

Direct Searches for New Physics in Multiboson final states in ATLAS & CMS

Multi-Boson Interactions 2023, San Diego

Aram Apyan On behalf of ATLAS and CMS collaborations

BSM searches with multibosons

- Resonant and nonresonant new physics searches with multi bosons
 - Example BSM theories: composite Higgs, extended Higgs sectors, technicolor, warped extra dimensions, Majorana nuetrinos
- Mainly focus on the latest diboson VV searches by ATLAS and CMS
 - For VVV see next talk
 - Vγ and γ γ searches are not covered in this talk
- Full Run-2 results are shown
 - First Run-3 results yet to come

Production modes

- Searches are often interpreted in the context of the Heavy Vector Triplet (HVT) simplified models
 - Spin-1 HVT W'/Z', narrow width
- Other benchmark scenarios include spin-0 radion and spin-2 Kaluza-Klein excitation (KK) in the context of the Randall-Sundrum (RS) models

• Gluon fusion (ggF), Drell—Yan (qqA), and VBF production modes are considered

Production modes 2

- Vector boson fusion/scattering production
- Higgs triplet extensions
- Inclusion of one or more triplet (real or/and complex)
 - Two hallmark signatures of T=1
 - Tree level H⁺ WZ coupling
 - Doubly charged higgs: H++
- Non-resonant search for heavy Majorana neutrinos in the samesign lepton final states

Georgi-Machacek model as benchmark

- We want to preserve the custodial symmetry
- Georgi-Machacek model: Doublet (T=1/2,Y=1), one triplet with (T=1,Y=0), and one triplet with (T=1,Y=2)
 - Tree level custodial symmetry even with large contribution of vev carried by triplet sector!
 - Fiveplet (H5) and triplet (H3) under custodial symmetry
 - Fermiophobic H⁺⁺, H⁺, and H scalars from the fiveplet

$$\Phi = \begin{pmatrix} \phi_2^* & \phi_1 \\ -\phi_1^* & \phi_2 \end{pmatrix}, \quad \Xi = \begin{pmatrix} \chi_3^* & \xi_1 & \chi_1 \\ -\chi_2^* & \xi_2 & \chi_2 \\ \chi_1^* & -\xi_1^* & \chi_3 \end{pmatrix}, \quad \Longrightarrow \quad \sin \theta_H =: s_H = \frac{2\sqrt{2}\nu_{\Xi}}{\nu_{SM}}$$

- For higher mass values and higher triplet vev vector boson fusion production dominates
 - H5plane benchmark (essentially ensures that H3 is heavier than H5 with BR(H5->VV) = 1)

ATLAS Run 2 results: H++->W+W+

- Fully leptonic same-sign WW final state
- WZ is an important background
- Dedicated WZ control regions
 - Low mjj for WZ QCD production
- Signal extraction with 2D fit $(m_{ii} \times m_T)$

- Local excess of events at H⁺⁺ mass of 450 GeV
 - Local sig.: 3.2 std.
 - Global sig.: 2.5 std.

ATLAS-CONF-2023-023

2500

3000

m_{ii} [GeV]

ATLAS Run 2 results: H++->W+W+

- Fully leptonic same-sign WW final state
 - Part of same-sign WW VBS SM analysis
 - Exclusion limits on $\sigma xBr(H^{++} \rightarrow W^+W^+)$
 - Stringent exclusion limits on the s_H paramter

7

ATLAS Run 2 results: H+->WZ

- Fully leptonic final states with 3 leptons + MET
 - Dedicated WZ QCD control region
 - ANN for VBF signal selection
 - $s_H > -0.3$ excluded for m_{H5} of 200 to 1000 GeV

 H^{\pm}

W

CMS Run 2 results

- Simultaneous analysis of H++->W+W+ and H+->WZ channels
 - WZ is an important background for same-sign WW
 - Signal extraction with 2D fit (m_{jj} x m_T)

Similar sensitivity by ATLAS and CMS

Arxiv:2104.04762

Semileptonic final states

- Semileptonic WV and ZV process where one boson decays to quarks
 - H⁺ -> WV with W->lnu or H⁺⁺ -> WW with one of the Ws decaying to lnu

т axis

т axis

 $Z \rightarrow$

nn

- H⁺ -> ZV with Z->ll
- Dedicated study by CMS with merged V-jets
 - Using only 2016 data set
 - Within a "SM" paper

qq

Good sensitivity to higher masses!

Georgi-Machacek combination

- Can interpret other VBF heavy diboson searches in ATLAS
 - Interpret in terms of a narrow-width Higgs boson of the Georgi-Machacek mode
 - Would be good to perform a combination

ATLAS PUB note

Arxiv:2009.14791

- T-channel exchange of a heavy Majorana neutrino
 - No neutrinos in the final state
- ATLAS and CMS studied same-sign µµjj final state
 - Results are interpreted in a benchmark scenario of the Phenomenological Type-I Seesaw model
 - Sensitivity to dim-5 Weinberg operator is also investigated

$$\sigma(pp \to \mu^{\pm}\mu^{\pm} + X) \equiv |V_{\mu N}|^4 \times \sigma_0(pp \to \mu^{\pm}\mu^{\pm} + X)$$

08/29/23

- CMS search uses $H_T/p_T(\mu_1)$ as discriminating variable
 - H_T is the scalar sum of all the jets with $p_T>30$ GeV
 - µ₁ is the leading muon in pT
- Simultaneous fit of signal and control regions

13

- ATLAS search uses $p_T(\mu_2)$ as discriminating variable
 - μ_2 is the sub-leading muon in pT
- Simultaneous fit of signal and control regions

• The ATLAS and CMS t-channel results extend the sensitivity to Type 1 Seesaw heavy Majorana neutrino masses of up to 20 TeV

- Upper limits on effective Majorana mass
 - ATLAS: 16.7 GeV
 - CMS: 10.8 GeV

$$m_{\ell\ell'} = C_5^{\ell\ell'} \upsilon^2 / \Lambda$$

Arxiv:2305.14931

ATLAS R->WW search

- Search for heavy neutral resonances decaying to WW
 - Electron+Muon decay channel
 - ggF, VBF (1jet) and VBF (2jet) signal regions

ATLAS-CONF-2022-066

R: narrow width

resonant signal

ATLAS R->WW search

- Search for heavy neutral resonances decaying to WW
 - Systematic uncertainties (impact on limits)

ggF Production						
Systematic Source	Impact (%)	Systematic Source	Impact (%)			
$m_H = 300 \text{ GeV}$						
Flavour tagging: <i>b</i> -jets	11	WW QCD Scale	14			
WW QCD Scale	10	Wt Shower	12			
JES: <i>b</i> -jets	9	Wt Matrix Element	10			
Floating Normalizations: WW	8.77	JES: Pile-up μ Offset	7.97			
Data stat. uncertainty	9	Data stat. uncertainty	16			
Total Syst. uncertainty	33	Total Syst. uncertainty	40			
$m_H = 1000 \text{ GeV}$						
WW Shower: Recoil	6	WW Scale	4			
e fake factor stat. uncertainty	5	Wt Shower	3.4			
Wt Interference	5	WW Shower: CKKW	3.4			
WW QCD Scale	4 $t\bar{t}$ Final-state Rad.		2.9			
Data stat. uncertainty	17	17 Data stat. uncertainty				
Total Syst. uncertainty	20	Total Syst. uncertainty	10			
$m_H = 3000 \text{ GeV}$						
WW Shower: Recoil	20	WW Scale: QSF	7			
WW Scale: QSF	19	WW Shower: Recoil	6			
WW Shower: CKKW	16	WW Shower: CKKW	5			
Wt Interference	7	Floating Normalizations: WW 1				
Data stat. uncertainty	22	Data stat. uncertainty 18				
Total Syst. uncertainty	21	Total Syst. uncertainty	15			

ATLAS-CONF-2022-066

ATLAS R->WW search

• Upper limits on σxBR for resonances from 300 GeV to 4 TeV

Model	Resonance spin	Production mode		
		ggF	qqA	VBF
NWA	Spin-0	X		х
GM				х
Radion		Х		Х
HVT	Spin-1		Х	Х
RS G_{KK}^*	Spin-2	Х		Х

ATLAS-CONF-2022-066

ATLAS W'->WZ search

- WZ production in fully leptonic final state
- DY process production
 - HVT used as benchmark model

- Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state
 - Highly boosted bosons -> large-radius jets
- DeepAK8 tagger categorization used (Arxiv:2004.08262)
 - W/Z -> qq discrimination against single quark and gluon background
 - bb tagger: H/Z -> bb discrimination against single quark and gluon background
- VBF topology selected by requiring at least 2 AK4 jets

- Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state
 - Highly boosted bosons -> large-radius jets (p_T > 200 GeV)
 - 3D fit in m_{jj}, m_{jet1}, and m_{jet2}

Arxiv:2210.00043

- Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state
 - Categories most sensitive to DY/ggF (High Purity)
 - Excess of data events in some mass regions

Arxiv:2210.00043

- Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state
 - Expected limits for resonant masses of 1.3 and 6 TeV

ATLAS Summary of HVT W' -> WZ

- Comparison of exclusion limits of fully leptonic, semileptonic, and fully hadronic final states
 - W' -> WZ

(b) *VBF*

(a) *qqA*

ATL-PHYS-PUB-2023-00

Summary of HVT Z' -> WW

- Comparison of exclusion limits of fully leptonic, semileptonic, and fully hadronic final states
 - Z' -> WW

CMS Summary of HVT W' -> WZ

- Comparison of exclusion limits of fully leptonic, semileptonic, and fully hadronic final states
 - W' -> WZ

CMS Summary

Summary of various diboson searches

08/29/23

27

Summary of various diboson searches

Summary

- Wealth of ATLAS/CMS diboson BSM searches using Run 2 data
 - Complimentary searches with different V decay final states
 - Selected recent results were covered in this talk
- No clear signs of new physics yet
 - Couple of excesses with significance of ~3 standard deviations
- VBF/VBS searches for charged Higgs bosons and Heavy Majorana neutrinos
- Many more results still to come -> Run 3 is here!

ADDITIONAL MATERIAL

VBF vs DY production

- Important to consider the Drell-Yan production
 - Production cross section independent of s_H
 - Valuable for low sH (VBF depends on s_{H}^2)
 - Large for low masses compared to VBF!

Arxiv:2003.05536

 $\gamma^*\!/Z^* \stackrel{H^-}{ o}$

H

ATLAS search for doubly and singly charged Higgs

- Fully leptonic final state
 - Charged Higgs boson masses above 200 GeV is considered to keep W and Z bosons on-shell
 - Excluded H++ bosons for masses from 200 GeV to 350 GeV

Arxiv:2101.11961

ATLAS Run 2 results: H++->W+W+

08/29/23

ATLAS-CONF-2023-023

ATLAS search for doubly and singly charged Higgs

- Fully leptonic final state
 - Charged Higgs boson masses above 200 GeV is considered to keep W and Z bosons on-shell
 - Excluded H++ bosons for masses from 200 GeV to 350 GeV
 - Can be interpreted in the GM model as well
 - Would be really interesting to extend this analysis to lower masses!

 $\sim W$

Summary of HVT Z' -> WW

- Comparison of qqbb and leptons (MET) + bb final states
 - W' -> WH and Z' -> ZH

