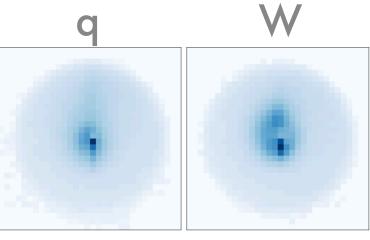
Physics-inspired ML For boson tagging

Daniel Whiteson, UC Irvine Aug 2023

Motivation

Deep networks find new power for jet substructure



<u>1603.09349</u>

But these are fairly simple objects.

- Can we extend this to many bosons?
- Can we interpret the trained ML?
- Can we incorporate physics knowledge?

2202.00723

- Can we extend this to many bosons?

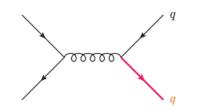
Resolving Extreme Jet Substructure

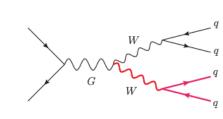
Yadong Lu^a Alexis Romero^b Michael James Fenton^b Daniel Whiteson^b Pierre Baldi^c

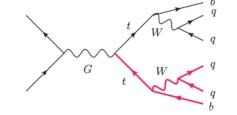
^aDepartment of Statistics, University of California, Irvine, CA, USA 92627 ^bDepartment of Physics and Astronomy, University of California, Irvine, CA, USA 92627 ^cDepartment of Computer Science, University of California, Irvine, CA, USA 92627 E-mail: yadongl1@uci.edu, alexir2@uci.edu, m.fenton@uci.edu, daniel@uci.edu, pfbaldi@uci.edu

- Fat jets with up to eight hard subjets!

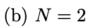
Higgses and Ws



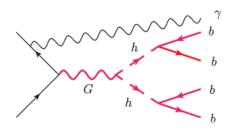


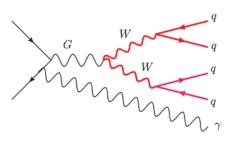


(a) N = 1

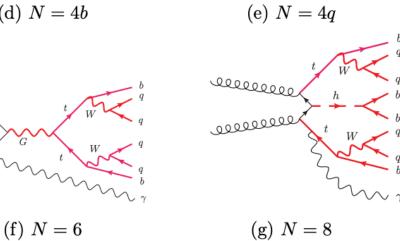


(c) N = 3



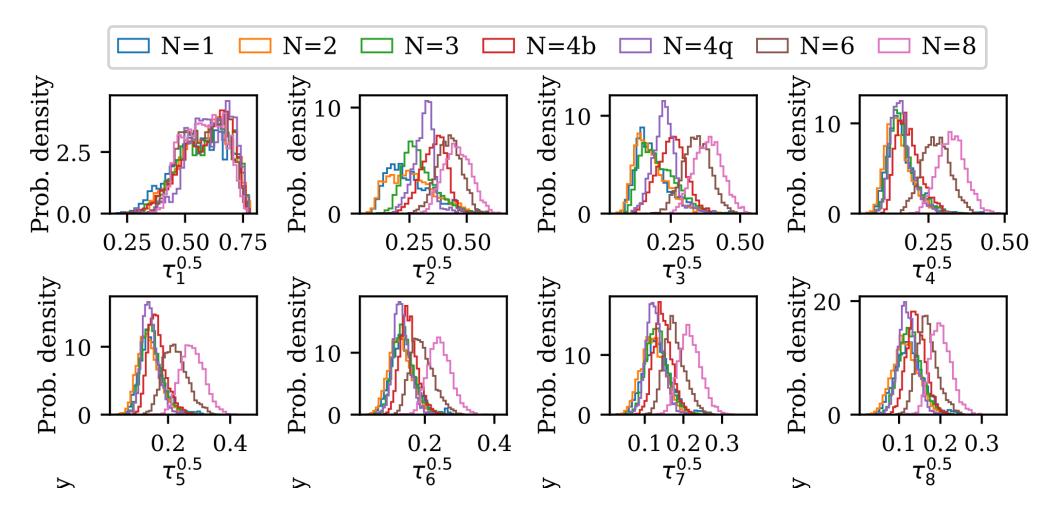


(d) N = 4b



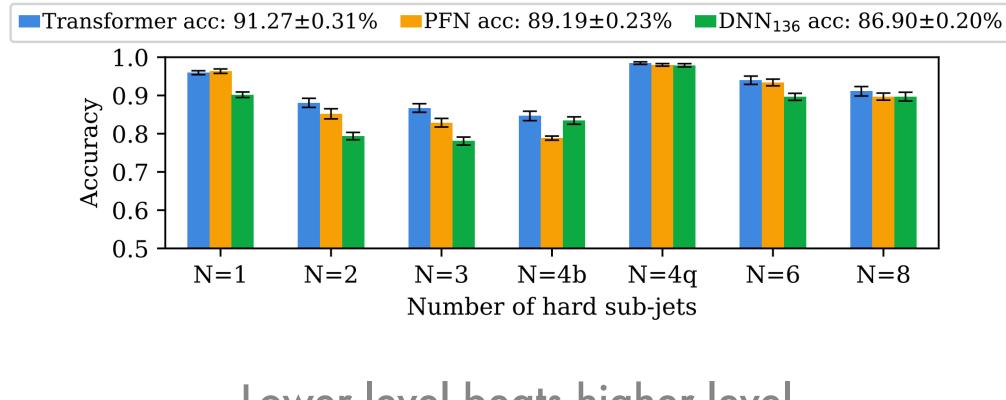
Jets in range pt=[1.0,1.2] TeV Mass=300-700 GeV

Physics observables



And many (136 total) more!

Performance



Lower level beats higher level Gap smaller for higher N

What has it learned?

The Machines

How to interpret?

Mapping Machine-Learned Physics into a Human-Readable Space

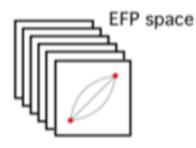
Taylor Faucett,¹ Jesse Thaler,^{2,3} and Daniel Whiteson¹

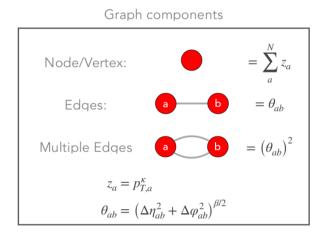
https://arxiv.org/abs/2010.11998

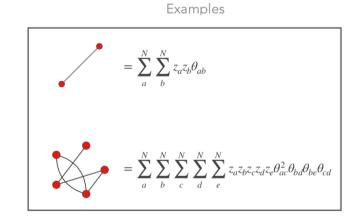
Hows

I. Define space of interpretable observables

- provides context
- defines problem
- does NN live in this space?
- Can it be compactly represented?
- Yes or No are both interesting!







Hows

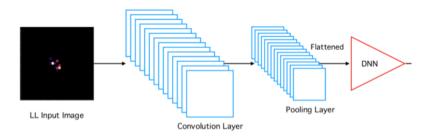
I. Define space of interpretable observables

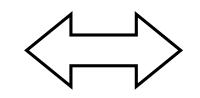
- provides context
- defines problem
- does NN live in this space?
- Can it be compactly represented?
- Yes or No are both interesting!

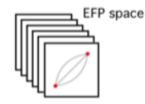
II. Define mapping metric

- how do you compare two solutions?
- can't use functional identity or linear correlation

Mapping







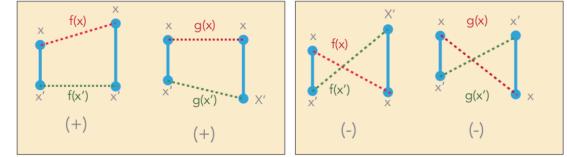
Function sameness

Complete equivalence not the idea

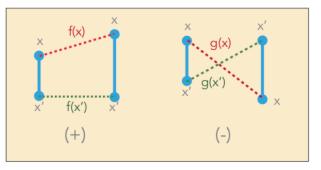
Any 1:1 transformation of function has no impact in our context

Only care about the ordering of points not the actual function values

Similar Orderings



Dissimilar Orderings



Muons

Learning to Isolate Muons

Julian Collado,¹ Kevin Bauer,² Edmund Witkowski,² Taylor Faucett,² Daniel Whiteson,² and Pierre Baldi¹

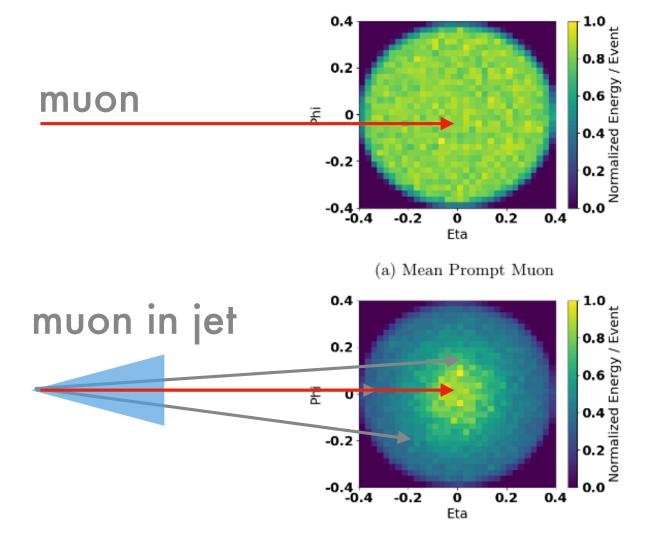
¹Department of Computer Science, University of California, Irvine, CA, 92697 ²Department of Physics and Astronomy, University of California, Irvine, CA 92697 (Dated: February 2, 2021)

Learning to Isolate Muons in Data 2306.15737

Edmund Witkowski,^{1,*} Benjamin Nachman,^{2,3,†} and Daniel Whiteson^{1,‡}

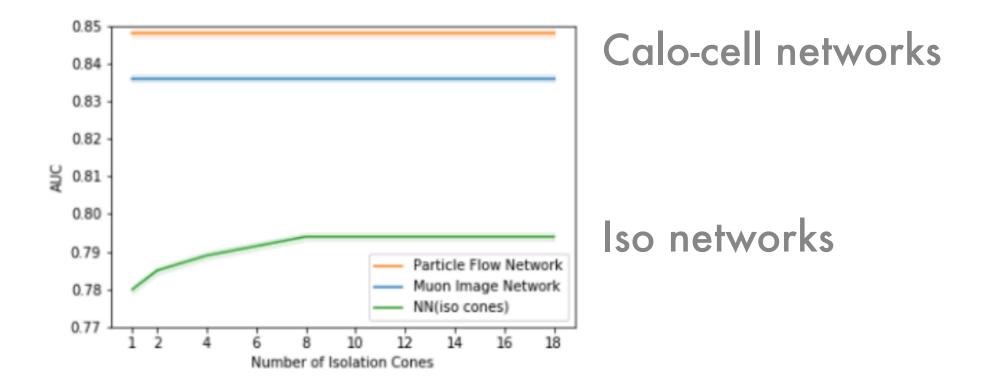
¹Department of Physics and Astronomy, University of California, Irvine, CA 92697 ²Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ³Berkeley Institute for Data Science, University of California, Berkeley, CA 94720, USA (Dated: June 29, 2023)

Muons



(b) Mean Non-prompt Muon

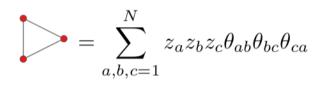
Results

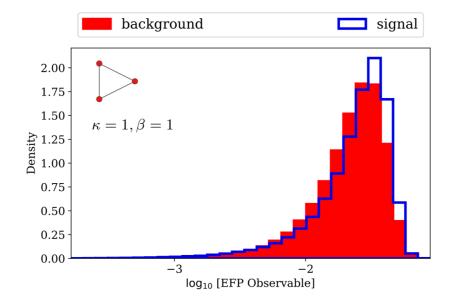


More iso cones improves performance Isolation cannot match calo-cell networks

Useful observable

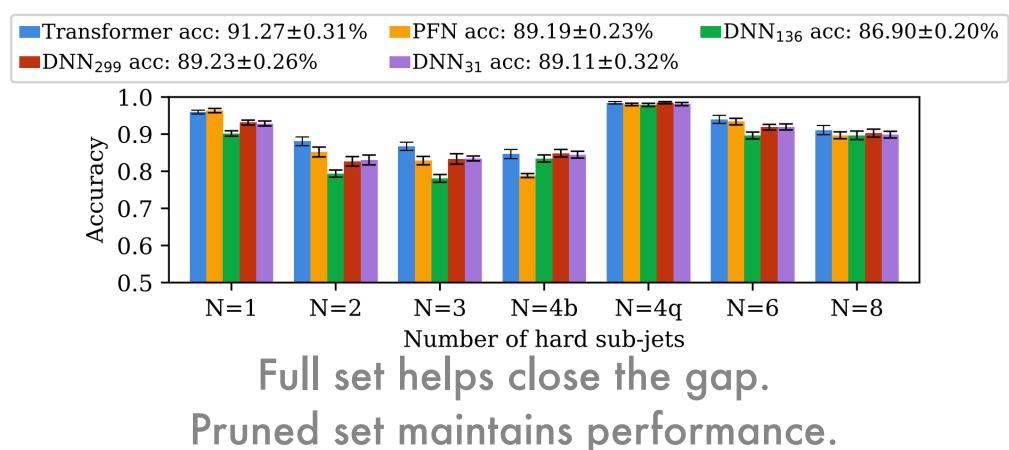
This observable helps!





Back to bosons

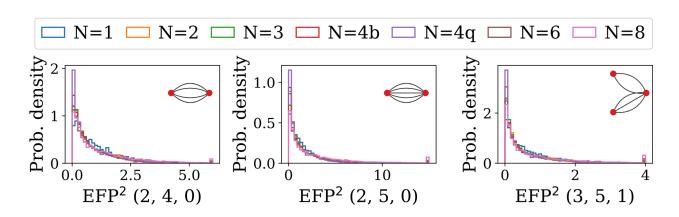
- 1. Build a lot of EFPs
- 2. Add to our high-level set (299)
- 3. Prune the ones we don't need (31)



What does it mean?

Rank them by importance

Rank	Observable	Accuracy drop
1	EFP^2 (2, 4, 0)	$50.60 \pm 1.95\%$
2	$EFP^2 (2, 5, 0)$	$44.81 \pm 2.28\%$
3	EFP^2 (3, 5, 1)	$41.68 \pm 2.35\%$
4	$ au_1^1$	$41.49 \pm 1.06\%$
5	EFP^{1} (2, 4, 0)	$38.81 \pm 1.41\%$
6	$\mathrm{EFP}^{0.5}~(4,3,1)$	$37.99 \pm 1.02\%$
7	$\mathrm{EFP}^{0.5}~(2,2,0)$	$37.26 \pm 1.38\%$
8	EFP^2 (4, 5, 0)	$35.37 \pm 0.70\%$
9	$ au_2^1$	$34.97 \pm 0.63\%$
10	$\mathrm{EFP}^{0.5}~(2,5,0)$	$33.66 \pm 2.02\%$
11	$ au_3^1$	$30.26 \pm 1.08\%$
12	Norm. Jet Mass	$29.44 \pm 0.92\%$
13	$ au_2^{0.5}.$	$29.38 \pm 0.90\%$
14	EFP^2 (4, 5, 2)	$27.66 \pm 1.66\%$
15	$EFP^1 (3, 5, 3)$	$27.58 \pm 0.88\%$
16	$ au_4^1$	$26.74 \pm 0.96\%$



Add physics in advance

Take advantage of symmetries

These are the same dog. Should have same representation, network output

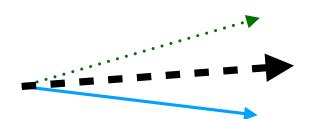
Add physics in advance

Take advantage of symmetries

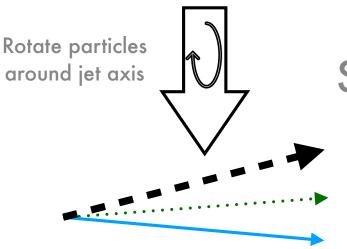
Learn with less data

Build symmetry constraints into networks, or
Augment dataset with symmetric copies

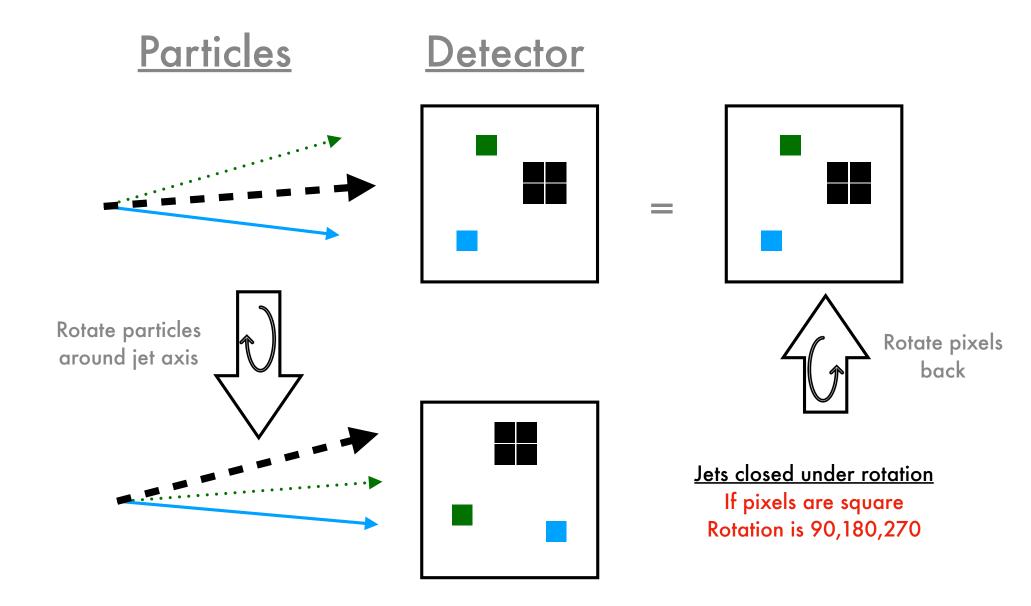
Particles

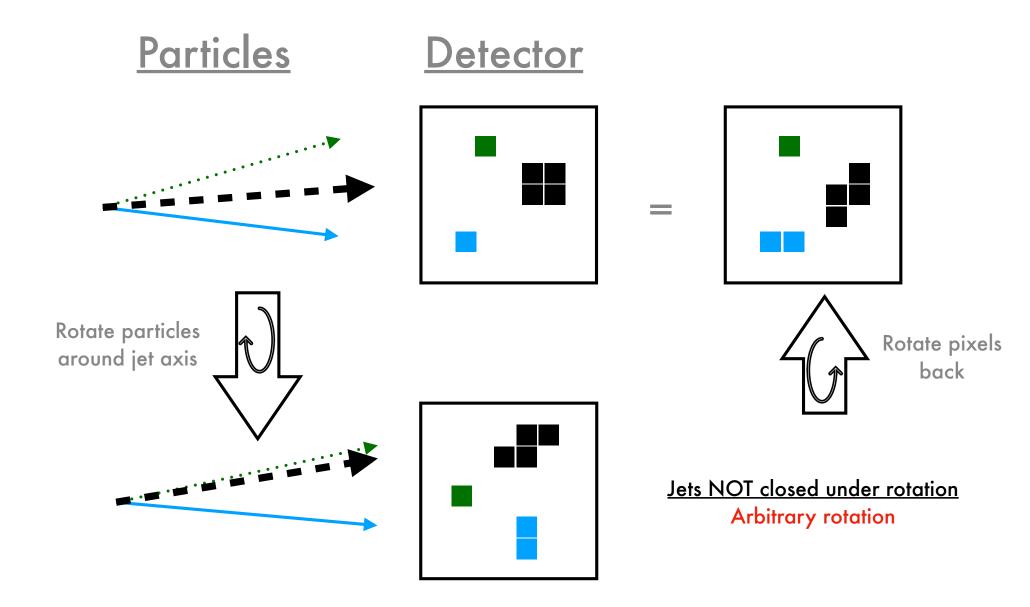


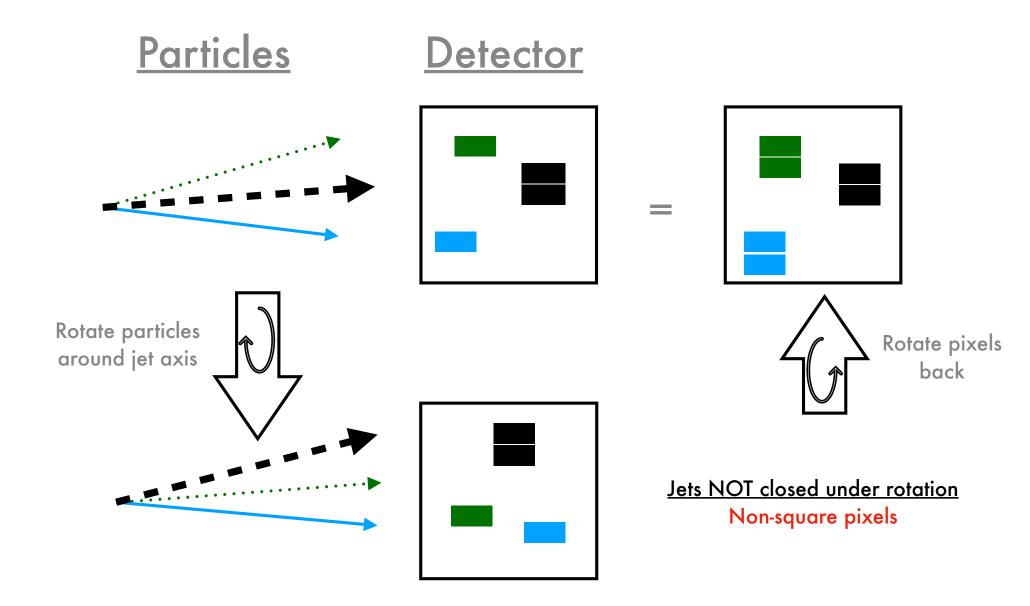
Jet rotation around axis has no effect on physics.



These are the same jet. Should have same representation, network output







Symmetry

The true, hidden symmetry is pre-detector

The detector breaks the symmetry

We cannot learn the symmetry from augmented post-detector data

We should not impose the symmetry on post-detector data

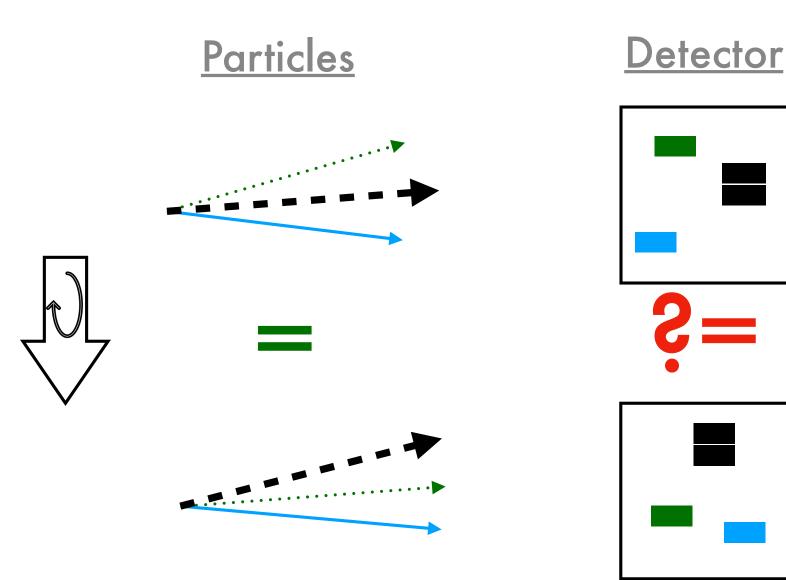
Upcoming paper

Learning with Hidden Symmetries

Edmund Witkowski¹ and Daniel Whiteson¹

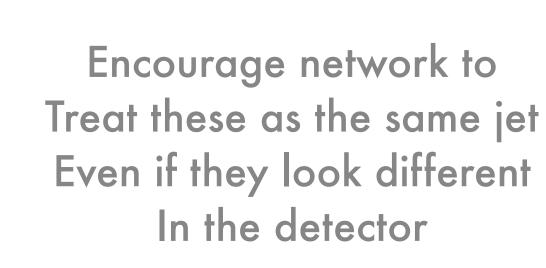
¹Department of Physics and Astronomy, University of California, Irvine, CA92697 (Dated: August 29, 2023)

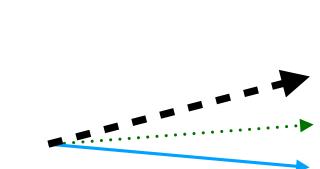
Using hidden symmetries



Using hidden symmetries

Particles

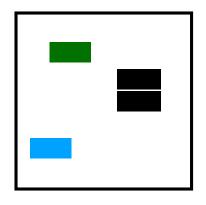


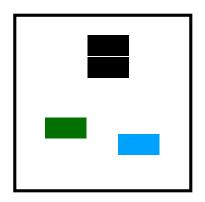


Using hidden symmetries

Particles

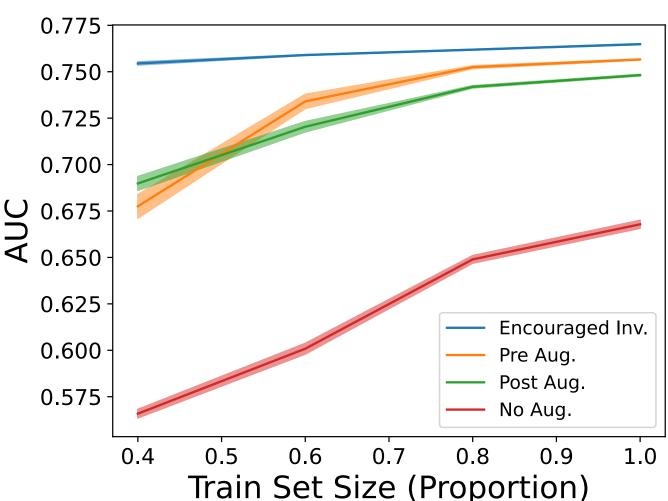
Detector





Results

Simple toy dataset: grid of non-square cells



Encouraged invariance helps even more!

Pre-detector augmentation helps more

Post-detector augmentation helps

Summary

We can extend jet tagging to many bosons

We can even decode what the network learns

We can incorporate hidden symmetries to boost learning