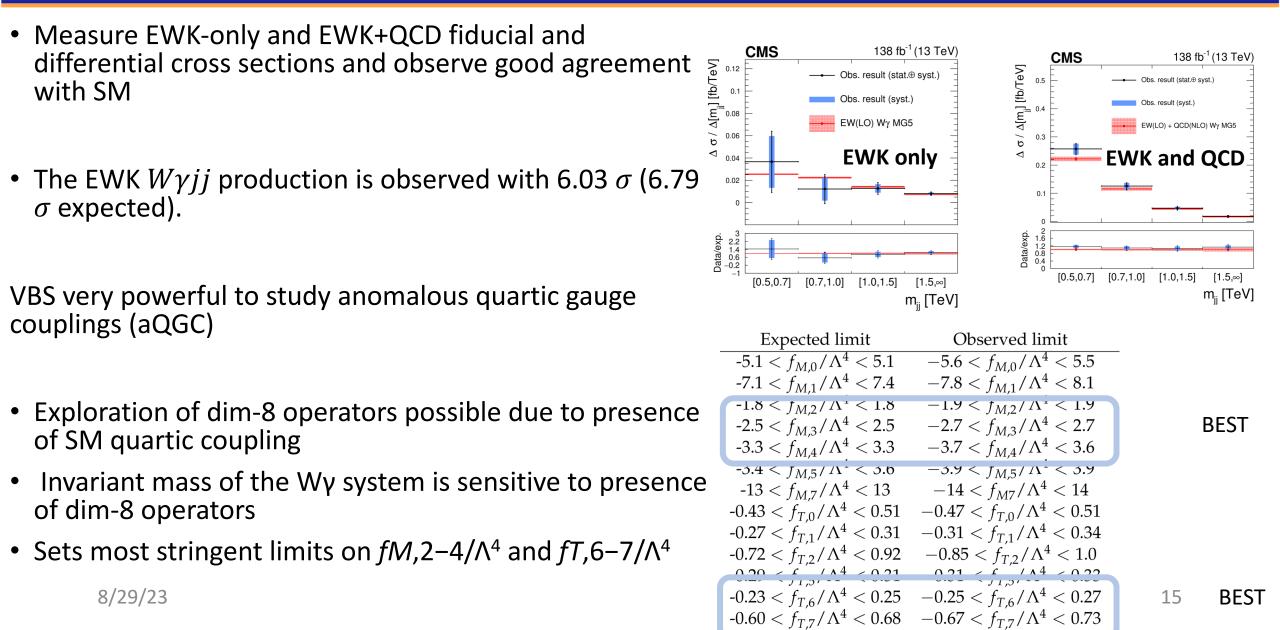
MisID photor

MisID lepton

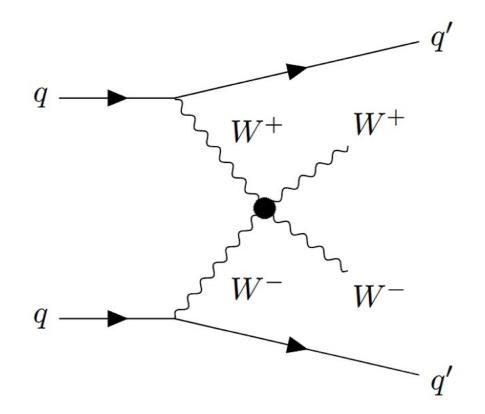

m,... ∈ [130, ∞) G

[0.5,0.6] 0.6,0.7] [0.7,1] [1,8]

m_{ii} [TeV]


Data-driven method for background estimate:

- Template fit: non-prompt (fake) photon
- Tight-loose method: non-prompt lepton



- measurement of the total EW $W\gamma$ production rate is performed with a binned likelihood fit to the data of the two-dimensional (2D) distribution in m_{ii} and m_{vv}
- Separated into barrel and endcap to account for differences in photon performance

Electroweak Wyjj production

First observation of the electroweak production of a leptonically decaying W^+W^- pair in association with two jets

final state: 2 opposite-sign leptons, 2 jets and moderate missing p_T^{miss}

VBS topology: 2 jets with large pseudorapidity gap $\Delta \eta_{jj}$ and invariant mass m_{jj}

Lepton-flavour-based event categories

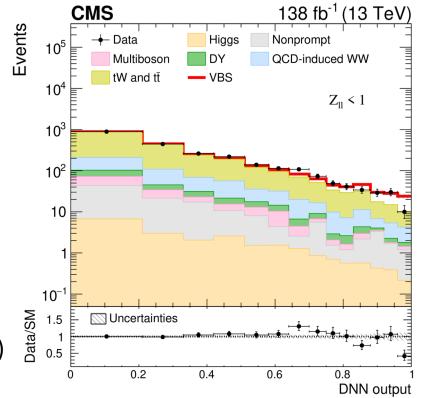
- eµ: background dominated by ttbar
- ee/μµ: background mostly dominated by DY

SMP-21-001

Deep Neural-Network selection based on lepton/jets kinematic variables was used to disentangle signal from top and QCD induced WW background

Variable Description Invariant mass of the two tagging jets pair m_{ii} $p_{\mathrm{T}}^{\mathrm{J}_{\mathrm{T}}}$ $p_{\rm T}$ of the highest $p_{\rm T}$ jet Pseudorapidity separation between the two tagging jets $|\Delta \eta_{jj}|$ $p_{\mathrm{T}}^{\mathrm{J_2}}$ $p_{\rm T}$ of the second-highest $p_{\rm T}$ jet Z_{ℓ_2} Zeppenfeld variable of the second-highest $p_{\rm T}$ lepton $p_{\mathrm{T}}^{\ell\ell}$ $p_{\rm T}$ of the lepton pair $\Delta \phi_{\ell\ell}$ Azimuthal angle between the two leptons Zeppenfeld variable of the highest $p_{\rm T}$ lepton Z_{ℓ_1} $m_{\mathrm{T}}^{\ell_1}$ Transverse mass of the $(p_T^{\ell_1}, p_T^{\text{miss}})$ system

centrality of the dilepton system with respect to the tagging jets is quantified as:


Zeppenfeld variable: $Z_{\ell\ell} = \frac{1}{2} |Z_{\ell 1} + Z_{\ell 2}|$, where $Z_{\ell} = \eta_{\ell} - \frac{1}{2} (\eta_{j1} + \eta_{j2})$ 8/29/23

2 models implemented:

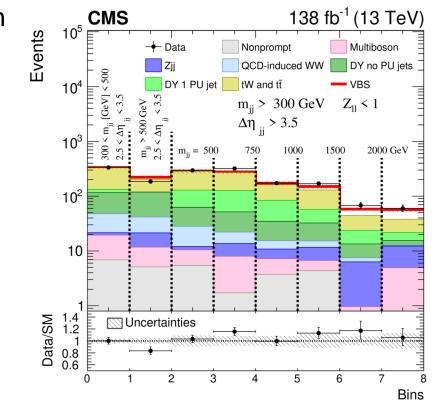
SMP-21-001

17

- $Z_{\ell\ell}$ < 1 phase space
- $Z_{\ell\ell} \ge 1$ phase space

Observation of opposite Sign WW VBS

Background estimation


- Non-prompt leptons: data-driven
- DY and ttbar: estimates from CR is the data

Signal Extraction

8/28/23

- Combined binned maximum likelihood fit of the most discriminating variable distributions with signal and background templates
- Lepton-flavour dependent signal extraction eµ: DNN output ee/µµ: bins in m_{ii}, Δη_{ii}. Zeppenfeld variables
- Simultaneously in all signal regions and control regions

Largest systematic uncertainties: theory, b-jet veto

SMP-21-001

Observation of opposite Sign WW VBS

- Observed (expected) significance w.r.t. the background-only hypothesis is 5.6 σ (5.2 σ)
- The cross section measurement of the W⁺W⁻ EW production is performed in two fiducial volumes

Inclusive Volume

Loose requirements

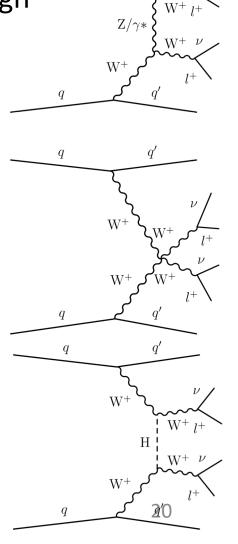
- *p*_{*T}(<i>q*)>10 GeV</sub>
- *mqq'* > 100 GeV

Inclusive: 99 ± 20 fb (theory: 89 ± 5) Tight: 10.2 ± 2.0 fb (theory: 9.1 ± 0.6)

Good agreement with SM predictions!

8/28/23

Exclusive (Tight) volume


	Objects	Requirements	
	Leptons	e μ , ee, $\mu\mu$ (not from τ decay), opposite charge $p_{\rm T}^{\text{dressed }\ell} = p_{\rm T}^{\ell} + \sum_{i} p_{\rm T}^{\gamma_i} \text{ if } \Delta R(\ell, \gamma_i) < 0.1$ $p_{\rm T}^{\ell_1} > 25 \text{GeV}, p_{\rm T}^{\ell_2} > 13 \text{GeV}, p_{\rm T}^{\ell_3} < 10 \text{GeV}$	more
		$ \eta < 2.5$ $p_{T}^{\ell\ell} > 30 \text{GeV}, m_{\ell\ell} > 50 \text{GeV}$	signal-like
	Jets	$p_{\rm T}^{j} > 30 \text{GeV}$ $\Delta R(j, \ell) > 0.4$ At least 2 jets, no b jets $ \eta < 4.7$ $m_{\rm jj} > 300 \text{GeV}, \Delta \eta_{\rm jj} > 2.5$	
	$p_{\mathrm{T}}^{\mathrm{miss}}$	$p_{\rm T}^{\rm miss} > 20{ m GeV}$	

Polarized W[±] W[±] extraction

- the first measurements of production cross sections of polarized same-sign WW
- gauge boson polarization in VBS production, which can target diagrams with intermediate Higgs mediation instead of the quadruple gauge coupling

- the analysis uses all data from the Run II to target doubly polarized final states: $W_L W_L$, $W_T W_T$, $W_L W_T$

- measurements are also provided for $W_L W_X$ and $W_T W_X$ production

SMP-20-006

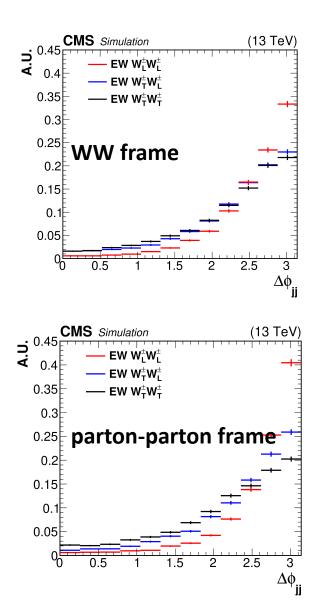
W

Polarized W^{\pm} LW^{\pm} extraction

<u>SMP-20-006</u> <u>PLB</u>

Angular variables powerful for polarization components extraction

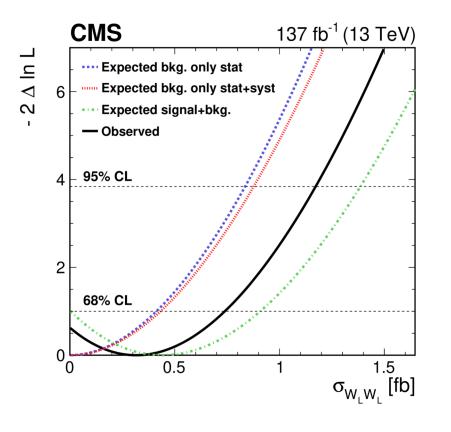
Backgrounds:


- control regions to measure WZ, ZZ, tZq backgrounds
- Non-prompt data-driven and mis-charge ID
- Results are reference-frame-dependent:

WW frame: based on the center of mass frame of the WW pair **Parton frame**: based on the center of mass frame of the incoming partons

Strategy

Inclusive BDT to extract WW same-sign signal specific signal BDT for ($W_L W_L vs W_X W_T$) and ($W_T W_T vs W_X W_L$)


The final signal extraction uses a 2D fit based on a binning of both BDTs 8/28/23

Polarized $W^{\pm} W^{\pm} w^{\pm}$ extraction

<u>SMP-20-006</u> <u>PLB</u>

- the significance of the measured $W_L W_X$ yield is 3.1 σ expected, 2.3 σ observed
- exclude > ~2 x SM W_LW_L production at 95% confidence-level
- fiducial cross-sections extracted for all the polarizations → agrees with SM within uncertainties

WW center of mass reference frame

Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)
$W^{\pm}_L W^{\pm}_L$	$0.32^{+0.42}_{-0.40}$	0.44 ± 0.05
$\mathrm{W}_X^{\pm}\mathrm{W}_\mathrm{T}^{\pm}$	$3.06^{+0.51}_{-0.48}$	3.13 ± 0.35
$\mathrm{W}_{\mathrm{L}}^{\widehat{\pm}}\mathrm{W}_{X}^{\widehat{\pm}}$	$5.00_{-0.48}$ $1.20_{-0.53}^{+0.56}$	1.63 ± 0.18
$W^{\pm}_T W^{\pm}_T$	$2.11\substack{+0.49 \\ -0.47}$	1.94 ± 0.21

parton-parton reference frame

Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)
$W_{\rm L}^{\pm}W_{\rm L}^{\pm}$	$0.24\substack{+0.40\-0.37}$	0.28 ± 0.03
$\mathrm{W}_X^{\pm}\mathrm{W}_\mathrm{T}^{\pm}$	$3.25^{+0.50}_{-0.48}$	3.32 ± 0.37
$W_L^{\hat{\pm}}W_X^{\hat{\pm}}$	$1.40^{+0.60}_{-0.57}$	1.71 ± 0.19
$W_T^{\pm}W_T^{\pm}$	$2.03\substack{+0.51\\-0.50}$	1.89 ± 0.21

Summary

- Recent results on EW multiboson production were presented from CMS using the full Run2 dataset
- Differential cross sections on **diboson ZZ** in association with jets from CMS
- first observation of VBS ssWW to τ_h
- Wγ +2j analysis: sets most stringent limits on some aQGC operators
- first observation of opposite sign WW VBS
- first measurements of production cross sections of polarized same-sign W[±]W[±]
- Run2: many interesting results from Run 2 are yet to come
- Run3 ahead: increased statistics are promising for new measurements and BSM interpretations!

Back Up