

Multiboson final states with Higgs bosons in CMS and ATLAS

Ulaşcan Sarıca

UC SANTA BARBARA

Office of Science

MBI '23 August 30, 2023

Progress over a decade in measuring...

Progress over a decade in measuring...

Progress over a decade in measuring...

Higgs couplings to other particles

Measurements performed using a combination of multiple Higgs decays

Higgs couplings to other particles

Measurements performed using a combination of multiple Higgs decays

Constraints on production and visible decays

- \rightarrow Measurements so far consistent with the SM
- ightarrow Gluon fusion within ~5%, VBF within ~10%
- \rightarrow Consistent excess in tH, but large uncertainty due to small xsec and $t\bar{t}H$ contamination
- \rightarrow Precision in ZZ, WW, $\gamma\gamma$, and $\tau\tau$ decays ~10%, consistent excess in $Z\gamma$

Constraints on production and visible decays

- ightarrow Measurements so far consistent with the SM
- ightarrow Gluon fusion within ~5%, VBF within ~10%
- \rightarrow Consistent excess in tH, but large uncertainty due to small xsec and $t\bar{t}H$ contamination
- \rightarrow Precision in ZZ, WW, $\gamma\gamma$, and $\tau\tau$ decays ~10%, consistent excess in $Z\gamma$

Evidence for rare $Z\gamma$ decays

Recent analyses of CMS and ATLAS combined:

- → H → $Z\gamma$ evidence @ 3.4 std. dev.
- $\rightarrow \mu_{Z\gamma} = 2.2 \pm 0.7 (1.0 \pm 0.6 \text{ exp.})$

 \rightarrow Agrees with the SM within 1.9 std. dev.

VBF WH

Essentially no sensitivity to sign of κ_Z vs. κ_W from processes that drive their measurements

- → Destructive interference when $\lambda_{WZ} = \frac{\kappa_W}{\kappa_Z} > 0$, especially observable at high $p_T^{H/W}$
- \rightarrow ATLAS analysis with $H \rightarrow b\overline{b}$ and $W \rightarrow \ell \overline{\nu}$
 - → SR⁻, SR⁺_{loose}, and SR⁺_{tight} for different sensitivities to sign of λ_{WZ} (see <u>backup</u> for the SR definitions)

VBF WH

Beyond couplings: STXS

Split production modes finer in specific final states, p_T^H , or m_{jj} Measure the cross section for each 'production bin'

Beyond couplings: STXS (ZZ)

→ 12 STXS categories (reduced Stage 1.1)

→ NN discriminants in many reco. event categories

(see <u>backup</u> for categories)

ATLAS results [link] CMS results [link]

→ CMS results in 4ℓ feature a merged
 STXS 1.2 scheme down to *ttH* categories
 → Analysis relies heavily on matrix
 element discriminants for event
 categorization or background
 discrimination

Beyond couplings: STXS (ZZ)

Parameter Value

Beyond couplings: STXS ($\gamma\gamma$)

→ 28 STXS bins optimized to avoid large correlations

→ Event categorization with multiclass BDTs for each STXS bin

 \rightarrow Further binary classifiers for analysis

CMS results [link]

 \rightarrow Merged STXS 1.2 scheme down to *ttH* categories

 \rightarrow Slightly different merging than 4ℓ

ATLAS

results

[link]

Beyond couplings: STXS (WW)

 \rightarrow Analysis targets ggH, VBF, WH, and

 \rightarrow Competitive VH results from

 $\rightarrow m_T^{\ell\ell}$, $m_{\ell\ell}$, and MVA discriminants (see <u>backup</u> for reco. event cats.)

			SM Prec	itic Unc. liction	
p-value = 53%	Tot	al (Sta	at. Syst.)	SM Und	c.
	1.21 ^{+0.}	16 (+0.	.08 +0.14 .08 -0.13)	± 0.07	
	0.82 ^{+0.}	57 (⁺⁰ 59 (⁻⁰	$^{.30}_{.30}$, $^{+0.49}_{-0.51}$)	± 0.14	
┝╼══╅╢	0.58 ^{+0.}	48 (+0. 48 (-0.	$^{.32}_{.32}$, $^{+0.36}_{-0.36}$)	± 0.15	
	1.46 ^{+0.}	BO (+0.	.63 +0.49 .62 , -0.47)	± 0.19	
	1.59 ^{+0.}	B9 (+0.	.44 , +0.78) .44 , -0.76)	± 0.22	
	2.11 ^{+0.}	B7 (+0. B3 (−0.	.68 + 0.55 .66 , -0.51)	± 0.26	
	0.05 +0.	57 (+0.	.42 +0.39 .38 , -0.41)	± 0.07	
⊨ ∎∎∎∰I	0.56 +0.	63 58 (+0.	.53 +0.35 .48 , -0.34)	± 0.07	
⊢ ∎∎-1	1.18 ^{+0.}	52 (⁺⁰ 45 (⁻⁰	.45 +0.25 .41 , -0.19)	± 0.07	
	1.14 ^{+0.}	40 (+0. 36 (-0.	.37 +0.15 .34 , -0.14)	± 0.08	
	1.17 ^{+0.}	49 (+0. 44 (-0.	45 +0.20 40 , -0.17)	± 0.05	
· • •				·	
1 0 1 0 1	 D /		6		<u> </u>
		$1.21 + 0.0 \\ 0.82 + 0.0 \\ 0.82 + 0.0 \\ 0.82 + 0.0 \\ 0.83 + 0.0 \\ 0.84 + 0.0 \\ 0.58 + 0.0 \\ 0.58 + 0.0 \\ 0.58 + 0.0 \\ 0.58 + 0.0 \\ 0.56 + 0.0 \\ 0.0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Beyond couplings: WW cont., $t\bar{t}H/tH$

Measure total Higgs xsec in bins of $p_{\rm T}^H$, y_H or other variables within a fiducial selection volume

- \rightarrow Examples for $p_{\rm T}^H$
- ightarrow More observables in the linked references
- ightarrow Data consistent with SM so far

Examples for p_{T}^{H} in ATLAS 4ℓ and $\gamma\gamma$ measurements

ightarrow More observables in the linked references

 \rightarrow Data consistent with SM so far

Combination of 4ℓ and $\gamma\gamma$ also available from ATLAS

 \rightarrow Better compatibility with NNLOPS predictions

 \rightarrow Both NNLOPS and aMC@NLO FxFx apply K-factors for N3LO xsec

Separate analyses for gluon fusion and VBF production for $H \rightarrow WW$

 \rightarrow Competitive sensitivity to other channels in gluon fusion at $p_{\rm T}^H > 120~{\rm GeV}$

→ BDT discriminants in $N_I \ge 2$ for VBF measurement

→ Total $\sigma_{\text{fid}}^{\text{VBF}} = 1.68 \pm 0.40$ fb, overest. in simulation but within ~1 std. dev. → Also features results in the SMEFT framework

First Run 3 results: Inclusive fiducial xsecs

SM Higgs potential:

$$V(\phi) = 1/2 \,\mu^2 \phi^{\dagger} \phi + 1/4 \,\lambda \left(\phi^{\dagger} \phi\right)^2$$

 \rightarrow After gauge rotations and using the vacuum expectation v:

$$V(H) = V_0 + \lambda v^2 H^2 + \lambda v H^3 + 1/4H^4$$

→ Allows triple and quartic Higgs couplings
 → Di-Higgs final state @ LHC

Left diagram sensitive to the triple-Higgs coupling through λ \rightarrow Both sensitive to different powers of Htt & Hbb couplings \rightarrow Different ways new physics could change this interaction

Di-Higgs measurements done using events with a larger multiplicity of particles and/or jets

Different final states either dirtier but with larger Higgs decay probability (e.g., $HH \rightarrow 4b$), or cleaner in bkgs. with smaller decay rates ($HH \rightarrow b\bar{b}\gamma\gamma$).

Uncertainties statistically dominated, but some channels will only barely reach an observation threshold by the end of HL-LHC.

WW yy

bb WW

bb γγ 🐥

bb ττ 🐥

bb bb 🐣

Di-Higgs measurements done using events with a larger multiplicity of particles and/or jets

Different final states either dirtier but with larger Higgs decay probability (e.g., $HH \rightarrow 4b$), or cleaner in bkgs. with smaller decay rates ($HH \rightarrow bb\gamma\gamma$).

Uncertainties statistically dominated, but some channels will only barely reach an observation threshold by the end of HI-IHC.

> Interaction rate is tiny, so we can only place limits.

 \rightarrow Take $HH \rightarrow 4b$: -Max. ~ 1450 events / $10^{16} pp$ interactions \rightarrow Rates enhances in BSM cases

Theory

Di-Higgs measurements done using events with a larger multiplicity of particles and/or jets

Different final states either dirtier but with larger Higgs decay probability (e.g., $HH \rightarrow 4b$), or cleaner in bkgs. with smaller decay rates ($HH \rightarrow b\bar{b}\gamma\gamma$).

Uncertainties statistically dominated, but some channels will only barely reach an observation threshold by the end of HL-LHC.

[Link]

Summary of ATLAS results

Di-Higgs measurements done using events with a larger multiplicity of particles and/or jets

Different final states either dirtier but with larger Higgs decay probability (e.g., $HH \rightarrow 4b$), or cleaner in bkgs. with smaller decay rates ($HH \rightarrow b\bar{b}\gamma\gamma$).

Uncertainties statistically dominated, but some channels will only barely reach an observation threshold by the end of HL-LHC. Summary of ATLAS results

Di-Higgs measurements done using events with a larger multiplicity of particles and/or jets

Different final states either dirtier but with larger Higgs decay probability (e.g., $HH \rightarrow 4b$), or cleaner in bkgs. with smaller decay rates ($HH \rightarrow bb\gamma\gamma$).

Uncertainties statistically dominated, but some channels will only barely reach an observation threshold by the end of HL-LHC.

Summary of ATLAS results

Higgs self-couplings: Di-Higgs in VHH

Can have proportions of HHH (x) HVV, HVV (x2), and HHVV diagrams different from the SM \rightarrow HH \rightarrow 4b in both CMS & ATLAS

Higgs self-couplings: Di-Higgs in VHH

Higgs self-couplings: Di-Higgs in VHH

Can have proportions of HHH (x) HVV, HVV (x2), and HHVV diagrams different from the SM \rightarrow HH \rightarrow 4b in both CMS & ATLAS \rightarrow Different couplings reflect on kinematics

 \rightarrow Use BDTs to separate couplings

Higgs self-couplings: Di-Higgs in VHH (CMS)

CMS results [link]

Results obtained by keeping the parameters not shown fixed to SM

- \rightarrow Complementary to HH final state results
- \rightarrow Independent of κ_t and modelling of loops

Higgs self-couplings: Di-Higgs in VHH (ATLAS)

Results in κ_{2V} and κ_{λ}

 \rightarrow Constraints similar to CMS

 \rightarrow Additional results in terms of κ_{2Z} and κ_{2W} , or high-mass spin-0 bosons also featured

Summary of κ_{λ} and κ_{2V} limits from CMS analyses \rightarrow Limits @ 95% CL from Nature publication: $-1.24 < \kappa_{\lambda} < 6.49$ $0.67 < \kappa_{2V} < 1.38$

Summary of κ_{λ} and κ_{2V} limits from ATLAS analyses Limits @ 95% CL: $-1.4 < \kappa_{\lambda} < 6.1 (H + HH \text{ comb.})$ $0.1 < \kappa_{2V} < 2.0$

Higgs self-couplings: Di-Higgs final states

CMS nonresonant $HH \rightarrow 4b$

Event categories for ggF and different levels of VBF purity → VBF categories shown above Limits @ 95% CL: -9.9 < κ_{λ} < 16.9 0.62 < κ_{2V} < 1.41

ATLAS nonresonant $HH \rightarrow 4b$

Event categories for ggF and VBF with SR and CR divisions along $m_{H1} - m_{H2}$ plane

Limits @ 95% CL: $-3.9 < \kappa_{\lambda} < 11.1$ $-0.03 < \kappa_{2V} < 2.11$ $\mu_{HH} < 5.4$ Many exciting results from CMS and ATLAS to understand Higgs boson properties.

Excellent progress in exploiting kinematic information, more progress in the horizon.

No new physics yet \mathfrak{S} , but we have just started looking for it \mathfrak{S} .

Stay tuned for

- \rightarrow dedicated talks on some of the measurements, and
- \rightarrow more exciting results in the future!

CMS references

Run 2 couplings combination: https://doi.org/10.1038/s41586-022-04892-x Run 2 VH, $H \rightarrow c\bar{c}$: http://arxiv.org/abs/2205.05550 Run 2 Z γ measurement: https://doi.org/10.1007/JHEP05(2023)233 Run 2 $\gamma\gamma$ cross sections: https://doi.org/10.1007/JHEP07(2021)027 Run 2 4 ℓ cross sections: https://doi.org/10.1140/epjc/s10052-021-09200-x Run 2 $\gamma\gamma$ fiducial cross sections: https://arxiv.org/abs/2208.12279 Run 2 WW fiducial cross sections: https://doi.org/10.1007/JHEP03(2021)003 Run 2 WW cross sections: https://doi.org/10.1140/epjc/s10052-023-11632-6 Run 2 ttH multilepton cross sections: https://doi.org/10.1140/epjc/s10052-021-09014-x Run 2 4 ℓ fiducial cross sections: https://doi.org/10.1007/JHEP08(2023)040 Run 2 di-Higgs bbWW: https://cds.cern.ch/record/2853597 Run 2 di-Higgs WW $\gamma\gamma$: https://cds.cern.ch/record/2840773 Run 2 di-Higgs, nonresonant $HH \rightarrow 4b$: https://doi.org/10.1103/PhysRevLett.131.041803 Run 2 VHH: https://cds.cern.ch/record/285338

ATLAS references

Run 2 couplings combination: https://www.nature.com/articles/s41586-022-04893-w Run 2 $Z\gamma$ measurement: https://doi.org/10.1016/j.physletb.2020.135754 Run 2 $Z\gamma$ combination w/ CMS: http://cds.cern.ch/record/2860129 Run 2 VBF WH: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-057 Run 2 4^{*l*} cross sections: https://doi.org/10.1140/epic/s10052-020-8227-9 Run 2 WW cross sections: https://doi.org/10.1103/PhysRevD.108.032005 Run 2 VH, $H \rightarrow WW$ cross sections: https://cds.cern.ch/record/2842519 Run 2 $\gamma\gamma$ cross sections: https://doi.org/10.1007/JHEP07(2023)088 Run 2 4ℓ fiducial cross sections: https://doi.org/10.1140/epic/s10052-020-8223-0 Run 2 γγ fiducial cross sections: https://doi.org/10.1007/JHEP08(2022)027 Run 2 4 ℓ + $\gamma\gamma$ fiducial cross sections combination: https://doi.org/10.1007/JHEP05(2023)028 Run 2 gg \rightarrow H \rightarrow WW fiducial cross sections: <u>https://cds.cern.ch/record/2846335</u> Run 2 VBF H \rightarrow WW fiducial cross sections: https://cds.cern.ch/record/2855725 First Run 3 results on $4\ell + \gamma\gamma$ fiducial cross sections: https://cds.cern.ch/record/2862412 Run 2 VHH: https://doi.org/10.1140/epic/s10052-023-11559-y Run 2 Di-Higgs combination: https://doi.org/10.1016/j.physletb.2023.137745 Run 2 Di-Higgs $HH \rightarrow bb\gamma\gamma$: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-050 Run 2 Di-Higgs nonresonant $HH \rightarrow 4b$: https://cds.cern.ch/record/2845544

Back-up

(Less) common ways to produce a SM Higgs in *pp* collisions

tH and *tHW*: Allows to resolve relative phase of *Htt* and *HWW* couplings

Η

Ζ

Correlations of signal strengths (CMS)

ATLAS VBF WH analysis categories

Variable	Description	SR^{-}	SR ⁺ _{loose}	SR ⁺ _{tight}	
$m_{b\bar{b}}$	Invariant mass of the two <i>b</i> -jets ($b\bar{b}$ system).	$\in (105, 145) \mathrm{GeV}$	$\in (105, 145) \text{GeV}$	\in (105, 145) GeV	
$\Delta R_{b\bar{b}}$	ΔR between the two <i>b</i> -jets.	< 1.2	< 1.6	< 1.2	
$p_{ m T}^{bar{b}}$	$p_{\rm T}$ of the $b\bar{b}$ system.	> 250 GeV	> 100 GeV	> 180 GeV	
m_{jj}	Invariant mass of the VBF jets.	_	> 600 GeV	> 1000 GeV	
$ \Delta y_{jj} $	Rapidity separation of the VBF jets.	> 4.4	> 3.0	> 3.0	
$m_{\rm top}^{\rm lep}$	Invariant mass of the W and either	> 260 GeV	> 260 GeV	> 260 GeV	
	<i>b</i> -jet which is closest to 172.7 GeV.	> 200 dev	> 200 dev		
٤ -	$\frac{ y_{Wb\bar{b}} - y_{jj} }{ \Delta y_{ij} }$, where $y_{Wb\bar{b}}$ and y_{jj} are the rapidity	< 0.2	< 0.2	< 0.2	
$\xi_{Wb\bar{b}}$	of the $Wb\bar{b}$ system and the VBF-jet system.	< 0.3	< 0.5	< 0.5	
	Azimuthal separation between the			> 2.7	
$\Delta \phi(W DD, JJ)$	$Wb\bar{b}$ system and the VBF-jet system.	_	_		
Azveto	Number of non-tagged, non-VBF jets		z 1	= 0	
¹ v jets	with $p_{\rm T} > 25$ GeV and $ \eta < 2.5$.	_	≤ 1		

[Link]

ATLAS STXS ZZ categories

[Link]

ATLAS √s = 13 TeV, 139 fb⁻¹

CMS STXS WW categories

[Link]

Category	SR subcategorization	SR fit variable	Contributing CRs	N _{subcategories}
ggH DF	$(0j, 1j) \times (p_{T2} \leq 20 \text{ GeV}) \times (\ell^{\pm} \ell^{\mp}), (\geq 2j)$	$(m_{\ell\ell}, m_{\mathrm{T}}^{\mathrm{H}})$	Top quark, ττ	15
ggH SF	$(0j, 1j, \ge 2j) \times (ee, \mu\mu)$	Nevents	Top quark, WW	12
VBF DF	$\max_j C_j$	DNN output	Top quark, ττ	6
VBF SF	(ee, μμ)	Nevents	Top quark, WW	4
WHSS	$(DF, SF) \times (1j, 2j)$	$\widetilde{m}_{ m H}$	WZ	4
WH3ℓ	SF lepton pair with opposite or same sign	BDT output	WZ, Ζγ	4
ZH3ℓ	(1j, 2j)	$m_{\mathrm{T}}^{\mathrm{H}}$	WZ	4
ZH4ℓ	(DF, SF)	BDT output	ZZ	3
VH2j DF	_	$m_{\ell\ell}$	Top quark, ττ	3
VH2j SF	(ee, µµ)	Nevents	Top quark, WW	4

ATLAS STXS WW categories

→ Another way to go beyond simple coupling constants is to measure the aggregate Higgs boson production xsec in bins of p_T^H , y_H or other kinematic variables within a fiducial selection volume.

 \rightarrow Example fiducial volume from CMS 4 ℓ analysis (also in next slide):

Requirements for the $\mathrm{H} ightarrow 4\ell$ fiducial phase space					
Lepton kinematics and isolation					
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 20\mathrm{GeV}$				
Next-to-leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 10\mathrm{GeV}$				
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) { m GeV}$				
Pseudorapidity of electrons (muons)	$ \eta <$ 2.5 (2.4)				
Sum of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 p_{\mathrm{T}}$				
Event topology					
Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above					
Inv. mass of the Z_1 candidate	$40 < m_{Z_1} < 120 \text{GeV}$				
Inv. mass of the Z_2 candidate	$12 < m_{Z_2} < 120 \text{GeV}$				
Distance between selected four leptons $\Delta R(\ell_i, \ell_j) > 0.02$ for					
Inv. mass of any opposite sign lepton pair $m_{\ell^+\ell'^-} > 4 \text{GeV}$					
Inv. mass of the selected four leptons	$105 < m_{4\ell} < 140{ m GeV}$				

 \rightarrow Higgs boson production outside of the fiducial volume is 'background'.

 \rightarrow Measure true cross section after unfolding, and efficiency and acceptance corrections.

Fiducial volume in CMS 4ℓ

Requirements for the $H \rightarrow 4\ell$ fiducial phase	space
Lepton kinematics and isolation	
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 20\mathrm{GeV}$
Next-to-leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 10\mathrm{GeV}$
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) { m GeV}$
Pseudorapidity of electrons (muons)	$ \eta <$ 2.5 (2.4)
Sum of scalar p_T of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 p_{\mathrm{T}}$
Event topology	
Existence of at least two same-flavor OS lepton pairs, where leptons	satisfy criteria above
Inv. mass of the Z_1 candidate	$40 < m_{Z_1} < 120 \text{GeV}$
Inv. mass of the Z_2 candidate	$12 < m_{Z_2} < 120 \text{GeV}$
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-}>4{ m GeV}$
Inv. mass of the selected four leptons	$105 < m_{4\ell} < 140{ m GeV}$

Fiducial volume and obs. in CMS $\gamma\gamma$

Phase Space Region	Observable]	Bin bou	ndarie	5		
	$p_{\mathrm{T}}^{\gamma\gamma}$	0	5	10	15	20	25	30	35
		45	60	80	100	120	140	170	200
		250	350	450	∞				
	n _{jets}	0	1	2	3	≥ 4			
	$ y^{\gamma\gamma} $	0.0	0.1	0.2	0.3	0.45	0.6	0.75	0.90
Baseline		2.5	0.07	0.15	0.00	0.05	0.45	0 55	0 75
$p_{\rm T}^{\gamma_1}/m_{\alpha\alpha} > 1/3$	$ \cos(\theta^*) $	0.0	0.07	0.15	0.22	0.35	0.45	0.55	0.75
$p_{\rm T}^{\gamma_2}/m_{\star} > 1/4$	$ \phi^* $	1.0	0.05	0.1	0.2	03	0.4	0.5	07
$ n^{\gamma} < 2.5$	$ \Psi_{\eta} $	1.0	1.5	0.1	0.2	0.0	0.4	0.5	0.7
$\mathcal{I}_{\text{gen}}^{\gamma} < 10 \text{GeV}$		2.5	4.0	∞					
gen	$p_{\rm T}^{\gamma\gamma}$, $n_{\rm inte} = 0$	0	5	10	15	20	25	30	35
	r I , est	45	60	∞					
	$p_{\rm T}^{\gamma\gamma}$, $n_{iete} = 1$	0	30	60	100	170	∞		
	$p_{\gamma\gamma}^{\gamma\gamma}, n_{iets} > 1$	0	100	170	250	350	∞		
	n^b_{iata}	0	1	> 2					
	nlantons	0	1	> 2					
	pmiss	0	30	50	100	200	∞		
	n^{j_1}	30	40	55	75	95	120	150	200
	<i>P</i> 1	∞	10	00	, 0	20	120	100	200
	$ \gamma^{j_1} $	0.0	0.3	0.6	0.9	1.2	1.6	2.0	2.5
1-jet	$ \Delta \phi_{\gamma\gamma,i_1} $	0.0	2.0	2.6	2.85	3.0	3.07	π	
Baseline $+ \ge 1$ jet	$ \Delta y_{\gamma\gamma,i_1} $	0.0	0.3	0.6	1.0	1.4	1.9	2.5	∞
$p_{\rm T}^{\rm J} > 30~{ m GeV}$	τ_{c}^{j}	< 15	15	20	30	50	80	∞	
$ \eta^{ m J} < 2.5$	$p_{\rm T}^{\gamma\gamma}, \tau_{Ci} < 15 { m GeV}$	0	45	120	∞				
	$p_T^{\gamma\gamma}$, 15 GeV $< \tau_C^j < 25$ GeV	0	45	120	∞				
	$v_{T}^{\gamma\gamma}$, 25 GeV $< \tau_{C}^{j} < 40$ GeV	0	120	∞					
	$n_{\gamma\gamma}^{\gamma\gamma}$ 40 GeV $< \tau_{\gamma}^{J}$	0	200	350	∞				
	p_{1} , p_{2}	30	40	65	90	150	~		
2.1.1	P_{T}	0.0	40 0.6	12	18	25	35	5.0	
2-jets $2 = 2 = 2$	$ \phi^{-} $	0.0	0.5	0.9	1.3	1.7	2.5	π	
baseline $+ \ge 2$ jets	$ \Delta \varphi_{J_1,J_2} $	0.0	2.0	27	2.95	3.07	π	70	
$p'_{\rm T} > 30 \text{ GeV}$	$ \vec{n}, \vec{n} - \vec{n} $	0.0	0.2	0.5	0.85	12	17	~	
$ \eta' < 4.7$	$\gamma_{1_1 1_2} \gamma_{\gamma \gamma}$	0.0	75	120	180	300	500	1000	\sim
	$ \Delta n_{i} $	0.0	0.7	1.6	3.0	5.0	∞	1000	\sim
VBF-enriched	$n_{\gamma}^{\gamma\gamma}$	0	30	60	120	200	00		
2-jets + $n_{\text{iets}} \ge 2$	r 1 19 ¹ 2	30	40	65	90	150	0		
$\Lambda n^{jj} > 3.5$	P_{T}	0.0	0.5	0.9	1.3	1.7	2.5	π	
$m^{jj} > 200 \text{GeV}$	$ \Delta \varphi_{J_1,J_2} $	0.0	2.0	27	2.95	3.07	π	71	
	$ \Delta \psi_{\gamma \gamma, j_1 j_2} $	0.0	2.0	2.7	2.90	3.07	π		

Fiducial volume and obs. in CMS WW

Observable	Condition
Lepton origin	Direct decay of $H \rightarrow W^+W^-$
Lepton flavors; lepton charge	$e\mu$ (not from τ decay); opposite
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}}^{l_1} > 25\mathrm{GeV}$
Trailing lepton $p_{\rm T}$	$p_{\rm T}^{l_2} > 13 { m GeV}$
$ \eta $ of leptons	$ \eta < 2.5$
Dilepton mass	$m^{ll} > 12 \mathrm{GeV}$
$p_{\rm T}$ of the dilepton system	$p_{\mathrm{T}}^{ll} > 30 \mathrm{GeV}$
Transverse mass using trailing lepton	$m_{\mathrm{T}}^{l_2} > 30 \mathrm{GeV}$
Higgs boson transverse mass	$m_{\mathrm{T}}^{\mathrm{H}} > 60 \mathrm{GeV}$

Jet counting: All jets clustered with the anti- $k_{\rm T}$ algo. with $p_{\rm T}>30~{\rm GeV}$