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Probing self-interaction di-higgs and triple Higgs

Probing the Higgs self-coupling possible through di-Higgs and triple Higgs measurements:


• Di-Higgs: (nearly) exclusively sensitive to  coupling


• Small contribution from 


• Triple Higgs: sensitive to both  and   coupling


Full determination of Higgs potential only possible through combined measurement!
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Recent CMS HH4b results

3https://twiki.cern.ch/twiki/pub/CMSPublic/SummaryResultsHIG/limits_HH_SM.pdf https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-22-001/CMS-HIG-22-001_Figure_005-a.pdf

• Recent CMS combination of separate bb bb, resolved and bb bb, boosted/merged channels


• Combined after post-hoc overlap removal


• Since overlap removal was performed after the fact, it is potentially not optimal


• Can ML help us to determine whether events should be reconstructed as resolved or boosted?

Overlap removal  
&  

combination

https://twiki.cern.ch/twiki/pub/CMSPublic/SummaryResultsHIG/limits_HH_SM.pdf
https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-22-001/CMS-HIG-22-001_Figure_005-a.pdf


•  has a complex final state with many different types of (partial) reconstruction 
possible, including overlapping small- and large-radius jets 

• Idea: use transformer to optimize reconstruction efficiency 

• Fully exploit event topology and kinematic correlations of jets to pair the 3 Higgs 
correctly 

• Existing approach (SPA-Net [1, 2]) works out of the box for fully-resolved case (6 small-
radius b jets), would like to generalize to resolved+boosted cases 

• Outline of rest of talk 

• Overview of SPA-Net 

• Baseline methods 

• Preliminary results with 6b and 4b

HHH

HHH HH

H1(b1b2)

H2(b3b4)

H3(b5b6)

Introduction & Outline [1] arXiv:2010.09206 
[2] arXiv:2106.03898
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https://arxiv.org/abs/2010.09206
https://arxiv.org/abs/2106.03898


Symmetry Preserving Attention Networks (SPA-Net)
• Consider all valid permutations using symmetric tensor attention  

• Resonance particle  (e.g., Higgs) is associated with  partons (e.g., 2 b 

quarks); maximum of  reconstructed jets (e.g., 10) 

• Input: matrix of transformer-encoded jets   

• Output: rank-  tensor  the joint distribution over -jet 
assignments 

•  

• Valid solutions =>  
 

•

p kp

N

Xp ∈ ℝN×D

kp 𝒫p ∈ ℝN×N×⋯×N kp

∑ 𝒫p = 1

diag(𝒫p) = 0

SciPost Phys. 12, 178 (2022)
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Figure 2: A visualization of the high level structure of SPA-NET.

these larger events. Other methods have been tested for leptonic topologies of t t̄, t t̄H, or t t̄ t t̄,
such as KLFitter [36], boosted decision trees [31,37,38], and fully connected networks [39].
While these may perform better than the extended �2 for t t̄H or t t̄ t t̄, none have ever been
demonstrated to outperform the �2 in all-jet t t̄. As all of these methods rely on a permutation
approach, they are at least as cumbersome and indeed often impossible to work with in a
realistic setting, where many millions of events must be evaluated, often hundreds of times due
to systematic uncertainties. It is thus beyond the scope of this paper to study the applications
of extended permutation techniques for the all-jet channel.

3 Symmetry Preserving Attention Networks

We introduce a general architecture for jet-parton assignment named SPA-NET: an attention-
based neural network, first described for a specific topology in [40]. In this paper, we gener-
alize the SPA-NET approach from one specific to t t̄ to a much more general approach that can
accommodate arbitrary event topologies.

Overview The high level structure of SPA-NET, visualized in Figure 2, consists of four distinct
components: (1) independent jet embeddings to produce latent space representations for each
jet; (2) a central stack of transformer encoders; (3) additional transformer encoders for each
particle; and finally (4) a novel tensor-attention to produce the jet-parton assignment distribu-
tions. The transformer encoders employ the fairly ubiquitous multi-head self-attention [16].
We replicate the transformer encoder with one modification where we exchange the positional
text embeddings with position-independent jet embeddings to preserve permutation invariance
in the input.

SPA-NET improves run-time performance over baseline permutation methods by avoiding
having to construct all valid assignment permutations. Instead, we first partition the jet-parton
assignment problem into sub-problems for each resonance particle, as determined by the event
Feynman diagram’s tree-structure (ex. Figure 1). Then we proceed in two main steps: (1) we
solve the jet-parton assignment sub-problems within each of these partitions using a novel
form of attention which we call Symmetric Tensor Attention; and (2) we combine all the sub-
problem solutions into a final jet-parton assignment (Combined Symmetric Loss). This two-
step approach also allows us to naturally handle both symmetries described in Section 2.1
within the network architecture.

Symmetric Tensor Attention Every resonance particle p has associated with it kp partons.
Symmetric Tensor Attention takes a set of transformer-encoded jets Xp 2 RN⇥D - with N the
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SPA-Net Output
• [Detection probability, assignment distribution] x  candidates (resonant particles) 

• For each particle candidate in  candidates 

• 1. If DP is lower than the threshold, SPANet did not find the particle, and the corresponding AD is 
ignored.  

• 2. The peak of AD indicates which combination of jets that SPANet predicts to reconstruct the particle

Np

Np
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Jet 1 Jet 2 Jet 3 Jet 4

Jet 1 Mask 0.8 0.03 0.01

Jet 2 0.8 Mask 0.07 0.05

Jet 3 0.03 0.07 Mask 0.04

Jet 4 0.01 0.05 0.04 Mask

P1

argmax(P1) = (2,1) :

ADs

Jet 1 and Jet 2 are assigned to Particle 1



Event Configuration of HHH → (bb̄)(bb̄)(bb̄)
• Specify a list of resonant particles and their daughters 

• Provide a list of permutations to tell SPANet which particles are of the same kind.

EVENT: 
  h1: 
    - b1: Jets 
    - b2: Jets 
  h2: 
    - b1: Jets 
    - b2: Jets 
  h3: 
    - b1: Jets 
    - b2: Jets 
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PERMUTATIONS: 
    EVENT: 
      - [ h1, h2, h3 ] 
    h1: 
      - [ b1, b2 ] 
    h2: 
      - [ b1, b2 ] 
    h3: 
      - [ b1, b2 ] 

[P1, P2, P3]

[P1, P3, P2] 
[P2, P1, P3]

[P2, P3, P1]

[P3, P1, P2]

[P3, P2, P1]

apply all permutations to Calculate loss for each permutation

Targets: [T1, T2, T3]


loss_1

loss_2

loss_3

loss_4

loss_5

loss_6

Choose the minimum to

backpropagate and


Update weights



Dataset & Input Features
• Using 14 TeV  events simulated with MadGraph+Pythia8+Delphes: 

• ~1M events for training+validation; ~300 events for testing 

• Truth matching condition:  

• Gen b-quark from Higgs boson decay is within  of AK5 jet 

• Added hadron “b” flavor requirement on AK5 jet 

• Higgs boson is “reconstructible” if both b quark daughters match to AK5 jets 

• Up to 10 AK5 Jets are considered per event (ranked by ) 

• Input jet features:  

•  (log-normalized),  (normalized), , , boolean b-tag score, and jet 
mass (normalized)

pp → HHH → 6b

ΔR ≤ 0.5

pT

pT η sin ϕ cos ϕ
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Madgraph model provided by 
A. Papaefstathiou, T. Robens, G. Tetlalmatzi-Xolocotzi  
JHEP 05 (2021) 193 

https://arxiv.org/abs/2101.00037


Model Configuration
• Model hyperparameters:

num_embedding_layers: 10
position_embedding_dim: 16

transformer_activation: gelu
transformer_dim: 32
transformer_dim_scale: 2.0
transformer_type: Gated
num_attention_heads: 4

linear_activation: gelu
linear_block_type: GRU

hidden_dim: 64
initial_embedding_dim: 16
initial_embedding_skip_connections: 1
skip_connections: 1

num_encoder_layers: 4
num_branch_embedding_layers: 3
num_branch_encoder_layers: 3
num_detector_layers: 2
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num_jet_embedding_layers: 0
num_jet_encoder_layers: 2
num_regression_layers: 3
num_classification_layers: 3

normalization: LayerNorm
normalize_features: 1
split_symmetric_attention: 1



• Method 1 (Higgs mass):  

• Note: higher efficiency, worse background mass sculpting

mH = 125 GeV

HHH — Baseline Methods

χ2 = (mb1b2
− mH)2 + (mb3b4

− mH)2 + (mb5b6
− mH)2

10

Baseline script

https://github.com/ucsd-hep-ex/hhh/blob/main/src/models/test_baseline.py


Event Purity =
Number of events that all Higgs are reconstructed

Total number of events

H Purity =
Number of reconstructed Higgs

Total number of Higgs

Event Type Method Event Purity H Purity

1-3 H 
(98%)

Baseline 22% 39%

SPANet 34% (+54%) 52% (+33%)

3 H 
(29%)

Baseline 23% 43%

SPANet 38% (+65%) 58% (+34%)

11

SPA-Net — HHH Performance



Differential matching efficiency
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• Matching efficiency: strong dependence on momentum of the Higgs bosons
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Differential matching efficiency
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• At low momentum, jets scattered around detector = complicated pairing 
• At higher momentum, jets from Higgs boson more and more collimated, clearer correlation 
• At very high momentum ( pT > 400 GeV), matching efficiency drops and Higgs reconstructed in AK8 jets



Differential matching efficiency
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• At 400 GeV, Higgs more likely to be reconstructed in 1 AK8 than 2 AK5 
• Optimal performance: generalize approach to both boosted + resolved topologies
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SPANet configuration: 
•6 reconstruction targets: Resolved Higgs 1,2&3, and Boosted Higgs 1,2&3. 
•Tell SPANet boosted Higgs should be reconstructed from AK8 jets. 
•Tell SPANet boosted Higgs and resolved Higgs are the same particles by specifying all 

valid permutations 

Input: >= 6 jets with pT > 20 GeV 
•When existing, AK8 jets with pT > 250 GeV 

Reconstruction algorithm: 
•Prioritize boosted AK8 jets over AK5 

•If >= 1 AK8 jets found with high assignment probability, assign Higgs bosons to it 
•Complete remaining Higgses with AK5 pairs obtained by SPANET 

•Next goal: let SPANET decide between AK8 and 2 AK5 

Training on Resolved+Boosted Dataset: Event Selection

15



Preliminary Study of SPANet on mixed HH4b

H1

H2

• Baseline (Higgs mass):  

• Note: background mass sculpting 

• Mass agnostic distance method [1]: 

• Find pairs based on minimal distance between 2 Higgs masses

mH = 125 GeV

χ2 = (mb1b2
− mH)2 + (mb3b4

− mH)2

D = |m(b1, b2) − k × m(b3, b4) | / 1 + k2, k = 125/120

16

[1] arXiv:2202.09617

https://arxiv.org/abs/2202.09617


Event Purity =
Number of events that all Higgs are reconstructed

Total number of events

H Purity =
Number of reconstructed Higgs

Total number of Higgs

Event Type Method Event Purity H Purity

1-2 H
Baseline 44% 57%

SPANet 76% (+72%) 81% (+42%)

2 H
Baseline 21% 53%

SPANet 77% (+360%) 84% (+58%)

17

SPA-Net — HH Performance

Note: using top 4 jets in each event ordered by pT



Differential matching efficiency
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• At 400 GeV, Higgs more likely to be reconstructed in 1 AK8 than 2 AK5 

• Optimal performance: generalize approach to both boosted + resolved topologies 

• On-going work to define best strategy and compare results with HHH

1-2h events 2h events
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• SPA-Net reconstructs the mass of each Higgs candidate appropriately 

• Work in progress: investigating mass sculpting of backgrounds 

• Investigating using SPANet to do boosted + resolved analysis

1-2h events 2h events



Summary
• SPANet: A transformer model for particle reconstruction. 

• SPANet shows better performance than chi2 in our preliminary study of 
HHH6b. 

• Unique algorithm to pair fully resolved, semi-boosted, fully boosted 
simultaneously 

• Performance improvements validated on HH4b signal too 

• SPANet can lead to better reconstruction efficiency and therefore better 
determination of fundamental parameters in the Higgs sector

20



Back-up
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Detailed Model Configuration
• Many hyperparameters to tune! 

• We used the following:

linear_prelu_activation: true
mask_sequence_vectors: 1
masking: Filling
normalization: LayerNorm
normalize_features: 1
num_attention_heads: 4
num_branch_embedding_layers: 3
num_branch_encoder_layers: 3
num_classification_layers: 3
num_dataloader_workers: 4
num_detector_layers: 2
num_embedding_layers: 10
num_encoder_layers: 4
num_gpu: 1
num_jet_embedding_layers: 0
num_jet_encoder_layers: 2
num_regression_layers: 3
optimizer: AdamW
partial_events: 1
position_embedding_dim: 16
regression_loss_scale: 0.0
skip_connections: 1
split_symmetric_attention: 1
testing_file: ''
train_validation_split: 0.95
training_file: data/hhh_training_masses.h5
transformer_activation: gelu
transformer_dim: 32
transformer_dim_scale: 2.0
transformer_type: Gated
trial_output_dir: ./test_output
trial_time: ''
usable_gpus: ''
validation_file: ''
verbose_output: false

assignment_loss_scale: 1.0
balance_classifications: false
balance_jets: 0
balance_losses: true
balance_particles: 1
batch_size: 4096
classification_loss_scale: 0.0
combinatorial_scale: 0.0
combine_pair_loss: min
dataset_limit: 1.0
dataset_randomization: 0
detection_loss_scale: 0.0
dropout: 0
epochs: 250
event_info_file: event_files/hhh_masses.yaml
focal_gamma: 0.0
gradient_clip: 0.0
hidden_dim: 64
initial_embedding_dim: 16
initial_embedding_skip_connections: 1
kl_loss_scale: 0.0
l2_penalty: 0.0002
learning_rate: 0.0015
learning_rate_cycles: 1
learning_rate_warmup_epochs: 1.0
limit_to_num_jets: 0
linear_activation: gelu
linear_block_type: GRU 22



Symmetric Tensor Attention
• Note  is an “overparameterization” of the valid jet assignments: many 

represent the same physical combinations. 

• For example for the  case, 10 jets maximum 

• Each  has 100 entries 

• But we can swap  for each , and can swap  

• In the end we end up with only 3150 unique physical assignments!

𝒫p

HHH → 6b

𝒫p

(b1, b2) H H1, H2, H3
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𝒮i1i2…ikp = ∑
σ∈Gp

Θ
iσ(1)iσ(2)…i

σ(kp) ,

𝒪 j1 j2…jkp = Xj1
i1

Xj2
i2

…Xjpk
ipk

𝒮i1i2…ikp ,

𝒫 j1 j2…jkp
p =

exp(𝒪 j1 j2…jkp)
∑j1,j2,…,jpk

exp(𝒪 j1 j2…jkp)
.

∀σ ∈ Gp (j1, j2, …, jkp) ≃ (jσ(1), jσ(2), …, j
σ(kp)) ⟺ 𝒫 j1 j2…jkp

p = 𝒫
jσ(1) jσ(2)…j

σ(kp)
p



Combined Symmetric Loss
• Symmetric attention layers produce solutions  for each 

particle’s jet-carton assignment sub-problem 

• True assignments are delta-distributions containing one possible valid jet 
assignment . 

• Loss for each sub-problem is the categorical cross entropy for each particle  

• Permutation group  induces an equivalence relation over particles: 
 

• Incorporate these symmetries by allowing network to fit any equivalent jet 
assignment (minimize loss over a given equivalence class)

{𝒫1, 𝒫2, …, 𝒫m}

{𝒯1, 𝒯2, …, 𝒯m}

p

GE
∀σ ∈ GE, (𝒯1, 𝒯2, …, 𝒯m) ≃ (𝒯σ(1), 𝒯σ(2), …, 𝒯σ(m))
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Partial Event Reconstruction
• Though each parton is usually expected to produce a jet, some particles are 

impossible to reconstruct 

• Mask unreconstrable particles and only include the loss contributed by 
reconstructable particles 

• Also, scale the loss based on the distribution of events present in the training 
dataset by computing the effective class count for each partial combination

25

ℒmasked
min = min

σ∈GE (
m

∑
i=1

ℳσ(i)CE(𝒫i, 𝒯σ(i))

CB (ℳσ(1), ℳσ(2), …, ℳσ(m)) ) .


