Multi Boson Interactions, Aug 28 – Sep 1, 2023, UC San Diego

Interference resurrection in VBF dilepton production

Minho SON KAIST

(Korea Advanced Institute of Science and Technology)

Hwang, Yoo (Korea Univ.) + Min, Park, **SON** (KAIST) JHEP 08 (2023) 069 [arXiv:2301.13663]

Also see Talk by Michael Schmitt

anomalous Triple Gauge Coupling (aTGC) V M

$$\begin{aligned} \mathcal{L}_{TGC} &= ie \left[\left(W_{\mu\nu}^{+} W_{\mu}^{-} - W_{\mu\nu}^{-} W_{\mu}^{+} \right) A_{\nu} + \left(1 + \delta \kappa_{\gamma} \right) A_{\mu\nu} W_{\mu}^{+} W_{\nu}^{-} \right] \\ &+ ig_{L} cos\theta \left[\left(1 + \delta g_{1,z} \right) \left(W_{\mu\nu}^{+} W_{\mu}^{-} - W_{\mu\nu}^{-} W_{\mu}^{+} \right) Z_{\nu} + \left(1 + \delta \kappa_{z} \right) Z_{\mu\nu} W_{\mu}^{+} W_{\nu}^{-} \right] \\ &+ ie \frac{\lambda_{\gamma}}{m_{W}^{2}} W_{\mu\nu}^{+} W_{\nu\rho}^{-} A_{\rho\mu} + ig_{L} cos\theta \frac{\lambda_{z}}{m_{W}^{2}} W_{\mu\nu}^{+} W_{\nu\rho}^{-} Z_{\rho\mu} \end{aligned}$$

 $\delta \kappa_z = \delta g_{1,z} - \frac{g_Y^2}{g_L^2} \delta \kappa_\gamma$ $\lambda_z = \lambda_\gamma$ At the level of dim6 operators in SMEFT

→ Three variables for VV

$$\{\lambda_z, \delta g_{1,z}, \delta \kappa_\gamma\} \sim c^{(6)} \frac{m_W^2}{\Lambda^2}$$

We will mainly focus on this term in this talk

8/30/23

In terms of dim-6 operators

Hagiwara et. al. (HISZ basis)

Warsaw basis

.....

(NLO MC available)

$$\frac{c_{WWW}}{\Lambda^2} \operatorname{Tr} \left(\widehat{W}_{\mu\nu} \widehat{W}_{\nu\rho} \widehat{W}_{\rho\mu} \right)$$

$$\frac{c_W}{\Lambda^2} \left(D_{\mu} H \right)^+ W^{a \ \mu\nu} \frac{\sigma^a}{2} g(D_{\nu} H)$$

$$\frac{c_B}{\Lambda^2} \left(D_{\mu} H \right)^+ B^{\mu\nu} \frac{1}{2} g'(D_{\nu} H)$$
adopted in

 $\mathsf{CMS}\,Z(\ell\ell)+2j$

 $C_{3W}\epsilon_{abc}W^a_{\mu\nu}W^b_{\nu\rho}W^c_{\rho\mu}$

adopted in CMS $W\gamma$

aTGC in VV process and noninterference

Helicity selection rule: total helicity should match

 $|h(A_3^{SM})| = 1 - [g] = 1$

$$|h(A_3^{BSM})| = 1 - [c_{3W}] = 3$$

SM amplitude Similarly for t-channel diagram BSM amplitude with insertion of $\mathcal{O}_{3W} \sim tr(W^3)$

$$h\left(A_4^{SM}\right)=0$$

$$h(A_4^{BSM}) = 2$$

can not interfere in massless limit

Azatov, Contino, Machado, Riva 16'

Flip the helicity via VEV insertion (finite mass effect)

Noninterference in VV process

Helicity selection rule: total helicity should match

$$\int d\phi \left(\underbrace{\mathcal{M}_{SM}^* \mathcal{M}_{BSM} + h.c.} \right) = 0$$

: suggests us to look into differential distributions of angular variable

Noninterference in VV process

SMxdim6 scales like

dim6xdim6 scales like

$$\sigma = \sigma^{SM} + \sum \left(\frac{c_i^{(6)}}{\Lambda^2} \sigma_i^{(6 \times SM)} + h.c. \right) + \sum \frac{c_i^{(6)} c_j^{(6)*}}{\Lambda^4} \sigma_{ij}^{(6 \times 6)} + \cdots$$

• $\Delta c^{(6)} \propto \sqrt{\Delta \sigma}$ (v.s. $\Delta c^{(6)} \propto \Delta \sigma$ in case interference)

 $\sim \sigma_{SM} \frac{E^2}{\Lambda^2} \times \left(\frac{m_W}{E}\right)^2 \sim \frac{m_W^2}{\Lambda^2} \sim \sigma_{SM} \frac{E^4}{\Lambda^4}$

• EFT expansion fails, e.g. SMxdim8 ~ dim6xdim6, what if SMxdim8 can interfere without suppression?

E.g. SMxdim8 appears not suppressed

Degrande and Li arXiv:2303.10493

Thus, from EFT point of view, naively, power counting goes like

Interference resurrection

CMS-SMP-20-005

Measurement of $W^{\pm}\gamma$ differential cross sections in proton-proton collisions at $\sqrt{s} = 13$ TeV and effective field theory constraints

CERN-EP-2021-219 2022/03/11

p^γ₊ (GeV)

Table 4: Best fit values of C_{3W} and corresponding 95% CL confidence intervals as a function of the maximum p_T^{γ} bin included in the fit.

	-					
$p_{\rm T}^{\gamma}$ cutoff (GeV)	Best fit C_{3W} (TeV ⁻²)		Observed 95% CL (TeV $^{-2}$)		Expected 95% CL (TeV ⁻²)	
	SM+int. only	SM+int.+BSM	SM+int. only	SM+int.+BSM	SM+int. only	SM+int.+BSM
200	-0.86	-0.24	[-2.01, 0.38]	[-0.76, 0.40]	[-1.16, 1.27]	[-0.81, 0.71]
300	-0.25	-0.17	[-0.81, 0.34]	[-0.39, 0.28]	[-0.56, 0.60]	[-0.33, 0.33]
500	-0.13	-0.025	[-0.50, 0.25]	[-0.15, 0.12]	[-0.35, 0.38]	[-0.17, 0.16]
800	-0.20	-0.033	[0.49, 0.11]	[0.10, 0.08]	[-0.29, 0.31]	[-0.097, 0.095]
1500	-0.13	-0.009	[-0.38, 0.17]	[-0.062, 0.052]	[-0.27, 0.29]	[-0.066, 0.065]

[Also see Talk by **Schmitt**]

Observed 95% CL (TeV $^{-2}$)					
SM+int. only	SM+int.+BSM				
[-0.38, 0.17]	[-0.062, 0.052]				

Still quadratic term dominates.

Panico, Riva, Wulzer 17' CMS collaboration 2111.13948

We newly introduce 2-to-4 dilepton + 2 jets

as a new way of resurrecting interference

Hwang, Min, Park, **SON**, Yoo JHEP 08 (2023) 069

Interference resurrection in the total cross section

Effective W Approximation (EWA)

: factorization. Total result ~ treating W as on-shell and convolute xsec with W PDF

Time interval during which virtual W can not be distinguished from on-shell W $\Delta t \sim \frac{E}{V^2}$

Interaction scale of hard-process

 $t \sim \frac{1}{E}$

V : Virtuality of W bosonE : Energy scale of hard-process

Relevant phase space for EWA

$$xE \sim (1-x)E$$
, $\delta_m = \frac{m}{E} \ll 1$, $\delta_\perp = \frac{p_T}{E} \ll 1$ $\longrightarrow \Delta t \sim \frac{E}{V^2} \gg t \sim \frac{1}{E}$

: factorization can be rigorously proven to work

$$\frac{d\sigma_{EWA}(q_i\bar{q}_j \to q'_i\bar{q}'_j X)}{dx_i dx_j dp_{\perp,i} dp_{\perp,j}} = \sum_{r,s} \frac{C_i^2}{2\pi^2} \frac{C_j^2}{2\pi^2} f_r(x_i, p_{\perp,i}) f_s(x_j, p_{\perp,j}) \times d\sigma(W_r^{q_i} W_s^{q_j} \to X)$$

Apparent 2-to-2 process seems to be subject to noninterference.

Interference resurrection

With quark currents attached to both vector bosons, interference seem to be recovered

SM diagram unsuppressed

Many radiation type diagrams

Order-one effect from tchannel type (enhanced soft phase space) ?

Analytic study of resurrection of interference with a toy process

: analytic calculation of 2-to-4 amplitude is extremely challenging, maybe impossible

2-to-3 process is analytically calculable

Replace one W with γ for simplicity \rightarrow only one type of the gauge boson

Calculable 2-to-3 toy example

: better to understand structure

One can choose a gauge where these two diagrams are trashed, but they are important to get correct high E behavior and satisfy Ward identity in genefal.

 ϕ : equivalent to the azimuthal angle of the forward quark

1. For W mass window

Narrow width approximation applied

$$[k^{2} = m_{\ell \nu}^{2} = (2z - 1)\hat{s} \sim m_{W}^{2}]$$

$$u$$

$$u$$

$$\frac{d}{\frac{\pi i}{2}}$$
Recoiled quark
$$u$$

$$\frac{1}{\gamma}$$

$$\frac{1}{\gamma}$$

$$\frac{d}{\frac{\pi i}{2}}$$

$$\frac{$$

2. Off-shell region away from mass window

1. For W mass window [$k^2 = m_{\ell \nu}^2 = (2z - 1)\hat{s} \sim m_W^2$]

Narrow width approximation applied

For $\hat{s} \gg m_W^2$

$$\frac{d\hat{\sigma}_{\rm SM\times BSM}}{d\phi} \sim \frac{1}{4} \frac{\lambda_z}{512 \pi^4} \frac{\pi e^2 g^4}{3} \frac{2}{m_W \Gamma_W} \left[\cos(2\phi) \left(2 - \log \frac{\hat{s}}{m_W^2} \right) \right]$$
$$\frac{d\hat{\sigma}_{\rm BSM^2}}{d\phi} \sim \frac{1}{4} \frac{\lambda_z^2}{512 \pi^4} \frac{\pi e^2 g^4}{6} \frac{\hat{s}}{m_W^3 \Gamma_W}$$

2. Off-shell region away from mass window $[k^2 = m_{\ell\nu}^2 = (2z - 1)\hat{s} \gg m_W^2]$ For $\hat{s} \gg m_W^2$

$$\frac{d\hat{\sigma}_{\text{SM}\times\text{BSM}}(u_L\gamma_L \to d\nu e^+)}{d\phi} \sim \frac{\lambda_z}{512 \pi^4} \frac{e^2 g^4}{m_W^2} \left[-\frac{2}{9} - \frac{\pi^2}{6} \cos\phi + \frac{1}{18} \left(\pi^2 - 26 + 22\ln\frac{\hat{s}}{m_W^2} - 6\ln^2\frac{\hat{s}}{m_W^2} \right) \cos(2\phi) \right]$$

$$\frac{d\hat{\sigma}_{\text{BSM}^2}(u_L\gamma_L \to d\nu e^+)}{d\phi} \sim \frac{\lambda_z^2}{512 \pi^4} e^2 g^4 \frac{\hat{s}}{m_W^4} \left[\frac{1}{24} \left(-9 + 4\ln\frac{\hat{s}}{m_W^2} \right) - \frac{\pi^2}{48} \cos\phi - \frac{1}{12} \cos(2\phi) \right]$$

8/30/23

1. For W mass window [$k^2 = m_{\ell\nu}^2 = (2z - 1)\hat{s} \sim m_W^2$]

Narrow width approximation applied

For $\hat{s} \gg m_W^2$ A term that survives in the total cross section 2. Off-shell region away from mass window $[k^2]$ For $\hat{s} \gg m_W^2$ $\frac{d\hat{\sigma}_{\rm SM\times BSM}(u_L\gamma_L \to d\nu e^+)}{d\phi} \sim \frac{\lambda_z}{512 \pi^4} \frac{e^2 g^4}{m_W^2} \left[-\frac{2}{9} - \frac{\pi^2}{6} \cos\phi + \frac{1}{18} \left(\pi^2 - 26 + 22\ln\frac{\hat{s}}{m_W^2} - 6\ln^2\frac{\hat{s}}{m_W^2} \right) \cos(2\phi) \right]$ $\frac{d\hat{\sigma}_{\text{BSM}^2}(u_L\gamma_L \to d\nu e^+)}{d\phi} \sim \frac{\lambda_z^2}{512 \pi^4} e^2 g^4 \frac{\hat{s}}{m_W^4} \left[\frac{1}{24} \left(-9 + 4\ln\frac{\hat{s}}{m_W^2} \right) - \frac{\pi^2}{48} \cos\phi - \frac{1}{12} \cos(2\phi) \right]$ 8/30/23 16

$$u = \int_{-1/2}^{1/2} k^{\mu} = (z\sqrt{s}) [0, 0, (1-z)\sqrt{s}]$$
Toy Example
: 2-to-3
$$u = \int_{-1/2}^{1/2} k^{\mu} = (z\sqrt{s}) [0, 0, (1-z)\sqrt{s}]$$

$$p_T(q) \cosh \eta = \int_{-1/2}^{1/2} \int_{\sqrt{2z-1}}^{1/2} \frac{1-z_{\min}}{\sqrt{2z-1}} = \delta_{\min}$$

$$p_T(q) \le \delta_{\min} \frac{m_{ev}}{\cosh \eta}$$
I. For W mass window [$k^2 = m_{\ell v}^2 = (2z-1)\hat{s} \sim m_W^2$]
Narrow width approximation applied
For $\hat{s} \gg m_W^2$

$$\frac{d\hat{\sigma}_{SM \times BSM}}{d\phi} \sim \frac{1}{4} \frac{\lambda_z}{512\pi^4} \frac{\pi e^2 g^4}{6} \frac{\hat{s}}{m_W^3} \Gamma_W$$
2. Off-shell region away from mass window
For $\hat{s} \gg m_W^2$

$$\frac{d\hat{\sigma}_{SM \times BSM}(u_L \gamma_L \to dve^+)}{d\phi} \sim \frac{\lambda_z}{512\pi^4} \frac{e^2 g^4}{m_W^2} \left[-\frac{2}{9} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} +$$

8/30/23

17

Derivation of EWA : factorization

Borel, Franceschini, Rattazzi, Wulzer 1202.1904

Including only transverse polarization ...

 $\tilde{p}_{\perp} \equiv p_1 - ip_2 = p_{\perp}e^{-i\phi}, \tilde{p}_{\perp} = p_{\perp}e^{i\phi}$ $\tilde{p}_{\perp} \equiv p_1 - ip_2 = p_{\perp}e^{-i\phi}, \tilde{p}_{\perp} = p_{\perp}e^{i\phi}$ $\phi : \text{azimuthal angle}$

$$= \frac{2C}{V^2} \left[\tilde{p}_{\perp} \left(\mathcal{A}_{+}^{(0,0)} + \mathcal{A}_{+}^{(1,0)} \frac{\tilde{p}_{\perp}}{E} + \mathcal{A}_{+}^{(0,1)} \frac{\tilde{p}_{\perp}^{*}}{E} + \cdots \right) \right. \\ \left. + \tilde{p}_{\perp}^{*} \left(\mathcal{A}_{-}^{(0,0)} + \mathcal{A}_{-}^{(1,0)} \frac{\tilde{p}_{\perp}}{E} + \mathcal{A}_{-}^{(0,1)} \frac{\tilde{p}_{\perp}^{*}}{E} + \cdots \right) \right]$$

8/30/23

Borel, Franceschini, Rattazzi, Wulzer 1202.1904

Derivation of EWA : factorization

q

$$d\sigma(qX \to q'Y)_{\rm EWA} = \frac{1}{2E_q E_X |1 - v_X|} \int_{\phi} \frac{\left|\mathcal{A}^{(0,0)}\right|^2}{2} \frac{d^3 p_{q'}}{2E_{q'}(2\pi)^3} d\Phi_Y(2\pi)^4 \delta^4(p_Y + p_{q'} - p_q - p_X)$$
$$\simeq \frac{2C^2}{V^4} \frac{p_\perp dp_\perp x dx}{(2\pi)^2 2(1 - x)} \times \left[p_\perp^2 \left|\mathcal{A}^{(0,0)}_+\right|^2 + p_\perp^2 \left|\mathcal{A}^{(0,0)}_-\right|^2 + \cdots\right]$$

Different polarization is associated with the different total helicity of the sub-amplitude

$$\times \frac{1}{2E_q 2E_W |v_W - v_X|} d\Phi_Y (2\pi)^4 \delta^4 (p_Y - p_W - p_X)$$

What if it is subject to the 'helicity selection rule'

$$\begin{array}{ccc} \mathcal{A}^{(0,0)}_{-,SM} \neq 0 \\ \mathcal{A}^{(0,0)}_{+,SM} = 0 \\ \mathcal{A}^{(0,0)}_{+,SM} = 0 \end{array} & \begin{array}{c} \mathcal{A}^{(0,0)}_{-,BSM} = 0 \\ \mathcal{A}^{(0,0)}_{+,BSM} \neq 0 \\ \mathcal{A}^{(0,0)}_{+,BSM} \neq 0 \end{array} & \begin{array}{c} e^{-2i\phi} \mathcal{A}^{(0,0)*}_{-,SM} \mathcal{A}^{(0,0)}_{+,BSM} + h.c. \\ \text{vanishes upon the integration over } \phi \\ & : \text{ it meets our usual expectation, or EWA} \end{array}$$

Beyond the relevant region for EWA

[Our computation for the left-handed photon would correspond to (next slide)]

Leading ϕ – independent contributions

$$\left(\frac{\tilde{p}_{\perp}\tilde{p}_{\perp}^{*}}{E^{2}}\right)^{2} \left(\mathcal{A}_{-,SM}^{(1,0)*}\mathcal{A}_{+,BSM}^{(0,1)} + h.c.\right)$$
$$\left(\frac{\tilde{p}_{\perp}\tilde{p}_{\perp}^{*}}{E^{2}}\right) \left|\mathcal{A}_{-,SM}^{(0,0)}\right|^{2} + \left(\frac{\tilde{p}_{\perp}\tilde{p}_{\perp}^{*}}{E^{2}}\right) \left|\mathcal{A}_{+,BSM}^{(0,0)}\right|^{2}$$

: interference will not be caught in EWA

$$\frac{|\mathcal{A}|_{SM \times BSM}^2}{|\mathcal{A}|_{SM}^2} \propto \lambda_z \left(\frac{\tilde{p}_{\perp}}{E}\right)^2 \frac{E^2}{m^2}$$
$$\frac{|\mathcal{A}|_{BSM}^2}{|\mathcal{A}|_{SM}^2} \propto \lambda_z^2 \frac{E^4}{m^4}$$

Beyond the relevant region for EWA : our toy process

 $\epsilon_L \cdot \mathcal{M}$ in the **unitary gauge**

$$p_T(q) = (1-z)\sqrt{\hat{s}}\sin\theta$$
, $m_{ev} = (2z-1)\sqrt{\hat{s}} = E$
 $p_T(q) = p_\perp \sim E\theta$ for $\theta \ll 1$, $z \sim \mathcal{O}(1) \rightarrow \theta \sim \frac{p_\perp}{E}$

$$\begin{aligned} \epsilon_L \cdot \mathcal{M} &= \sum_m \mathcal{C}_m \, e^{\pm i m \phi} \quad \rightarrow \quad \tilde{\theta} \left(\mathcal{M}_+^{(0,0)} + \mathcal{M}_+^{(1,0)} \tilde{\theta} + \mathcal{M}_+^{(0,1)} \tilde{\theta}^* + \cdots \right) \\ &\quad + \tilde{\theta}^* \left(\mathcal{M}_-^{(0,0)} + \mathcal{M}_-^{(1,0)} \tilde{\theta} + \mathcal{M}_-^{(0,1)} \tilde{\theta}^* + \cdots \right) \\ &\quad \tilde{\theta} &\equiv \theta e^{-i\phi} \end{aligned}$$

$$\begin{split} \epsilon_L \cdot \mathcal{M}_{BSM} &= \lambda_z \frac{eg^2}{4m_W^2} \frac{\hat{s}^{5/2} \sqrt{(2z-1)(1-z)} \sin \frac{\theta}{2} e^{-i\phi}}{[(2z-1)\hat{s} - m_W^2] [m_W^2 + \hat{s}(1-z)(1-\cos\theta)]} \\ &\times \left[2\sqrt{2z-1} \sin \psi \cos \theta - (1-\cos\psi) \sin \theta e^{-i\phi} \right. \\ &+ (2z-1)(1+\cos\psi) \sin \theta e^{i\phi} \right] , \\ \epsilon_L \cdot \mathcal{M}_{SM} &= -eg^2 \frac{1}{m_W^2 + \hat{s}(1-z)(1-\cos\theta)} \left[\hat{s}^{3/2} \sqrt{\frac{1-z}{2z-1}} (1+\cos\psi) \sec \frac{\theta}{2} \right. \\ &\times \frac{4(1-z)(2z-1)(1-\cos\theta) - 2(5-4z) \frac{m_W^2}{\hat{s}}}{6[(2z-1)\hat{s} - m_W^2]} \\ &+ \hat{s}^{1/2} \frac{(1-z)^{3/2}}{2z-1} \sin\psi \sec^3 \frac{\theta}{2} \sin \theta e^{i\phi} \\ &+ \hat{s}^{1/2} \left(\frac{1-z}{2z-1} \right)^{3/2} \frac{1}{2} (1-\cos\psi) \sec^5 \frac{\theta}{2} \sin^2 \theta e^{2i\phi} \\ &8/30/2 \hat{s}^{1/2} \frac{(1-z)^{3/2}}{(2z-1)^2} \frac{1}{4} (1-\cos\psi)^2 \csc\psi \sec^7 \frac{\theta}{2} \sin^3 \theta e^{3i\phi} + \cdots \right] , \end{split}$$

In this limit, our result can be compared with the result by Borel Franceschini, Rattazzi, Wulzer

$$\mathcal{M}_{-,SM}^{(0,0)} \neq 0 \qquad \mathcal{M}_{-,BSM}^{(0,0)} = 0$$
$$\mathcal{M}_{+,SM}^{(0,0)} = 0 \qquad \mathcal{M}_{+,BSM}^{(0,0)} \neq 0$$

However, our result work for sizable angle which captures the beyond the EWA phase space

Going back to original 2-to-4 dilepton + 2 jets

1. For Z mass window

Interference may be seen through $\frac{d\sigma}{d\phi_{jj}}$ $\frac{d\sigma}{d\sigma_{SM}/d\phi_{jj}}$ 2. Off-shell region away from Z mass window

Interference through off-shell effect in total cross section

Going back to original 2-to-4 dilepton + 2 jets

1. For Z mass window

CMS $W\gamma$, using 138 fb⁻¹ of data $C_{3W} = [-0.062, 0.052]$ (TeV⁻²)@ 95%CL : dominated by quadratic term

[See Talk by Schmitt for detail]

 $C_{3W}\epsilon_{abc}W^a_{\mu\nu}W^b_{\nu\rho}W^c_{\rho\mu}$

 ϕ_f

CMS-SMP-16-018 (2017)

Electroweak production of two jets in association with a Z boson in proton-proton collisions at $\sqrt{s} = 13$ TeV The CMS Collaboration* $\mathcal{L} = 35.9$ fb⁻¹

Eur. Phys. J. C81 (2021) 163

Differential cross-section measurements for the electroweak production of dijets in association with a Z boson in proton–proton collisions at ATLAS

ATLAS Collaboration*

$$\mathcal{L} = 139 \text{ fb}^{-1} \qquad \frac{d\sigma}{d\sigma_{SM}}$$

8/30/23

$$\frac{d\phi_{jj}}{d\phi_{jj}}$$
 , $\Delta\phi_{jj} = \phi_b - \phi_b$

Assuming $\mathcal{L} = 139 \text{ fb}^{-1}$

• $C_{3W} \sim [-0.13, 0.13] (\text{TeV}^{-2}) @ 95\% \text{CL}$ Our re-analysis 3x weaker : dominated by quadratic term

$$C_{3W} = [-0.19, 0.41] (\text{TeV}^{-2}) @ 95\%\text{C}^{1}$$

: driven by interference term

2. Off-shell region away from Z mass window

: control Hardness of the process

E-growing in Longitudinal polarizations

$$\begin{split} \lambda_{z} &= \lambda_{\gamma} = c_{WWW} \frac{3g^{2}m_{W}^{2}}{2\Lambda^{2}} \\ \delta\kappa_{\gamma} &= (c_{W} + c_{B}) \frac{m_{W}^{2}}{2\Lambda^{2}} \\ \delta g_{1,z} &= c_{W} \frac{m_{Z}^{2}}{2\Lambda^{2}} \end{split}$$
: can be probed by
longitudinal polarizations
& linear term dominates

Goldstone boson equivalence theorem

High E-behavior of diboson is parametrized by 4 pars.

\rightarrow High Energy Primaries (HEP)

Franceschini, Panico, Pomarol, Riva, Wulzer 18' Banerjee, Englert, Gupta, Spannowsky 18' Banerjee, Gupta, Reiness, Seth, Spannowsky 20' Bishara, Englert, Grojean, Panico, Rossia 22'

Vh is currently statistically limited, but it will outperform at the HL-LHC and will be the most efficient process 25

$$\delta g_{1,z} = [-6.3, 5.8] \times 10^{-3}, \qquad \delta \kappa_{\gamma} = [-68, 67] \times 10^{-3}$$

Our projection by EW Zjj at HL-LHC

 $\delta g_{1,z} = [-1.3, 1.7] \times 10^{-3}, \qquad \delta \kappa_{\gamma} = [-7.1, 16.4] \times 10^{-3}$

Projection at HL-LHC using Vh process by Bishara, Englert, Grojean, Panico, Rossia 22'

Summary

1. EW dilepton process can access a wider phase space beyond the EWA limit and resurrect the interference in the total cross section

: soft-phase space enhanced interference (t-channel)

2. Our toy process provides an explicit analytic understanding of the above feature

3. We proposed a new variable controlling the hardness of the subprocess, namely VBFhardness, efficiently exploring off-shell region

: might be useful for any VBF-process which suffers from non-interference

On the sensitivity of aTGC

-0.04

-0.06

-0.2

-0.1

0.0

 $\delta g_{1,z}$

0.1

8/30/23

0.2 -0.5 0.0 0.5 -1.0 $\delta g_{1,z}$

0

1.0

1.5

-2

m_u (GeV) 27

200 400 600 800 100012001400160018002000

