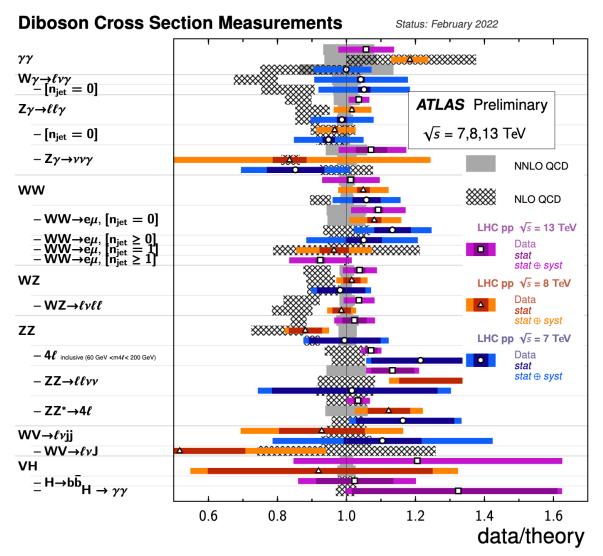
Massive Diboson Measurements from ATLAS and CMS


Prachi Arvind Atmasiddha On behalf of the ATLAS and CMS collaborations, CERN 30th August 2023

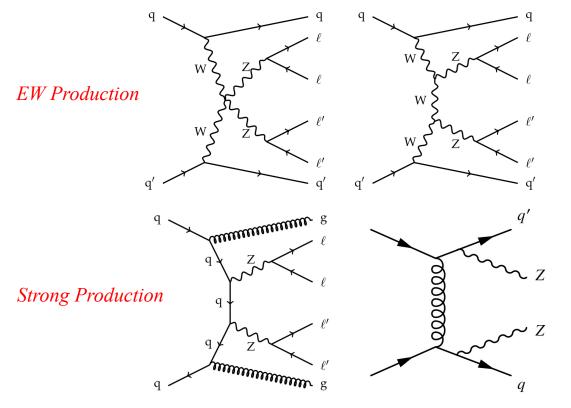
Multi-Boson Interactions Conference 2023, San Diego, USA

Contents

- Latest massive di-boson measurements from ATLAS and CMS include inclusive and differential cross-sections, EFT interpretations, polarization measurements and CP studies.
- Latest ATLAS di-boson measurements (total six analyses):
 - The channels include ZZjj, (Same sign) $W^{\pm}W^{\pm}jj$, (Opposite Sign) $W^{+}W^{-}$ and with associated jets, (Opposite Sign) $W^{+}W^{-}jj$, $W^{\pm}Z$.
- Latest CMS diboson measurements (total five analyses):
 - $W^{\pm}Z, WVjj$ Semi-leptonic, ZZ + jets, (Opposite Sign) $W^{+}W^{-}jj, \gamma\gamma \rightarrow WW$ and $\gamma\gamma \rightarrow ZZ$.

Previous Diboson Searches in Run 2: ATLAS

Ref: http://cds.cern.ch/record/2804061/files/ATL-PHYS-PUB-2022-009.pdf

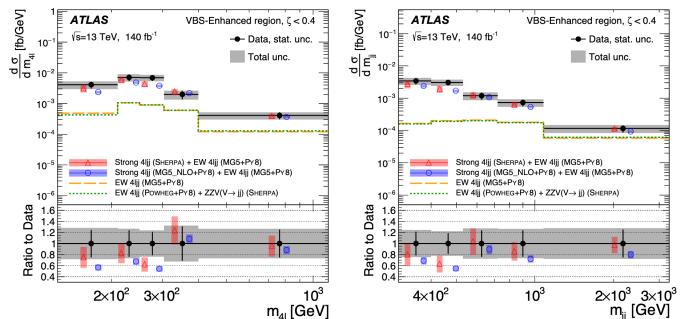

4*l* + *jj* Measurement Introduction

- ZZjj observation with 139 fb⁻¹: 5.7 sigma (5.9 sigma) observed (expected) in Feb 2023. <u>Nature Physics 19, 237–253 (2023)</u>
- The latest analysis with an integrated luminosity of 140 fb⁻¹ contains:
 - Differential cross-section measurements for the production of four charged leptons in association with two jets
 - limits on the anomalous weak boson self interactions..

Event Selection:

- $m_{4\ell} > 130 \text{ GeV}$
- At least two jets: Dijet system is defined as two leading jets in the event with $\eta_{j_1} \times \eta_{j_2} < 0$, $\Delta y_{jj} > 2.0$ and $m_{jj} > 300$ GeV.
- VBS-enhanced and VBS-suppressed regions:
 - $\zeta < 0.4$ (VBS enhanced) and $\zeta > 0.4$ (VBS suppressed)

$$\boldsymbol{\zeta} = \frac{(y_{4\ell} - 0.5(y_{j_1} + y_{j_2}))}{\Delta y_{jj}}$$


Backgrounds:

- **Prompt Background (15% of signal yield):** Processes with leptons that do not originate from the decay of a Z boson (*ttZ*,*WWZ*,*WZZ*)
- Non-prompt Background (2.4% of signal yield): One or more non-prompt leptons ($WZjj, t\bar{t}$). Estimated using data-driven method. 4

4*l* + *jj* Differential Cross-section

- Differential cross-section measurement as a function of observables:
 - Sensitive to the VBS process
 - those sensitive to the Z boson polarization and
 - those sensitive to the QCD interactions (higher order real emission of quarks and gluons).
- The distributions Unfolded using the iterative Baysian unfolding procedure.
- Unfolding is performed in both VBS-enhanced and VBS-suppressed regions.

Source	Uncertainty (%)
Luminosity	0.8 – 1.3
Leptons	0.8 – 1.6
Jets	2.7 - 18
Pile-up	0.0 - 2.5
Backgrounds	0.9 - 9.0
Theory modelling	0.6 - 8.8
Unfolding method	0.9 – 12
Total systematic	5-22

The differential cross sections for inclusive $4\ell jj$ production in the VBS-enhanced region as a function of $m_{4\ell}$ and m_{jj} .

Results:

- EW contribution: 20% in VBS enhanced (50% in high m_{jj} and 5% in low m_{jj} region.)
- No significant difference observed between two different generators for EW *ZZjj* distributions.

arXiv:2308.12324

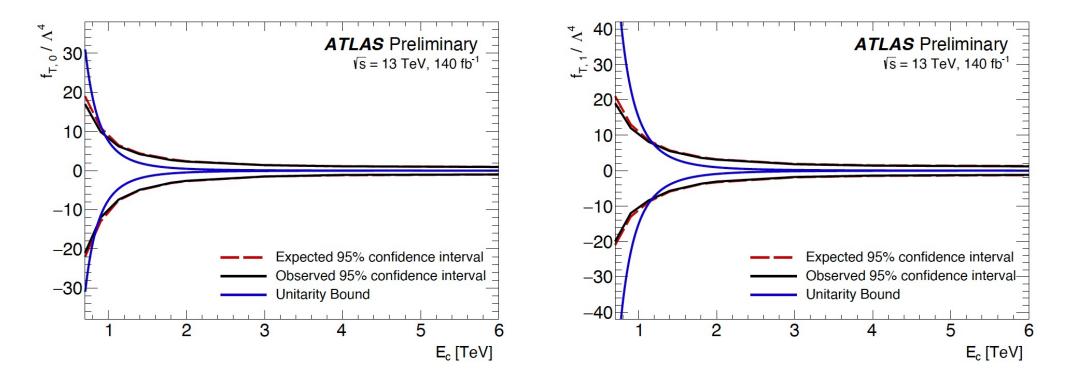
4*l* + *jj* EFT Interpretations

• SM extended with new interactions included in the dim-8 operators of EFT formalism.

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{f_{\rm T,i}}{\Lambda^4} O_{\rm T,i}$$

• Squared scattering amplitude for EFT prediction:

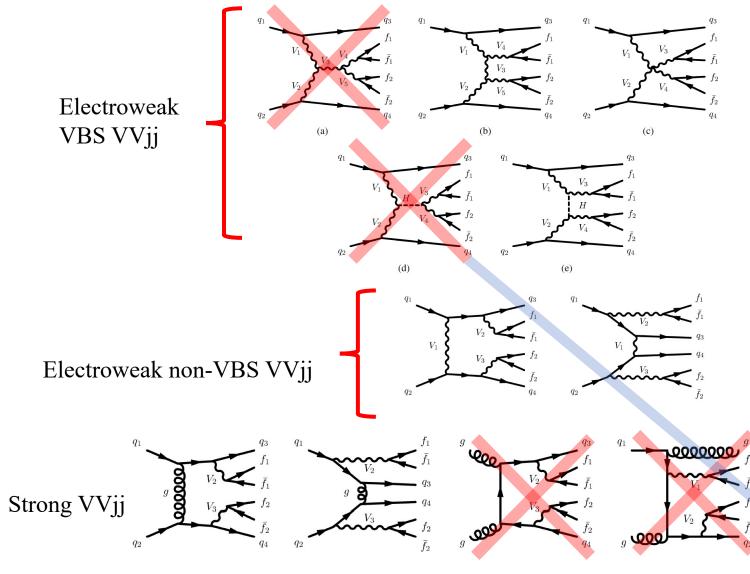
$$|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + 2\operatorname{Re}(\mathcal{M}_{SM}^*\mathcal{M}_{d8}) + |\mathcal{M}_{d8}|^2$$


- aQGC self interactions appear in lowest order as Dim-8 operators.
- Assumption is that contribution from dim-6 operators is 0 i.e. already constrained from diboson and VBF production (for completeness limits on dim-6 operators are also set.)
- The 95% confidence intervals and upper limits on the dimension-eight Wilson coefficients are calculated using a two-dimensional fit to the $4\ell jj$ differential cross-section as a function of $m_{4\ell}$ and m_{jj} .

Wilson	$ \mathcal{M}_{\mathrm{d}8} ^2$	95% confidence interval [TeV ^{-4}]	
coefficient	Included	Expected	Observed
$f_{\mathrm{T},0}/\Lambda^4$	yes	[-0.98, 0.93]	[-1.00, 0.97]
	no	[-23, 17]	[-19, 19]
$f_{\mathrm{T},1}/\Lambda^4$	yes	[-1.2, 1.2]	[-1.3, 1.3]
	no	[-160, 120]	[-140, 140]
$f_{\mathrm{T,2}}/\Lambda^4$	yes	[-2.5, 2.4]	[-2.6, 2.5]
	no	[-74, 56]	[-63, 62]
$f_{ m T,5}/\Lambda^4$	yes	[-2.5, 2.4]	[-2.6, 2.5]
	no	[-79, 60]	[-68, 67]
$f_{ m T,6}/\Lambda^4$	yes	[-3.9, 3.9]	[-4.1, 4.1]
	no	[-64, 48]	[-55, 54]
$f_{ m T,7}/\Lambda^4$	yes	[-8.5, 8.1]	[-8.8, 8.4]
	no	[-260, 200]	[-220, 220]
$f_{\mathrm{T,8}}/\Lambda^4$	yes	[-2.1, 2.1]	[-2.2, 2.2]
	no	[-4.6, 3.1]×10 ⁴	[-3.9, 3.8]×10 ⁴
$f_{ m T,9}/\Lambda^4$	yes	[-4.5, 4.5]	[-4.7, 4.7]
	no	[-7.5, 5.5]×10 ⁴	[-6.4, 6.3]×10 ⁴

4*l* + *jj* EFT Interpretations

7


• The inter- and pure dim-eight- contributions have $m_{4\ell} < E_c$.

Exp and Obs 95% confidence interval for the Wilson coefficients as a function of a cut-off scale, E_c .

ATLAS-CONF-2023-023

2 (Same sign) $W^{\pm}W^{\pm}jj$ Cross-section Measurement

8/30/23

- Largest ratio of Electroweak to Strong productions cross-section compared to other VBS diboson processes (~5 for the fiducial region of this analysis).
- Observed before with 36.1 fb⁻¹: obs significance of 6.5σ (PRL 123 (2019) <u>161801</u>).
- Measurements performed using integrated luminosity of 139 fb⁻¹:
 - EW and Inclusive (EW+Int+QCD) accuracy Inclusive and Differential Cross-sections in the fiducial phase space.
 - Limits on anomalous quartic gauge couplings
 - Limits on doubly charged Higgs production ⁸

Forbidden in the SM and/or for $W^{\pm}W^{\pm}jj$

(Same sign) W[±]W[±]jj Cross-section Measurement

Event Selection:

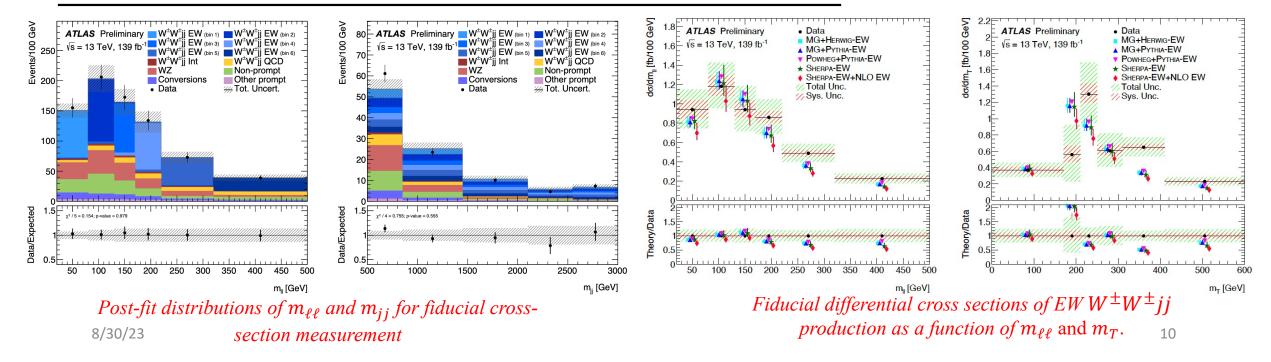
- Expected purity of the EW, QCD and interference is 52%, 5.4% and 1.7%.
- Exactly two signal leptons
 - $m_{\ell\ell'} \ge 20 \text{ GeV}$
 - 3rd lepton veto
- $E_T^{miss} \ge 30 \text{ GeV}$
- At least two jets, b-jet veto applied
 - $m_{jj} \ge 500$ GeV: suppresses triboson production with resonant decay to two jets
 - $\left|\Delta y_{jj}\right| > 2$

Backgrounds:

- WZ/γ^* (22% of the signal event yield): One lepton escaping the third lepton veto requirement.
- <u>Non-Prompt Lepton Background</u> (12% of the signal event yield): W + jets, semi-leptonic $t\bar{t}$. Estimated using data-driven method
- <u>Electron charge misidentification background</u>: From Z and dileptonic $t\bar{t}$.
- Other backgrounds: <u>Vγ</u>(2.4%), <u>ZZ</u>, <u>ttV</u>, <u>VVV</u> (total 1.6%)

Uncertainties with Significant Impact:

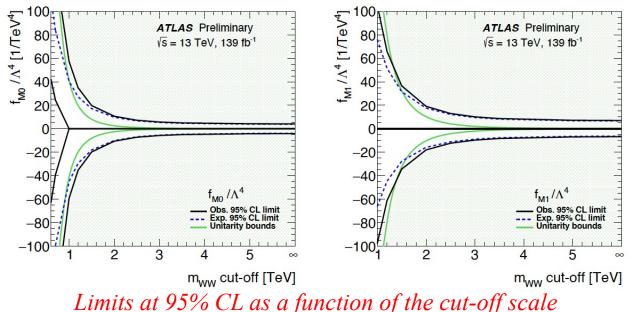
- Experimental: 6.7% (Misidentified Lepton Bkg: 3.1%)
- Modelling: 7.4% (EW W[±]W[±]jj, QCD corrections: 3.5%, QCD W[±]W[±]jj theory uncertainties: 2.3%)
- Statistical: 7.4%
- Total: 10%


(Same sign) $W^{\pm}W^{\pm}jj$ Cross-section Measurement

- Fiducial Cross-section measurement: Fiducial region defined as close to analysis signal region and detector acceptance as possible.
 - Signal region split in 4 regions according to the lepton flavors in the final state

Description	$\sigma_{ m fid}^{ m EW}$, fb	$\sigma_{\rm fid}^{\rm EW+Int+QCD}$, fb
Measured cross section	2.88 ± 0.21 (stat.) ± 0.19 (syst.)	3.35 ± 0.22 (stat.) ± 0.20 (syst.)
MG_AMC@NLO+Herwig	$2.53 \pm 0.04 (\text{PDF}) \pm_{0.19}^{0.22} (\text{scale})$	$2.93 \pm 0.05 (PDF) \pm_{0.27}^{0.34}$ (scale)
MG_AMC@NLO+Pythia	$2.55 \pm 0.04 (PDF) \pm_{0.19}^{0.22} (scale)$ 2.44 ± 0.03 (PDF) $\pm_{0.27}^{0.40} (scale)$	$2.94 \pm 0.05 (PDF) \pm \frac{0.33}{0.27} (scale)$
Sherpa	$2.44 \pm 0.03 (PDF) \pm_{0.27}^{0.40} (scale)$	$2.80 \pm 0.03 (\text{PDF}) \pm_{0.36}^{0.53} (\text{scale})$
Powheg Box +Pythia	2.67	_

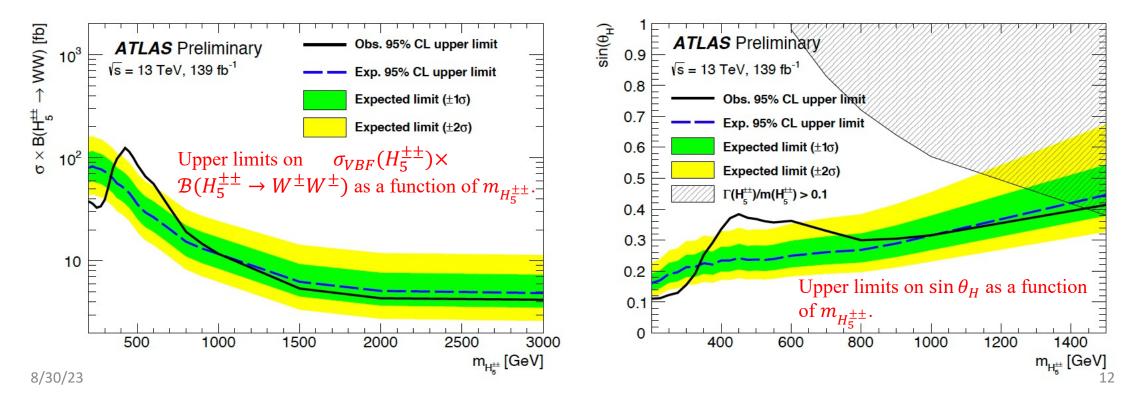
- Likelihood based unfolding.
- P-values range from 0.014 to 0.623 across five variables used showing good Data-MC agreement.


ATLAS-CONF-2023-023

ATLAS-CONF-2023-023

(Same sign) $W^{\pm}W^{\pm}jj$ EFT Interpretations

- Maximum likelihood fits are performed by keeping other coefficients to zero and maximizing the likelihood with respect to the nuisance parameters.
- The 95% CLs are calculated on the Wilson Coefficients for dimension-8 operators with and without unitary bounds.

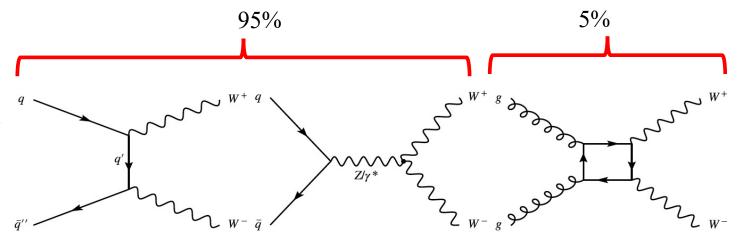


Coefficient	Туре	No unitarisation cut-off [TeV ⁻⁴]	Lower and upper limit at the respective unitarity bound $$[{\rm TeV^{-4}}]$$
f_{M0}/Λ^4	exp.	[-3.9, 3.8]	-64 at 0.9 TeV, 40 at 1.0 TeV
$JM0/\Lambda$	obs.	[-4.1, 4.1]	-140 at 0.7 TeV, 117 at 0.8 TeV
f_{M1}/Λ^4	exp.	[-6.3, 6.6]	-25.5 at 1.6 TeV, 31 at 1.5 TeV
$JM1/\Lambda$	obs.	[-6.8, 7.0]	-45 at 1.4 TeV, 54 at 1.3 TeV
f_{M7}/Λ^4	exp.	[-9.3, 8.8]	-33 at 1.8 TeV, 29.1 at 1.8 TeV
J_{M7}/Λ^{*}	obs.	[-9.8, 9.5]	-39 at 1.7 TeV, 42 at 1.7 TeV
c 1A4	exp.	[-5.5, 5.7]	-94 at 0.8 TeV, 122 at 0.7 TeV
f_{S02}/Λ^4	obs.	[-5.9, 5.9]	_
c 114	exp.	[-22.0, 22.5]	_
f_{S1}/Λ^4	obs.	[-23.5, 23.6]	_
c (A4	exp.	[-0.34, 0.34]	-3.2 at 1.2 TeV, 4.9 at 1.1 TeV
f_{T0}/Λ^4	obs.	[-0.36, 0.36]	-7.4 at 1.0 TeV, 12.4 at 0.9 TeV
C (A4	exp.	[-0.158, 0.174]	-0.32 at 2.6 TeV, 0.44 at 2.4 TeV
f_{T1}/Λ^4	obs.	[-0.174, 0.186]	-0.38 at 2.5 TeV, 0.49 at 2.4 TeV
f_{T2}/Λ^4	exp.	[-0.56, 0.70]	-2.60 at 1.7 TeV, 10.3 at 1.2 TeV
f_{T2}/Λ^4	obs.	[-0.63, 0.74]	_

- Limits at 95% confidence level (CL) are extracted, including their effects both on EW W[±]W[±]jj and EW W[±]Zjj (<u>ATL-PHYS-PUB-2023-002</u>).
- Including the effect of the EFT operators on the EW $W^{\pm}Zjj$ production, the limits improve by ~1-4%.

(Same sign) $W^{\pm}W^{\pm}jj$ Search for Doubly Charged Higgs

- Model independent upper limits calculated on $\sigma_{VBF}(H_5^{\pm\pm}) \times \mathcal{B}(H_5^{\pm\pm} \to W^{\pm}W^{\pm})$.
- Also interpreted in the context of the Georgi–Machacek (GM) model giving upper limit on sin θ_H parameter (characterises the contribution of the isotriplet scalar fields to the masses of the W and Z bosons) as a function of m_{H^{±±}}.
- These exclude parameter values greater than 0.11-0.41 for the $m_{H_5^{\pm\pm}}$ range of 200 to 1500 GeV.
- They show a local excess at a resonance mass of around 450 GeV with local significance of 3.2σ and global significance of 2.5σ .


ATLAS-CONF-2023-012

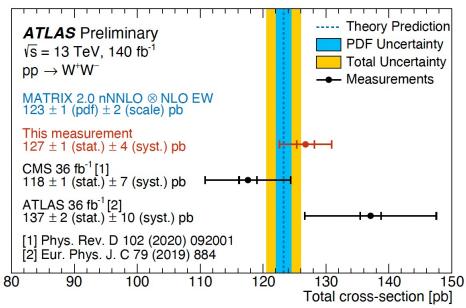
3(Opposite Sign) W^+W^- Cross-section Measurement

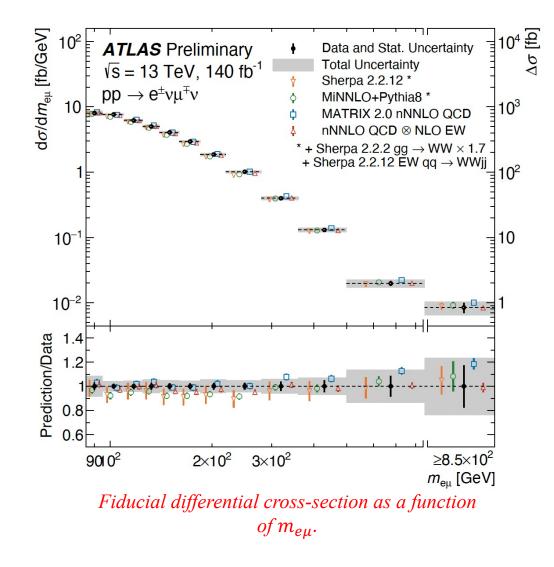
- W⁺W⁻cross-section measurement is performed without any requirements on the jets (first jet-inclusive measurement). This allows for precise comparison with theory.
- Using integrated luminosity of 140 fb⁻¹.
- Fully leptonic final state with different flavor opposite charge leptons: $W^{\pm}W^{\mp} \rightarrow e^{\pm}\nu\mu^{\mp}\nu$

Event Selection:

- Exactly two opposite charge leptons: one electron and one muon
- No additional lepton with $p_T > 10$ GeV.
- 0 b-jets
- $m_{\ell\ell'} > 85 \, \text{GeV}$

Backgrounds:

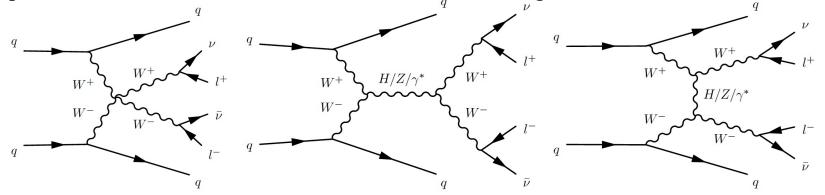

- 60% of all events is background
- $t\bar{t}$ or single top Wt (80% of the total background) Other backgrounds: Z+jets production, events with nonprompt or misidentified leptons, and diboson production $(WZ, W\gamma, ZZ, \text{ and } Z\gamma)$.


(Opposite Sign) W^+W^- Cross-section Measurement

- The fiducial integrated and differential cross-section measurements with 12 observables (in backup):
 - The fiducial cross-section extrapolated to the total cross-section measurement:

 $127 \pm 1 (stat.) \pm 4 (syst.) pb$

• Improved data-driven estimates of top and fake backgrounds reduce uncertainty in the fiducial region to 3.1%.



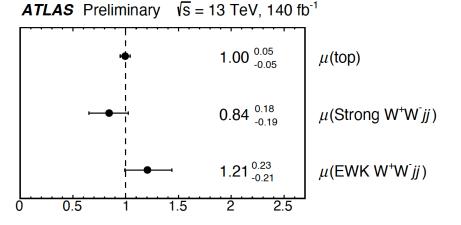
(Opposite Sign) Electroweak Production of W⁺W⁻jj

Electroweak Production of (opposite sign) W^+W^- associated with jets.

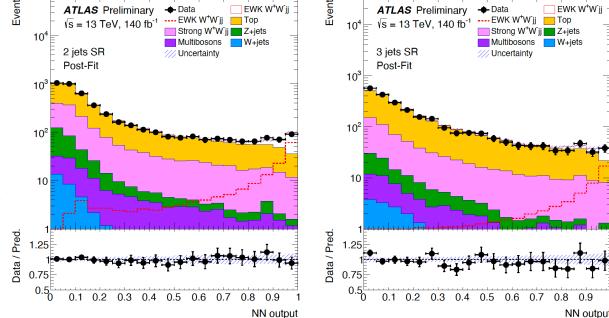
Fully leptonic, opposite flavor oppositely charged leptons are selected: $W^{\pm}W^{\mp}jj \rightarrow e^{\pm}\nu\mu^{\mp}\nu jj$. This has enhanced sensitivity compared to the same flavor channel. Low Drell-Yan Background.

Event Selection:

- Signal process tends to produce events with positive lepton centrality.
 - Centrality $\zeta = \min\{[\min(\eta_{\ell_1}, \eta_{\ell_2}) \min(\eta_{j_1}, \eta_{j_2})], [\max(\eta_{j_1}, \eta_{j_2})], [\max(\eta_{j_1}, \eta_{j_2}) \max(\eta_{\ell_1}, \eta_{\ell_2}]\} > 0.5.$
 - The Signal to background ratio is enhanced with this cut.
- $m_{e\mu} > 80 \text{ GeV}$
- $E_T^{miss} > 15 \text{ GeV}$
- No *b*-jets 8/30/23


Backgrounds:

- Top background: 66% of the inclusive region. Modelled using simulation and constrained using data in a dedicated CR.
- Strong production of W⁺W⁻jj: 24% of the inclusive region
- Z + jets (4%)
- Multiboson (2%)
- W + jets where one jet is mis-identified as a lepton (below 1%).


<u>ATLAS-CONF-2023-039</u>

(Opposite Sign) EW W⁺W⁻jj: Signal Extraction and Cross-section Measurement

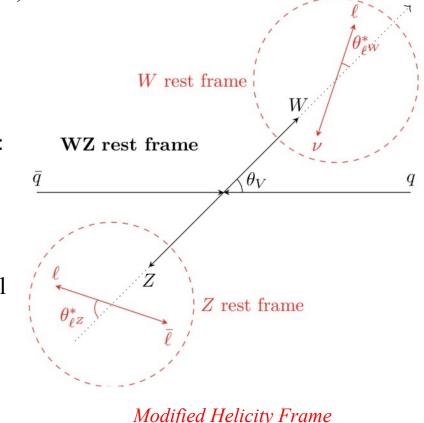
- The Signal and other SM processes are separated using a Neural Network. The backgrounds considered are the dominant top quark and strong W⁺W⁻ processes as backgrounds
- Output is between 0 (background-like) and 1 (signal-like)
- The Neural Network is trained for 2 jets and 3 jets categories separately.

(a) Two jets

NN output distribution in the signal region (SR)

Results:

- The Signal has been observed with an observed (expected) significance of 7.1 σ (6.2 σ).
- Cross section in a signal-enriched fiducial volume $2.65_{-0.48}^{+0.52} fb$ (Powheg Box predictor $2.20_{-0.13}^{+0.14} fb$.
- Dominant uncertainty comes from the data statistics.

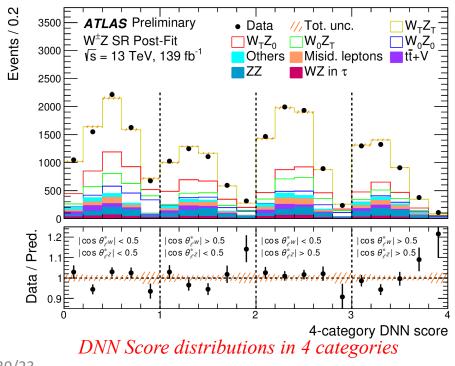

(b) Three jets

W[±]Z Polarization Studies in ATLAS

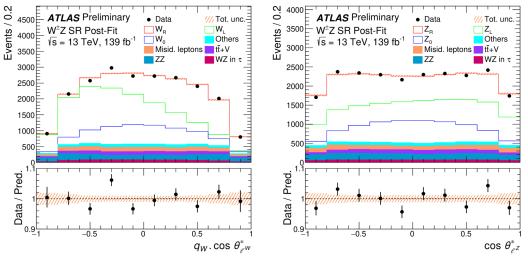
- First-ever observation of longitudinal-longitudinal joint polarization state in diboson production.
- Experimental Signature: $p p \rightarrow \ell \overline{\ell} \ell' \nu_{\ell'} + X$
- Inclusive Fiducial phase space for cross-section measurement and joint and single polarization fraction extraction
- Modified Helicity frame used for defining polarization (not Lorentz Invariant)
- p_z^{ν} reconstruction: New DNN-based method.
 - Reasonable p_z^{ν} estimate for which analytical method fails
 - 10% decrease in RMS due to improved p_z^{ν} resolution.

Backgrounds:

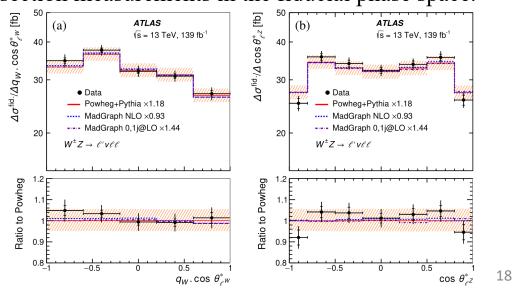
- Irreducible background (all candidates are prompt or from τ -lepton) 18%:
 - Using MC samples
 - ZZ 7.5%, Main background (QCD+EW)
 - *ttV*: 4%
 - $WZ \rightarrow \tau \ell \ell \rightarrow \ell \nu \ell \ell: 3\%$
 - Others: t + Z, triboson *VVV*, *VBS WZ*, $W^{\pm}\gamma^{*}$ produced outside of total phase space.
- **Reducible background** (at least one non-prompt lepton):
 - Using data-driven method
 - Misidentified leptons: $Z + \gamma$, $t\bar{t}$, Z+jets


PLB 843 (2023) 137895

PLB 843 (2023) 137895


$W^{\pm}Z$: Polarization Templates

Joint Polarization:


- Polarized samples are produced at LO with *WZ*+0,1 jets.
- NLO-accurate polarization templates are required.
- 4 Categories were used for training 4 DNNs.
- Many validations are done to get NLO-accurate templates using LO polarized samples.

Single Polarization templates using analytical reweighting: Agreement of fitted templates with

Iterative Bayesian unfolding for differential crosssection measurements in the fiducial phase space.

8/30/23

W[±]Z Polarization Fractions Results

PLB 843 (2023) 137895

Joint Polarization:

• First ever observation of V_0V_0 .

Fraction	Significance: Observed (Expected)
f_{00}	7.1σ (6.2 σ)
f_{0T}	3.4σ (5.4 σ)
f_{T0}	7.1σ (6.6σ)
f_{TT}	11σ (9.7σ)

	Data	Powheg+Pythia	NLO QCD
		$W^{\pm}Z$	
f_{00}	0.067 ± 0.010	0.0590 ± 0.0009	0.058 ± 0.002
$f_{0\mathrm{T}}$	0.110 ± 0.029	$0.1515~\pm~0.0017$	0.159 ± 0.003
$f_{\rm T0}$	$0.179 ~\pm~ 0.023$	0.1465 ± 0.0017	0.149 ± 0.003
$f_{\rm TT}$	0.644 ± 0.032	0.6431 ± 0.0021	0.628 ± 0.004
		W^+Z	
f_{00}	0.072 ± 0.016	0.0583 ± 0.0012	0.057 ± 0.002
f_{0T}	0.119 ± 0.034	0.1484 ± 0.0022	0.155 ± 0.003
$f_{\rm T0}$	$0.153 ~\pm~ 0.033$	0.1461 ± 0.0022	0.147 ± 0.003
$f_{\rm TT}$	0.66 ± 0.04	0.6472 ± 0.0026	0.635 ± 0.004
W^-Z			
f_{00}	0.063 ± 0.016	0.0600 ± 0.0014	0.059 ± 0.002
f_{0T}	0.11 ± 0.04	$0.1560~\pm~0.0027$	0.166 ± 0.003
$f_{\rm T0}$	0.21 ± 0.04	$0.1470~\pm~0.0027$	0.152 ± 0.003
$f_{\rm TT}$	$0.62 \pm \ 0.05$	0.6370 ± 0.0033	0.618 ± 0.004

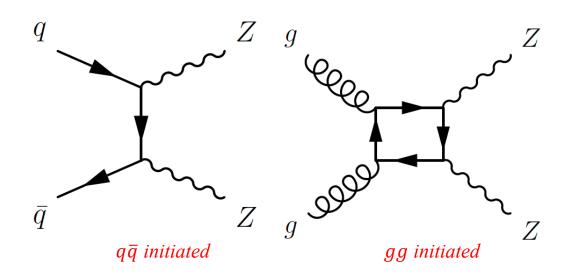
Single Polarization:

	f_0		$f_{\rm L} - f_{\rm R}$		
	Data	Powheg+Pythia	NLO QCD	Data	Powheg+Pythia
W in W^+Z	0.23 ± 0.05	0.2044 ± 0.0024	0.211 ± 0.002	0.071 ± 0.023	0.0990 ± 0.0015
W in W^-Z	0.19 ± 0.05	$0.217 \hspace{0.2cm} \pm \hspace{0.2cm} 0.004$	0.225 ± 0.001	0.026 ± 0.027	-0.0491 ± 0.0020
W in $W^{\pm}Z$	0.22 ± 0.04	$0.2094 ~\pm~ 0.0016$	$0.217~\pm~0.001$	0.059 ± 0.016	$0.0390~\pm~0.0011$
$Z \text{ in } W^+ Z$	0.223 ± 0.025	$0.1971\ \pm\ 0.0019$	0.206 ± 0.002	-0.20 ± 0.10	-0.217 ± 0.006
Z in W^-Z	0.240 ± 0.029	$0.2065 ~\pm~ 0.0023$	$0.211~\pm~0.001$	0.10 ± 0.13	0.092 ± 0.007
$Z \text{ in } W^{\pm} Z$	0.231 ± 0.019	0.2009 ± 0.0014	0.208 ± 0.001	-0.10 ± 0.08	-0.092 ± 0.005

- Here the NLO QCD predictions are from Denner&Pelliccioli [arXiv:2010.07149]
- Better than 2σ agreement for joint polarization fractions.
- f_0 agrees within 1σ
- $f_L f_R$ agrees within 1.5 σ , except W^-Z (2.8 σ)

Spin-correlations between longitudinal W and Z:

- Measured $R_c = \frac{f_{00}}{f_0^W f_0^Z} = 1.54 \pm 0.35$ (Obs. Significance 1.6 σ wrt $R_c = 1$ hypothesis)
- Predicted (NLO QCD) $R_c = 1.3$.


Cross-section in inclusive fiducial phase space (also measured differentially):

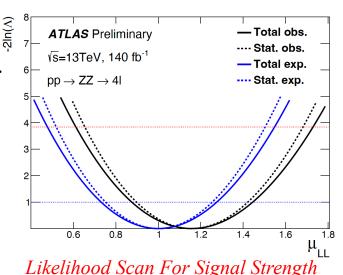
- Measured: $\sigma_{W^{\pm}Z \rightarrow \ell' \nu \ell \ell}^{fid} = 64.6 \pm 2.1 \text{ fb}$
- NNLO Expectation: $\sigma_{W^{\pm}Z \rightarrow \ell' \nu \ell \ell}^{fid} = 64.0^{+1.5}_{-1.3}$ fb

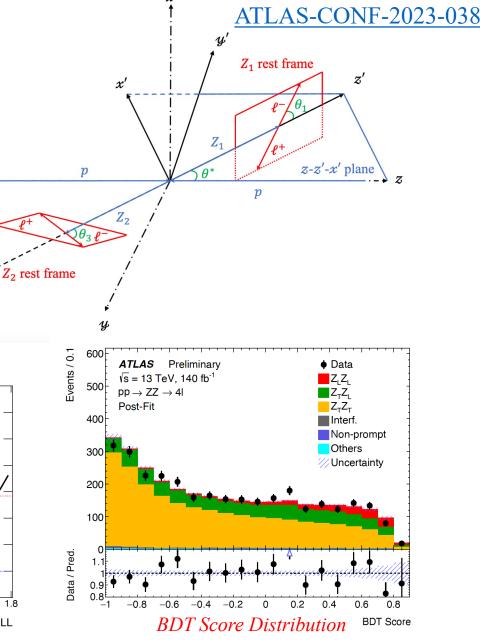
6 ZZ Polarization and CP Property Measurement

ATLAS-CONF-2023-038

- Measurement of $Z_L Z_L$ (both longitudinally polarized). Helps probing the EWSB and new physics searches.
- **Measurement of CP-sensitive observables** in diboson production for exploring new sources of CP violation.
- In this analysis, unfolded differential cross-section measured for an Optimal Observable (OO). Results are interpreted to constrain aNTGC using an effective vertex function approach. aNTGC vertex can be parameterised with two coupling parameters f_Z^4 and f_γ^4 that violate CP symmetry.
- Fully leptonic final states: $ZZ \rightarrow \ell^+ \ell^- \ell'^+ \ell'^-$, the leptons can be electron or muon (SFOC leptons).
- possible combinations SFOC pairs + invariant mass of Z constraint.
- $m_{4\ell} > 180$ GeV.

Backgrounds:


- Reducible (8-9% of $Z_L Z_L$ events): non-prompt leptons from hadron decays, charge misidentification, or photon conversion. Fakefactor determination done using Z+jets and $t\bar{t}$ CR.
- Irreducible (9-10% of $Z_L Z_L$ events): $t\bar{t}Z$, VVZ.


$Z_L Z_L$: Cross-section Measurement

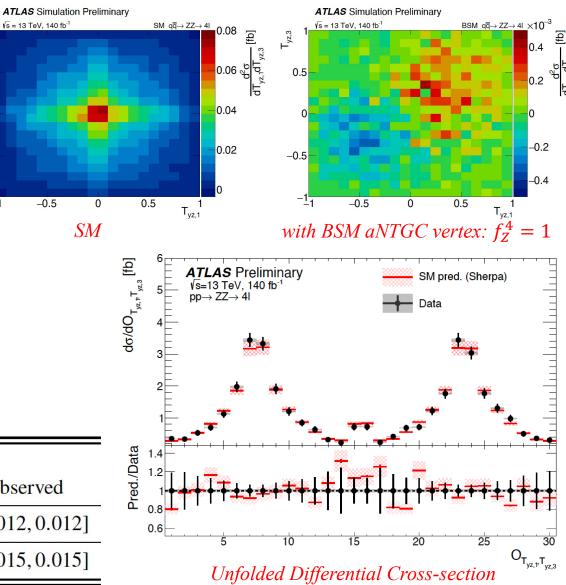
- For the extraction of $Z_L Z_L$ cross-section, multivariate technique based on Boosted Decision Trees (BDT).
- To reduce theoretical modelling uncertainties, only angular variables were used in BDT training.
- Higher order corrections, QCD+EW are applied. Theoretical calculations taken from https://link.springer.com/article/10.1007/JHEP10(2021)097.
 - 1D reweighting for each polarization
 - 1D reweighting for the interference effect
 - 2D reweighting for residual higher order corrections

Results:

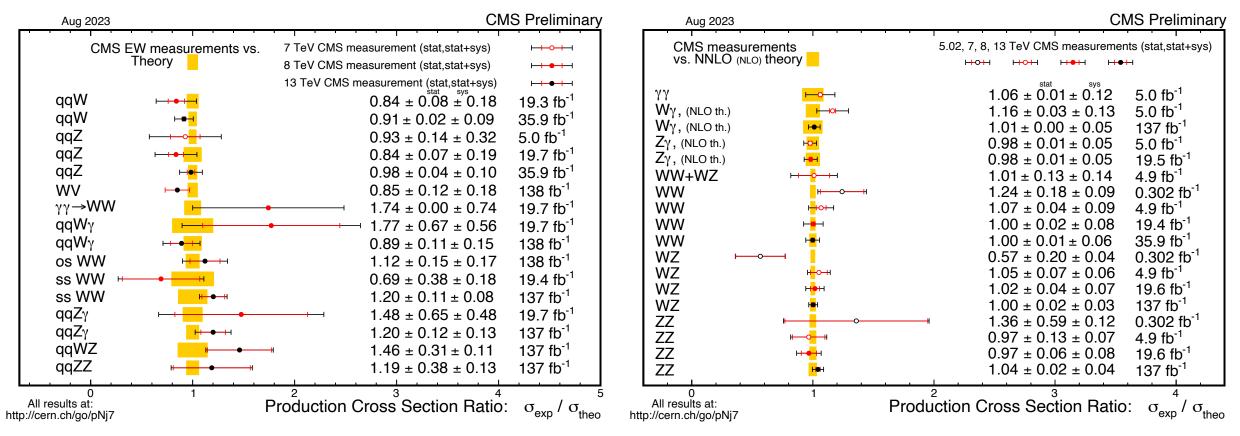
- Obs (exp) significance of 4.3σ (3.8σ).
- An additional likelihood fit is performed to convert signal strength to cross-section:
- Obs: $\sigma_{Z_L Z_L}^{obs.} = 2.44 \pm 0.59 \, fb$
- SM Pred: $\sigma_{Z_L Z_L}^{pred.} = 2.09 \pm 0.10 \, fb.$

ZZ: Study of CP Property

- The differential cross-sections $\theta_1(\theta_3)$ and $\phi_1(\phi_3)$ are symmetric in the SM but asymmetric in the presence of the two CP-odd aNTGC. (1 and 3 correspond to the negatively charged leptons of the ZZ system).
- $\mathcal{O}_{T_{yz,1},T_{yz,3}}$ defined from 2D distribution of T_{yz} by grouping sensitive and non-sensitive bins (here $T_{yz,1(3)} = sin\phi_{1(3)} \times cos\theta_{1(3)}$, maximizing asymmetry for each Z boson system).
- Miss-paired leptons have smaller impact on the CP sensitivity.
- The distributions are unfolded using the iterative Bayesian unfolding method.
- Exp and Obs 95% confidence intervals on CP-odd Operator: $\sigma^{i} = \sigma^{i}_{\text{SM}} + c \cdot \sigma^{i}_{\text{interference}} + c^{2} \cdot \sigma^{i}_{\text{quadratic}}$ Xsec in a bin of CP sensitive observable


NTCC percenter	Interference only		Full	
aNTGC parameter	Expected	Observed	Expected	Observed
f_Z^4	[-0.16, 0.16]	[-0.12, 0.20]	[-0.013, 0.012]	[-0.012, 0.012]
f_{γ}^4	[-0.30, 0.30]	[-0.34, 0.28]	[-0.015, 0.015]	[-0.015, 0.015]

ATLAS-CONF-2023-038


T _{yz,3}

0.5

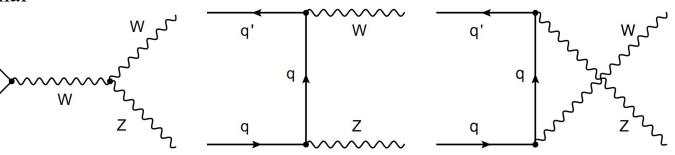
-0.5

Diboson Searches Summary: CMS

EW Diboson Cross-sections Vs Theory

Diboson Cross-sections Vs Theory

24

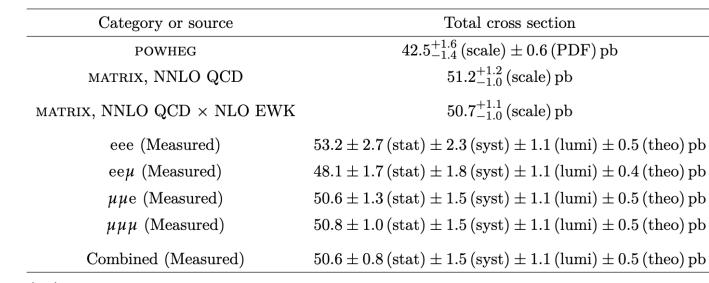

<u>JHEP 07 (2022) 032</u>

1 $W^{\pm}Z$ Introduction

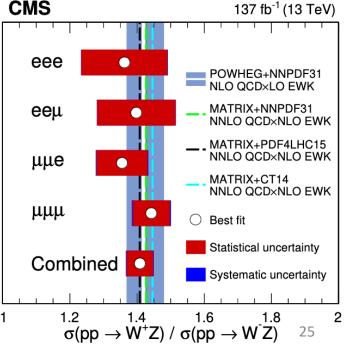
- WZ is a dominant SM contribution to the trilepton final states, hence a background in many multileptonic final states
- Measurements performed:
 - inclusive cross section
 - charge asymmetry measurement
 - Boson polarization measurement
 - differential cross section
 - the search for anomalous triple gauge couplings

Event Selection:

- $N_\ell = 3$
- Number of opposite sign same flavor leptons ≥ 1 .
- $p_T^{miss} > 30 \text{ GeV}$
- No b-tagged jets
- $\min(M(\ell \ell')) > 4 \text{ GeV}$: For infrared safety and avoid contribution from low mass resonances.
- $M(\ell_{Z1}, \ell_{Z2}, \ell_W) > 100 \text{ GeV}$



Backgrounds:

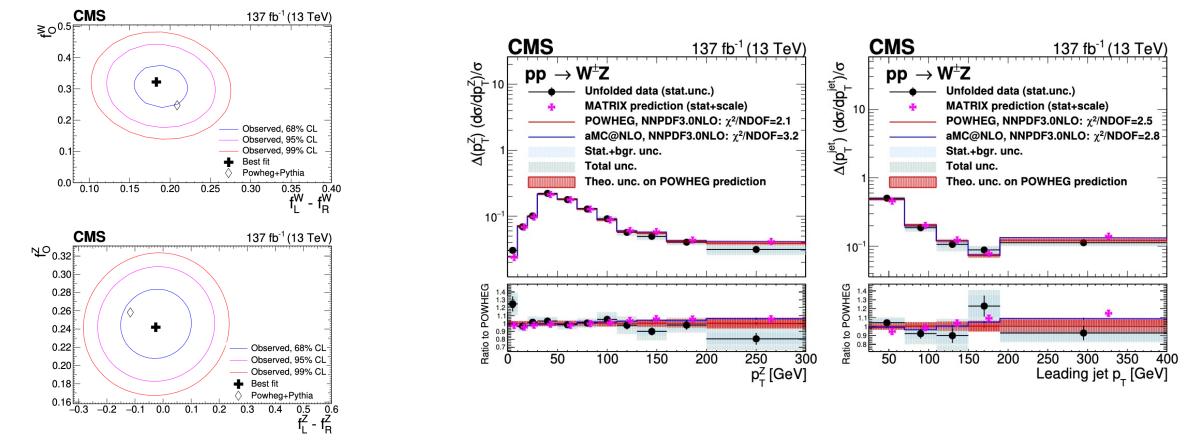

- Reducible: Estimated using right-to-loose datadriven method method. Includes Z + jets and $t\bar{t}$.
- Irreducible:
 - ZZ (6% of the SR yield), $t\bar{t}Z$ and tZq (3.2% of the SR yield), $X\gamma$ (1.5% of the total SR yield), yield),

$W^{\pm}Z$ Cross-section Measurement

- Inclusive Cross-section measurement performed in flavour inclusive (combined) and in separate flavor categories (eee, eeμ, μμe, μμμ).
- Maximum likelihood fit is used for obtaining WZ yields in the SR.
 - $\sigma_{tot}(pp \rightarrow WZ) = 50.6 \pm 0.8 (stat) \pm 1.4 (syst) \pm 1.1 (lumi) \pm 0.5 (theo) pb$
- The normalization of the WZ process is kept as an unconstrained parameter in the fit for the cross-section measurement
- Charge asymmetry ratio is also measured (resulting from dominant qq' production): $A_{WZ}^{+-} = \frac{\sigma_{fid}(pp \rightarrow W^+Z)}{\sigma_{fid}(pp \rightarrow W^-Z)} = 1.41 \pm 0.04.$

Consistency of the asymmetry ratio with different PDF sets is also calculated

JHEP 07 (2022) 032


$W^{\pm}Z$ Polarization and Differential Cross-section

Single boson polarization measurement:

- Observation of longitudinally polarized W boson with obs (exp) significance of 5.6σ (4.3 σ)
- Observation of longitudinal Z, obs and exp above 5σ .

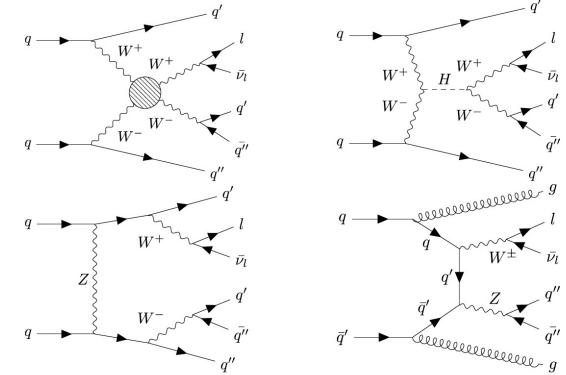
Differential Cross-section measurement:

• based on a least squares fit as implemented in the TUnfold software package

$W^{\pm}Z$ aQGC Limits

- Anomalous couplings search is based on M(WZ). Two different 95% confidence limits are set:
 - Both purely dimension-eight BSM contribution and dimension-six interference term are included to compute the EFT effect in the high tails of M(WZ)
 - Only dimension-six interference term is included
- Better than best previous limits
- Limits on three CP-conserving parameters $(c_{WWW}/\Lambda^2, c_W/\Lambda^2, c_b/\Lambda^2)$ and two CP-violating parameters $(\tilde{c}_{WWW}/\Lambda^2, \tilde{c}_W/\Lambda^2)$

Parameter	95% CI, exp. (TeV^{-2})	95% CI, obs. (TeV^{-2})	Best fit, obs. (TeV^{-2})
$c_{ m w}/\Lambda^2$	[-2.0, 1.3]	[-2.5, 0.3]	-1.3
$c_{ m www}/\Lambda^2$	[-1.3, 1.3]	[-1.0, 1.2]	0.1
$c_{ m b}/\Lambda^2$	[-86, 125]	[-43, 113]	44
$\widetilde{c}_{ m www}/\Lambda^2$	[-0.76, 0.65]	[-0.62, 0.53]	-0.03
$\widetilde{c}_{ m w}/\Lambda^2$	[-46, 46]	[-32, 32]	0

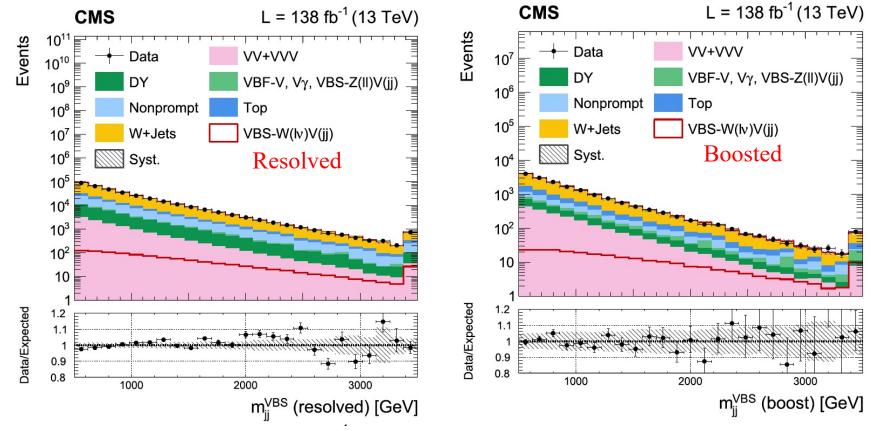

PLB 834 (2022) 137438

2 WVjj: Cross-section Measurements

- First LHC evidence of SM electroweak *lvqq* production with two jets.
- $W^{\pm} \to \ell^{\pm} \nu_{\ell}$ and $V(W^{\pm}/Z) \to q\bar{q}$.
- The signature consists of 4 jets, 1 lepton and missing E_T .

Event Selection:

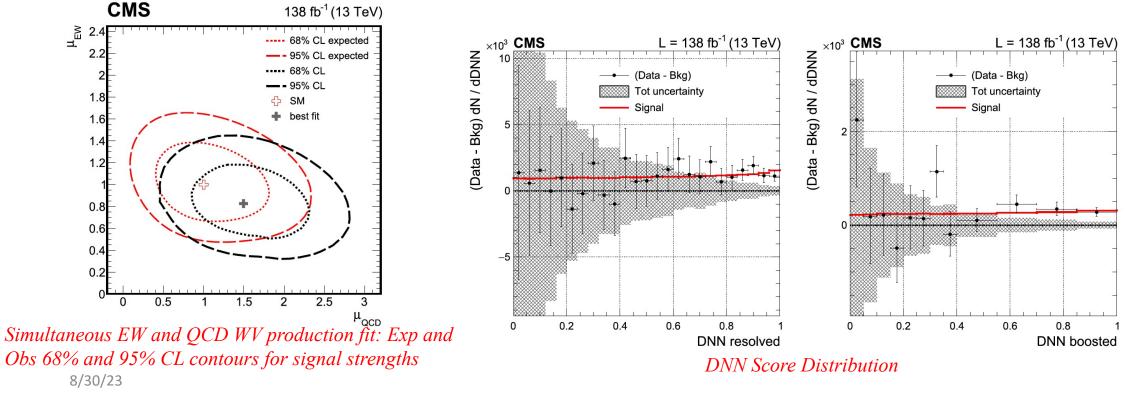
- Two categories:
 - Resolved: Four anti- k_T jets with distance parameter $\Delta R = 0.4$ (AK4)
 - Boosted: Two anti- k_T jets with $\Delta R = 0.4$ and one jet with $\Delta R = 0.8$ (AK8).
- $m_{jj}^{VBS} > 500 \text{ GeV}$ and $\Delta \eta_{jj}^{VBS} > 2.5$ for tag jets (enhances VBS events)
- No b-jets should be found in the signal region



Backgrounds:

- W + jets (data-driven method) using dedicated CRs.
- Top quark background, QCD-multijet
- VBF-V Single vector boson EW production (2% in resolved, 4% in boosted
- Other: QCD VBS WV production, Drell-Yan, VVV, Vγ, VBS Z(ℓℓ)V(jj)

WVjj: Cross-section Measurements

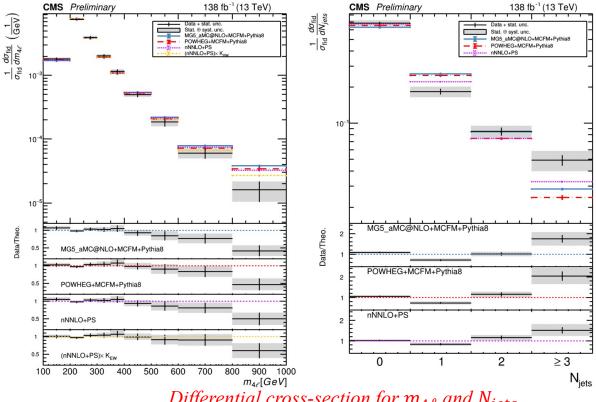

- Deep Neural Network (DNN) used for signal extraction.
- It increases the sensitivity of the analysis by a factor of 3 over a fit to the shape of the m_{jj}^{VBS} variable (most sensitive variable).

Post-fit distributions of m_{jj}^{VBS} in the resolved and boosted categories.

WVjj: Cross-section Measurements

- The cross-section measured at a fiducial phase space defined at parton level.
- Cross-section measurement:
 - Measured: $1.90^{+0.53}_{-0.46} pb$
 - Expected: $2.23^{+0.08}_{-0.11}$ (scale) ± 0.05 (PDF) pb
- Observed EW signal strength: $\mu_{EW} = 0.85 \pm 0.12 (stat)^{+0.19}_{-0.17}(syst)$ with an obs (exp) significance of 4.4 σ (5.1 σ), with QCD associated diboson production fixed to SM prediction.
- EW + QCD associated signal strength: $0.97 \pm 0.06 (stat)^{+0.19}_{-0.21}(syst)$.

3 ZZ + jets: Differential Cross-section Measurement


- Differential production cross-section of ZZ + jetsas a function of multiple variables.
- Signal includes $qq \rightarrow ZZ$ sample, $qg \rightarrow ZZ$ samples, EW production sample (which includes vector boson fusion (VBF) Higgs events and their interference with non-Higgs EW production), and the $gg \rightarrow H \rightarrow ZZ$ samples

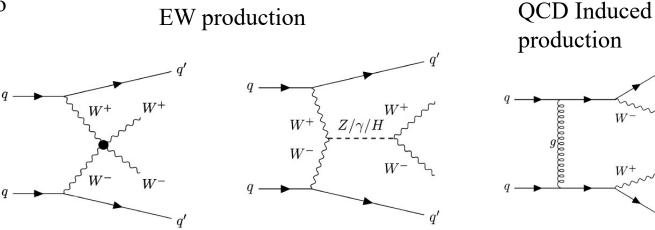
Event Selection:

- Fully leptonic final states. Lepton-lepton and jetlepton (or photon) overlaps are taken care of. Fourlepton candidates of SFOC pairs are considered.
- Jets with $p_T > 30$ GeV and $|\eta| < 4.7$.

Backgrounds:

- Well reconstructed and isolated lepton candidates ٠ suppress backgrounds to a great extent
- Backgrounds dominated by $Z + jets, WZ + jets, t\bar{t}$, • VVV. 8/30/23

Differential cross-section for $m_{4\ell}$ and N_{iets} .

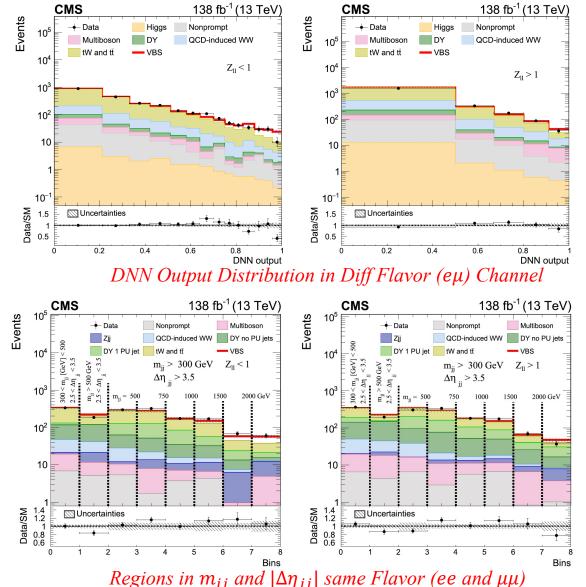

- Unfolding using the iterative D'Agostini's method
- EW corrections improves the description of the $m_{4\ell}$ distribution.

4 (Opposite Sign) EW W⁺W⁻jj Measurement PLB 841 (2023) 137495</sup>

• Electroweak production of W^+W^- associated with two jets.

Event Selection:

- Fully leptonic final states. Split into different flavor SRs: e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^{\mp}$.
 - exactly two opposite-sign leptons (electrons or muons) $m_{\ell\ell} > 50$ GeV and $p_T^{\ell\ell} > 30$ GeV
 - two jets with large pseudorapidity separation and high dijet invariant mass: $m_{jj} > 300$ GeV and $|\Delta \eta_{jj}| > 2.5$
 - $p_T^{miss} > 20 \text{ GeV}$
 - SR split acc to the final state lepton flavors, Zeppenfeld variable: $Z_{\ell\ell} = \frac{1}{2} |Z_{\ell 1} + Z_{\ell 2}|$, where $Z_{\ell} = \eta_{\ell} - \frac{1}{2} (\eta_{j_1} + \eta_{j_2}).$


Backgrounds:

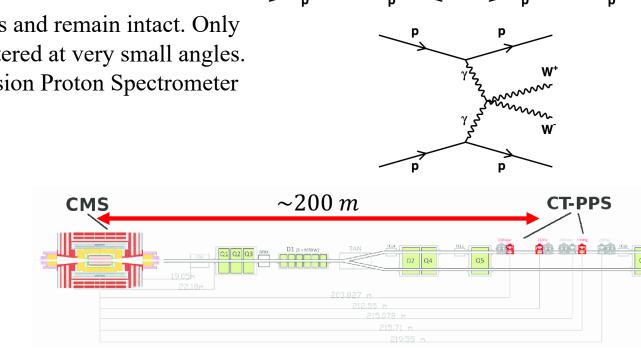
- $t\bar{t}$: estimated with a $t\bar{t}$ CR
- Drell-Yan production: estimated with dedicated CRs
- QCD induced W^+W^- : Normalization is left floating in the fit
- Non-prompt leptons: W + jets From data, Z + jets From simulation
- Higgs and multiboson production: using simulation

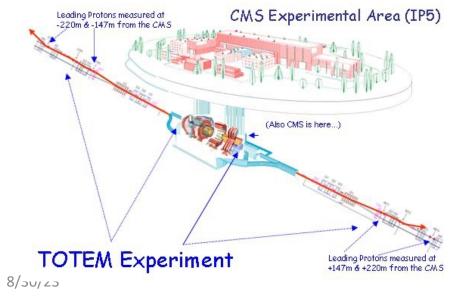
(Opposite Sign) EW W⁺W⁻jj Measurement

• In the $e\mu$ category, a feed forward deep neural network (DNN) is used to distinguish signal from $t\bar{t}$ and QCD induced W^+W^- .

- Separate models built for $Z_{\ell\ell} < 1$ (less background, signal enriched) and $Z_{\ell\ell} > 1$.
- Binary cross-entropy loss function is minimized in both the models
- $\mu_{EW} = \sigma^{obs} / \sigma^{SM}$ is the parameter of interest. Translated to cross-section in two fiducial volumes.
- A maximum-likelihood fit is performed to get the crosssections:
- The background only hypothesis (without contribution from EW W^+W^-) rejected with obs (exp) significance of 5.6 σ (5.2 σ).
 - More inclusive region: 99 ± 20 fb (LO pre-diction of 89 ± 5 (scale) fb
 - Closer to the preselection region: $10.2 \pm 2.0 \ fb$ (LO theoretical prediction is $9.1 \pm 0.6 \ (scale) \ fb$)

PLB 841 (2023) 137495


5 $\gamma \gamma \rightarrow WW$ and $\gamma \gamma \rightarrow ZZ$ CMS+TOTEM


arXiv:2211.16320v2

~~~~~~

^^^^

- Search for exclusive high mass  $\gamma\gamma \rightarrow WW$  and  $\gamma\gamma \rightarrow ZZ$  production in pp collisions with an integrated luminosity of 100 fb<sup>-1</sup>.
- Using intact forward protons reconstructed in near-beam detectors
- Both weak bosons decaying into boosted and merged jets
- The protons radiate quasireal high-energy photons and remain intact. Only the two photons interact, and the protons are scattered at very small angles.
- The scattered protons are measured using a Precision Proton Spectrometer (PPS) of CMS-TOTEM collaboration.





### $\gamma \gamma \rightarrow WW$ and $\gamma \gamma \rightarrow ZZ$ : EFT interpretations

#### **Event Reco and selection:**

- The scattered protons are reconstructed using "Multi-RP Algorithm". which combines tracks reconstructed in both tracking Roman pots in each arm of PPS.
- Both weak bosons decaying into boosted and merged jets.
- Proton jet matching is performed, and signal regions are defined using variables 1 m(VV)/m(pp) and y(pp) y(VV).

#### **Backgrounds:**

• QCD multijet,  $W + jets, Z + jets, t\bar{t}$ . Have to rely on data for background estimate as the protons predominantly arise from diffractive pileup interactions, which are not well modelled.

| Coupling            | Observed (expected)                           | Observed (expected)                         |
|---------------------|-----------------------------------------------|---------------------------------------------|
|                     | 95% CL upper limit                            | 95% CL upper limit                          |
|                     | No clipping                                   | Clipping at 1.4 TeV                         |
| $ a_0^W/\Lambda^2 $ | $4.3 (3.9) \times 10^{-6}  \mathrm{GeV}^{-2}$ | $5.2 (5.1) \times 10^{-6}  \text{GeV}^{-2}$ |
| $ a_C^W/\Lambda^2 $ | $1.6~(1.4) 	imes 10^{-5}{ m GeV^{-2}}$        | $2.0~(2.0) 	imes 10^{-5}  { m GeV^{-2}}$    |
| $ a_0^Z/\Lambda^2 $ | $0.9~(1.0) 	imes 10^{-5}{ m GeV^{-2}}$        | —                                           |
| $ a_C^Z/\Lambda^2 $ | $4.0~(4.5)	imes 10^{-5}{ m GeV^{-2}}$         | —                                           |

Expected and observed limits on dimension-6 AQGC operators

arXiv:2211.16320v2

### $\gamma\gamma \rightarrow WW$ and $\gamma\gamma \rightarrow ZZ$ : EFT interpretations

• Translation to linear dimension-8 mixed AQGCs (contain both covariant derivatives of the Higgs field and field strength tensor) in case of processes involving photons:

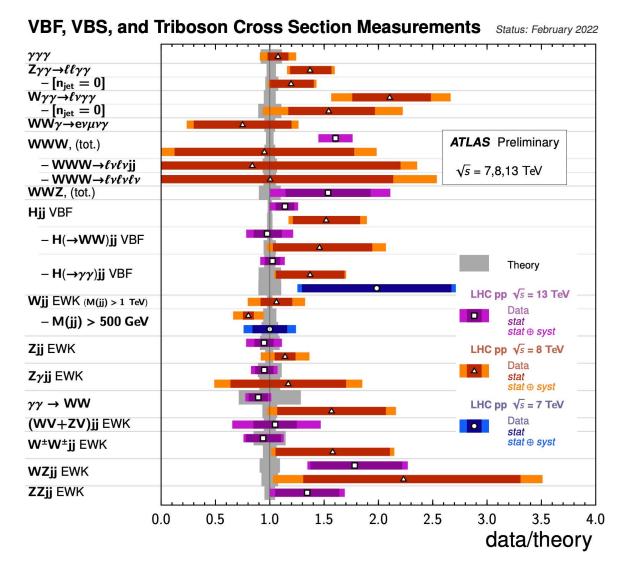
$$a_0^{\mathrm{W}} = -\frac{m_{\mathrm{W}}}{\pi\alpha_{\mathrm{em}}} \left[ s_w^2 \frac{f_{M,0}}{\Lambda^2} + 2c_w^2 \frac{f_{M,2}}{\Lambda^2} + s_w c_w \frac{f_{M,4}}{\Lambda^2} \right].$$

• The limits are obtained for a fiducial region of  $0.04 < \xi < 0.20$  and diboson invariant mass m(VV) > 1 TeV, and correspond to the diboson production cross section before decays into hadrons ( $p_{nom}$  nominal beam momentum, p scattered proton momentum).

$$\xi = (p_{\rm nom} - p) / p_{\rm nom}$$

- Upper exclusion limits on AQGC like signal at 95% CL obs (exp):
  - $\sigma(pp \to pWWp) < 67(53^{+34}_{-19})fb$
  - $\sigma(pp \rightarrow pZZp) < 43(62^{+33}_{-20}) fb.$

| Coupling              | Observed (expected)<br>95% CL upper limit<br>No clipping | Observed (expected)<br>95% CL upper limit<br>Clipping at 1.4 TeV |
|-----------------------|----------------------------------------------------------|------------------------------------------------------------------|
| $ f_{M,0}/\Lambda^4 $ | $66.0~(60.0)~{ m TeV^{-4}}$                              | 79.8 (78.2) $\text{TeV}^{-4}$                                    |
| $ f_{M,1}/\Lambda^4 $ | 245.5 (214.8) $\text{TeV}^{-4}$                          | $306.8 (306.8) \mathrm{TeV}^{-4}$                                |
| $ f_{M,2}/\Lambda^4 $ | 9.8 (9.0) TeV $^{-4}$                                    | $11.9 \; (11.8)  \mathrm{TeV}^{-4}$                              |
| $ f_{M,3}/\Lambda^4 $ | 73.0 (64.6) $\text{TeV}^{-4}$                            | 91.3 (92.3) $\text{TeV}^{-4}$                                    |
| $ f_{M,4}/\Lambda^4 $ | $36.0(32.9)\mathrm{TeV}^{-4}$                            | $43.5~(42.9)~{\rm TeV^{-4}}$                                     |
| $ f_{M,5}/\Lambda^4 $ | $67.0~(58.9)\mathrm{TeV}^{-4}$                           | $83.7~(84.1)~{ m TeV^{-4}}$                                      |
| $ f_{M,7}/\Lambda^4 $ | 490.9 (429.6) $\mathrm{TeV}^{-4}$                        | 613.7 (613.7) $\text{TeV}^{-4}$                                  |


Conversion of limits to dim-8 operators with assumption that all  $f_{M,i}$  except one are equal to zero.

## Summary

- Overview (not exhaustive) of the latest massive diboson final state analyses from 2022 and 2023 performed at the ATLAS and CMS collaborations.
- Many jet associated diboson processes are observed with a more than  $5\sigma$  with respect to the background only hypothesis.
- More precise limits on anomalous couplings with EFT interpretations (dim-6 and dim-8 operators) in many different channels are performed.
- First diboson longitudinal-longitudinal measurements performed for WZ and ZZ, with first observation of WZ longitudinal-longitudinal in ATLAS.
- Other BSM searches, study of CP properties, etc are also performed.
- Many more analyses coming soon with polarization measurements, EFT interpretations and BSM searches in the massive diboson channels.

# Backup

## **Previous Multiboson Searches in Run 2: ATLAS**



This talk includes latest results for:

- *ZZjj*: Differential Cross-section and EFT Interpretations
- Measurement of Longitudinallongitudinal  $ZZ(Z_L, Z_L)$  and Study of CP Property
- (Same sign)  $W^{\pm}W^{\pm}jj$ :
- (Opposite Sign)  $W^+W^-$
- (Opposite Sign)  $W^+W^-jj$
- *W*<sup>±</sup>*Z* Joint Polarization Measurements

## EFT Interpretations: Dimension-six op

| Wilson                          | $ \mathcal{M}_{ m d6} ^2$ | 95% confidence interval [TeV <sup>-2</sup> ] |              |
|---------------------------------|---------------------------|----------------------------------------------|--------------|
| coefficient                     | Included                  | Expected                                     | Observed     |
| $c_W/\Lambda^2$                 | yes                       | [-1.3, 1.3]                                  | [-1.2, 1.2]  |
|                                 | no                        | [-32, 32]                                    | [-37, 28]    |
| $c_{\widetilde{W}}/\Lambda^2$   | yes                       | [-1.3, 1.3]                                  | [-1.2, 1.2]  |
|                                 | no                        | [-17, 17]*                                   | [0, 30]*     |
| $c_{HWB}/\Lambda^2$             | yes                       | [-16, 7]                                     | [-16, 6]     |
|                                 | no                        | [-12, 12]                                    | [-15, 10]    |
| $c_{H\widetilde{W}B}/\Lambda^2$ | yes                       | [-1.3, 1.3]                                  | [-1.2, 1.2]  |
|                                 | no                        | [-67, 67]*                                   | [-25, 130]*  |
| $c_{HB}/\Lambda^2$              | yes                       | [-13, 13]                                    | [-12, 12]    |
|                                 | no                        | [-38, 38]                                    | [-38, 38]    |
| $c_{H\widetilde{B}}/\Lambda^2$  | yes                       | [-13, 13]                                    | [-12, 12]    |
|                                 | no                        | [-420, 420]*                                 | [-200, 790]* |
|                                 |                           |                                              |              |

# (Same sign) $W^{\pm}W^{\pm}jj$ ATLAS

#### **Event Selection:**

• Expected purity of the EW, QCD and interference is 52%, 5.4% and 1.7%.

Exactly two signal leptons with  $p_T > 27$  GeV and the same electric charge with  $|\eta| < 2.5$  for muons and with  $|\eta| < 2.47$  excluding  $1.37 \le |\eta| \le 1.52$  for electrons with  $|\eta| < 1.37$  in the *ee* channel

 $m_{\ell\ell'} \ge 20 \text{ GeV}$ 3rd lepton veto

```
|m_{ee} - m_Z| > 15 GeV in the ee-channel
```

 $E_{\rm T}^{\rm miss} \ge 30 \, {\rm GeV}$ 

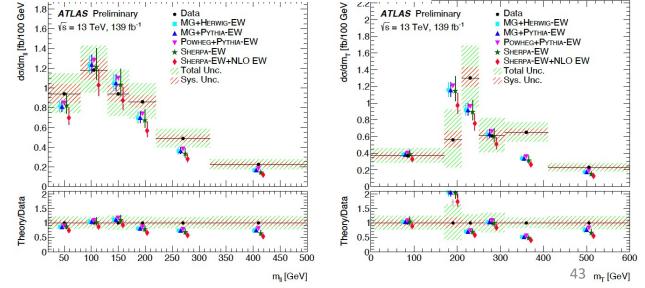
At least two jets

Leading and subleading jets satisfying  $p_T > 65$  GeV and  $p_T > 35$  GeV, respectively *b*-jet veto for jets with  $p_T > 20$  GeV and  $|\eta| < 2.5$  $m_{jj} \ge 500$  GeV  $|\Delta y_{jj}| > 2$ 

### **Backgrounds:**

- $WZ/\gamma^*$  (22% of the signal event yield): One lepton escaping the third lepton veto requirement.
- Non-Prompt Lepton Background (12% of the signal event yield): W+jets, semi-leptonic  $t\bar{t}$ . Estimated using data-driven method
- Electron charge misidentification background: From Z and dileptonic  $t\bar{t}$ .
- Other backgrounds:  $V\gamma(2.4\%)$ , ZZ,  $t\bar{t}V$ , VVV (except same sign WW) (total 1.6%)

# Same sign WWjj uncertainties


| Source                                                   | Impact [%] |  |  |  |
|----------------------------------------------------------|------------|--|--|--|
| Experimental                                             |            |  |  |  |
| Electron calibration                                     | 0.4        |  |  |  |
| Muon calibration                                         | 0.5        |  |  |  |
| Jet energy scale and resolution                          | 1.8        |  |  |  |
| $E_{\rm T}^{\rm miss}$ scale and resolution              | 0.2        |  |  |  |
| <i>b</i> -tagging inefficiency                           | 0.7        |  |  |  |
| Background, misid. leptons                               | 3.1        |  |  |  |
| Background, charge misrec.                               | 0.8        |  |  |  |
| Pileup modelling                                         | 0.2        |  |  |  |
| Luminosity                                               | 1.9        |  |  |  |
| Modelling                                                |            |  |  |  |
| EW $W^{\pm}W^{\pm}jj$ , shower, scale, PDF & $\alpha_s$  | 0.8        |  |  |  |
| EW $W^{\pm}W^{\pm}jj$ , QCD corrections                  | 3.5        |  |  |  |
| EW $W^{\pm}W^{\pm}jj$ , EW corrections                   | 0.8        |  |  |  |
| Int $W^{\pm}W^{\pm}jj$ , shower, scale, PDF & $\alpha_s$ | 0.1        |  |  |  |
| QCD $W^{\pm}W^{\pm}jj$ , shower, scale, PDF & $\alpha_s$ | 2.3        |  |  |  |
| QCD $W^{\pm}W^{\pm}jj$ , QCD corrections                 | 0.9        |  |  |  |
| Background, WZ scale, PDF & $\alpha_s$                   | 0.2        |  |  |  |
| Background, WZ reweighting                               | 1.7        |  |  |  |
| Background, other                                        | 1.0        |  |  |  |
| Model statistical                                        | 1.8        |  |  |  |
| Experimental and modelling                               | 6.7        |  |  |  |
| Data statistical                                         | 7.4        |  |  |  |
| Total                                                    | 10.0       |  |  |  |

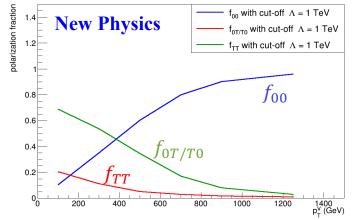
# (Same sign) $W^{\pm}W^{\pm}jj$ ATLAS

- Fiducial Cross-section measurement: Fiducial region defined as close to analysis signal region and detector acceptance as possible.
  - Signal region split in 4 regions according to the lepton flavors in the final state

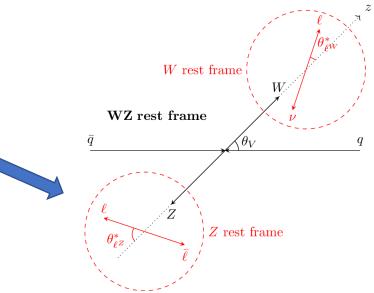
| Description            | $\sigma_{ m fid}^{ m EW}$ , fb                  | $\sigma_{\rm fid}^{\rm EW+Int+QCD}$ , fb                                                         |
|------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Measured cross section | $2.88 \pm 0.21$ (stat.) $\pm 0.19$ (syst.)      | $3.35 \pm 0.22$ (stat.) $\pm 0.20$ (syst.)                                                       |
| MG_AMC@NLO+Herwig      | $2.53 \pm 0.04 (PDF) \pm_{0.19}^{0.22} (scale)$ | $2.93 \pm 0.05 (PDF) \pm_{0.27}^{0.34}$ (scale)                                                  |
| MG_AMC@NLO+Pythia      | $2.55 \pm 0.04 (PDF) \pm_{0.19}^{0.22} (scale)$ | $2.94 \pm 0.05 (PDF) \pm_{0.27}^{0.33} (scale)$<br>2.80 ± 0.03 (PDF) $\pm_{0.36}^{0.53} (scale)$ |
| Sherpa                 | $2.44 \pm 0.03 (PDF) \pm_{0.27}^{0.40} (scale)$ | $2.80 \pm 0.03$ (PDF) $\pm_{0.36}^{0.53}$ (scale)                                                |
| Powheg Box +Pythia     | 2.67                                            | _                                                                                                |

- Differential cross-section measurement. Likelihood based unfolding used to get particle level distributions
- Good agreement between data/MC within uncertainties. χ<sup>2</sup> and p-value measured to check data-MC compatibility. P-values range from 0.014 to 0.623 across five variables used: m<sub>ℓℓ</sub>, m<sub>jj</sub>, m<sub>T</sub>, N<sub>gap jets</sub>(num of jets between two signal jets in rapidity) and Zeppenfeld variable.

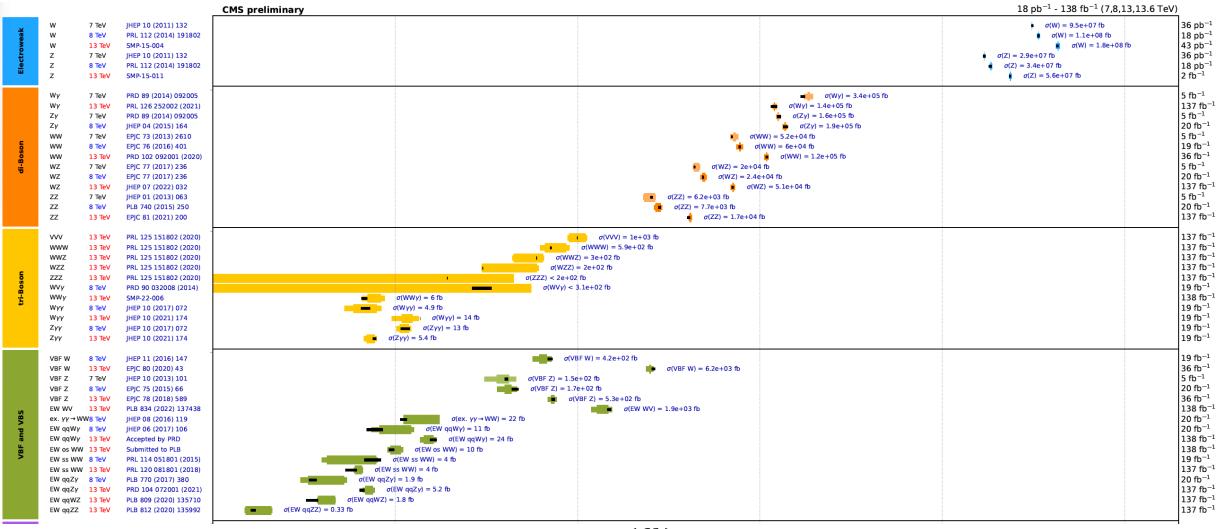



# W<sup>±</sup>Z Polarization Studies in ATLAS

### • Motivation:

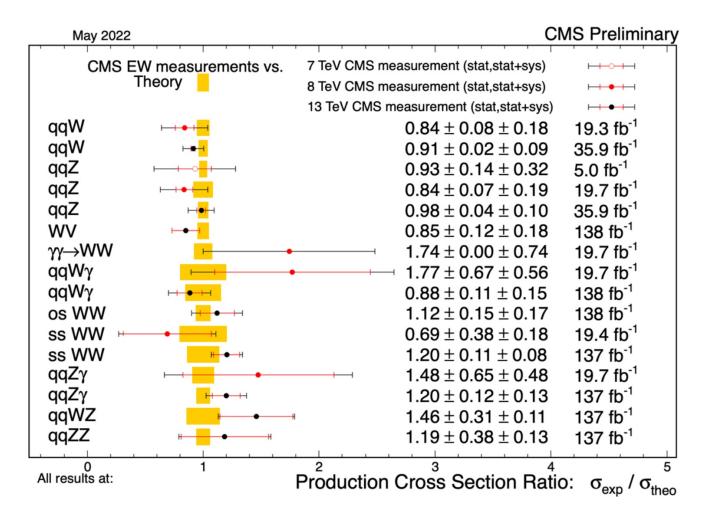

- Goldstone Boson Equivalence Theorem: a phenomenon at high energies (<u>PRD 103 (2021) 053007</u>)
- The  $V_0V_0$  (both longitudinally polarized bosons) are the only polarization states that exhibit quadratic energy growth for BSM amplitudes, thus giving us a handle to search for new physics. (JHEP 02 (2018) 111)

- This is the first-ever observation of longitudinal-longitudinal joint polarization state in diboson production.
- Some of the challenges:
  - The definition of polarization is not Lorentz invariant, so must define a frame modified helicity frame
  - Should discriminate both bosons at once. Combining L and R polarization there are 4 configurations to distinguish  $(W_0Z_0, W_0Z_T, W_TZ_0, W_TZ_T, where 0$  is longitudinal and T is transverse)


### arXiv:2211.09435

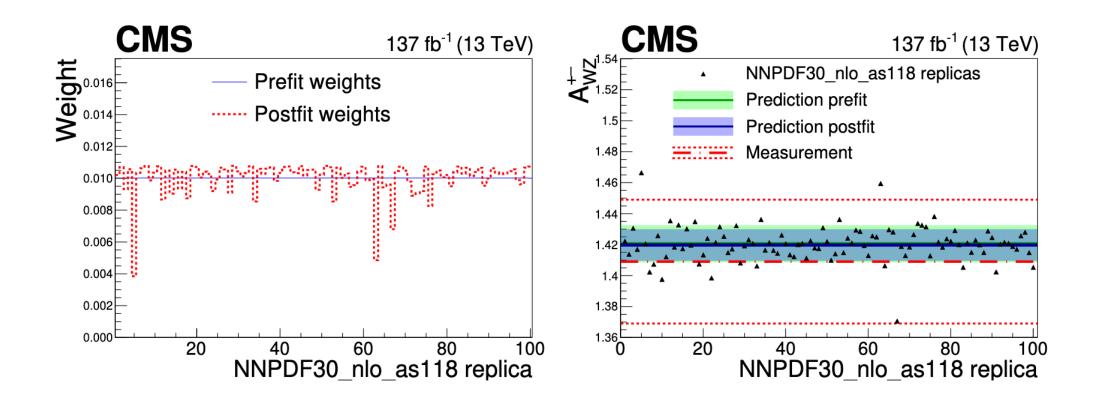


Polarization fractions as a function of  $p_T^V$  for a new physics model with a cut off  $\Lambda = 1$  TeV using calculations from <u>PRD 99 (2019) 055001</u>



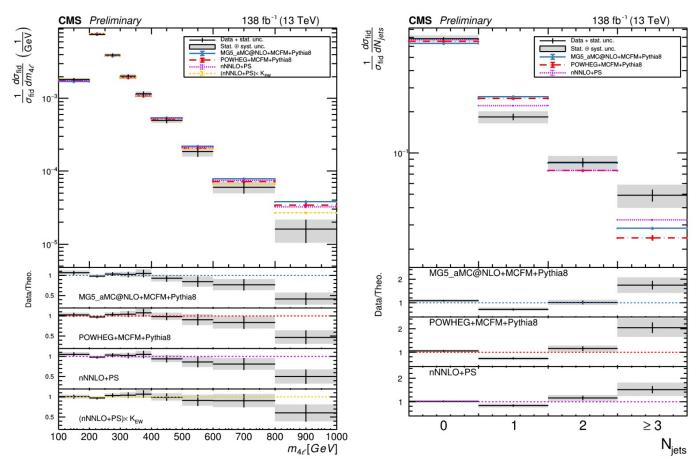

## **Previous Multiboson Searches in Run 2: CMS**




#### X-axis: $\sigma(fb)$

## **Previous Multiboson Searches in Run 2: CMS**




Ref:https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsC ombined/CMSCrossSectionSummaryBarChart.pdf

### WZ CMS



# ZZ + jets CMS

- Unfolding using the iterative D'Agostini's method including correction for background contributions.
- Differential cross-section measured for: number of jets, jets transverse momentum and pseudorapidity, invariant mass of dijet system and pseudorapidity difference of the highest-pT and second-highest-pT jets, invariant mass of the four leptons with different jet multiplicities in the events
- The nNNLO+PS prediction describes the distribution of jet multiplicities better than MadGraph5 aMC@NLO and POWHEG
- the inclusion of EW corrections improves the description of the  $m_{4\ell}$  distribution.
- Further improvement of the predictions is required to describe the ZZ+jet production in the whole phase space.

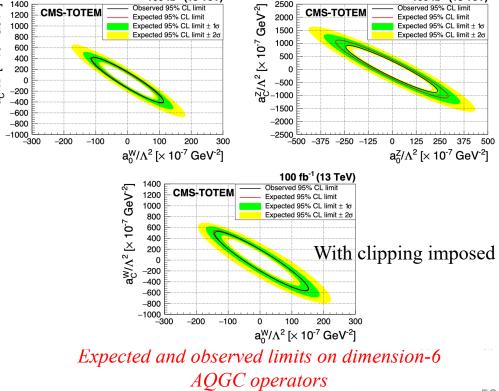


## Zjj CMS: EFT Limits

$$egin{aligned} -0.24 &< f_{
m T0}/\Lambda^4 < 0.22 \ -0.31 &< f_{
m T1}/\Lambda^4 < 0.31 \ -0.63 &< f_{
m T2}/\Lambda^4 < 0.59 \ -0.43 &< f_{
m T8}/\Lambda^4 < 0.43 \ -0.92 &< f_{
m T9}/\Lambda^4 < 0.92 \end{aligned}$$

## $\gamma\gamma \rightarrow WW$ and $\gamma\gamma \rightarrow ZZ$ : EFT interpretations

a<sup>W</sup>/A<sup>2</sup> [× 10<sup>-7</sup> GeV<sup>-2</sup>]


### **Event Reco and selection:**

- The scattered protons are reconstructed using "Multi-RP Algorithm". which combines tracks reconstructed in both tracking Roman pots in each arm of PPS.
- Both weak bosons decaying into boosted and merged jets.
- Proton jet matching is performed, and signal regions are defined using variables 1 m(VV)/m(pp) and y(pp) y(VV).

### **Backgrounds:**

• QCD multijet,  $W + jets, Z + jets, t\bar{t}$ . Have to rely on data for background estimate as the protons predominantly arise from diffractive pileup interactions, which are not well modelled.

| Coupling            | Observed (expected)<br>95% CL upper limit<br>No clipping | Observed (expected)<br>95% CL upper limit<br>Clipping at 1.4 TeV |
|---------------------|----------------------------------------------------------|------------------------------------------------------------------|
| $ a_0^W/\Lambda^2 $ | $4.3 (3.9) \times 10^{-6}  \text{GeV}^{-2}$              | $5.2 (5.1) \times 10^{-6} \text{GeV}^{-2}$                       |
| $ a_C^W/\Lambda^2 $ | $1.6~(1.4) 	imes 10^{-5}{ m GeV^{-2}}$                   | $2.0~(2.0) 	imes 10^{-5}  { m GeV}^{-2}$                         |
| $ a_0^Z/\Lambda^2 $ | $0.9~(1.0) 	imes 10^{-5}  { m GeV}^{-2}$                 | —                                                                |
| $ a_C^Z/\Lambda^2 $ | $4.0~(4.5) 	imes 10^{-5}  { m GeV}^{-2}$                 | —                                                                |
| 1400                | 100 fb <sup>-1</sup> (13 TeV)                            | 100 fb <sup>-1</sup> (13 TeV                                     |



arXiv:2211.16320v2