

Magnetic Energy Storage &

Ocean Energy Conversion

Luis García-Tabarés CIEMAT

Industrial Workshop on HTS Developments & Applicatios

TRIESTE April 18th 2023

CIEMAT Presentation

CIEMAT is a Governmental Laboratory (Research Public Institution of the Ministry of Science & Innovation). With 1300 engineers, researchers and staff & 100 M€ annual budget. CIEMAT is divided in 5 technical departments including the Technology Department where the Division of Electrical Engineering is ascribed. This Division has been involved in applications of Power Superconductivity for more that 30 years.

TUNING QUAD FOR LHC

SMES FOR ASINEL

MQTL FOR LHC

MgB₂ COILS FOR TECNALIA

MCBXFA&B FOR HL-LHC
THE PRISMAC PROJECT

1990 20

LHC CORRECTORS

Nb₃ Sn SOLENOIDS

BSCO 2212 CURRENT LEADS FOR LHC

QUAD & DIPOLES FOR EXFEL

CYCLOTRON AMIT & CREATION OF CYCLOMED

Relevant Applications of Superconductors

MEDICAL

SCIENCE

HEP Accelerators

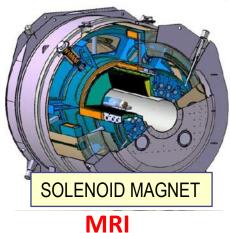
ENERGY

Storage

Transmission

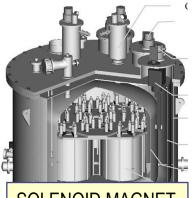
TRANSPORT

Maglev

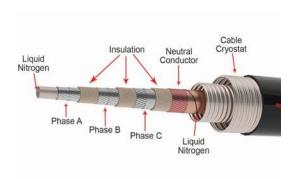


Relevant Applications of Superconductors

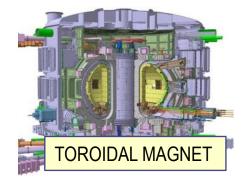

MEDICAL

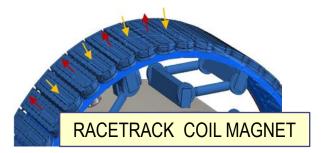


SCIENCE

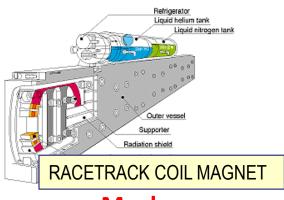


HEP Accelerators




SOLENOID MAGNET Storage

ENERGY

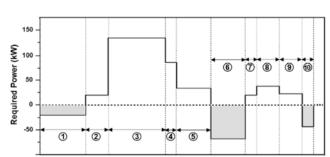


Transmission

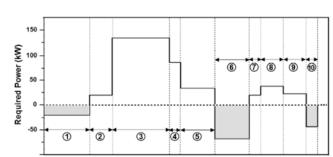
TRANSPORT

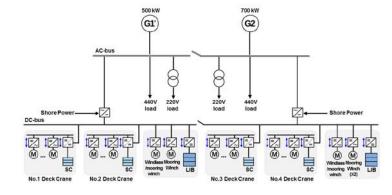
Maglev

Development of HTS SMES for Waterborne Transport Applications


The need & benefit of Energy Storage On-Board

maintained) number of cycles.




Mission: 126 crossings per day of the Seine. Only 3 minutes between crossings, and 3-30 minutes stops the rest of the day.

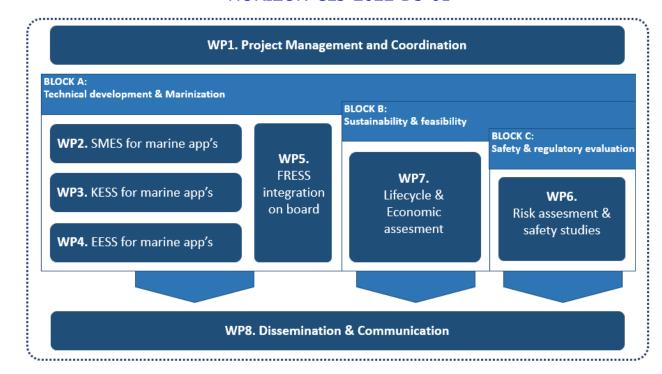
To substitute propulsion **ESS needs: 60kW, 5MJ (84 s.)** (Diesel generator is

SCs: Can be recharged each trip (less investment), can withstand high

Batteries: Need to be sized for all-day operation. Charge during night, connected to power grid (additional investment)

APLICATIONS ON-BOARD OF FAST RESPONSE ENERGY STORAGE SYSTEMS				
ENGINE STARTING				
DYNAMIC POSITIONING SYSTEM				
HIGH PEAK POWER DRIVE CYCLE	High Power disembarking & manoeuvring	Mid Power Acceleration	Low power cruise	High Power manoeuvring

The POSEIDON Project

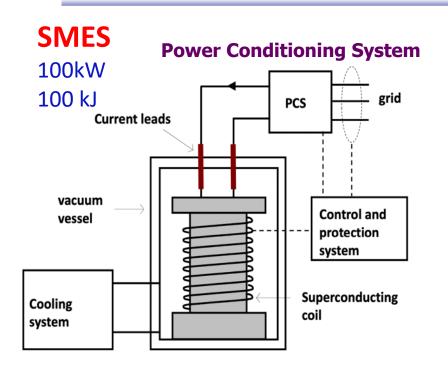

POwer StoragE In D OceaN

SCOPE & GOALS:

- Developing a SMES to be tested at the lab, based on a HTS Magnet
- Developing a KESS to be tested on board, based on a medium speed high strength steel flywheel.
- Developing a EESS to be tested on board, based on supercapacitors
- Defining a metrics for the Levelized Cost of Storage for ESS
- Defining the complementarity with other disruptive technologies in the sector.

	Participant Organization name	Туре	Country
1 (C)	Centro Tecnológico y Naval (CTN)	R&D Center	Spain
2	CIEMAT	Public R&D Center	Spain
3	EFESTO	Power Electronics Company	France
4	OCEM	Power Electronics Company	Italy
5	BALEARIA	Shipping Line	Spain
6	DAMEN	Shipyards	Nederland
7	CYCLOMED	Start-up	Spain
8	TECHNO PRO HISPANIA	Engineering Company	Spain
9	CERN	Public R&D Center	Switzerland
10	ANTEC MAGNETS	Magnet manufacturer	Spain
11	ANTECSA	Electric Company	Spain
12	Polytechnical University of Madrid	Public University	Spain

Type of Action: RESEARCH & INNOVATION ACTION (RIA)
HORIZON-CL5-2022-D5-01



Three Energy Storage Systems On-board

KESS

25 kW

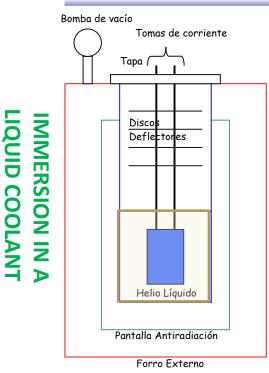
2.5 MJ

EESS 120kW 2.0 MJ

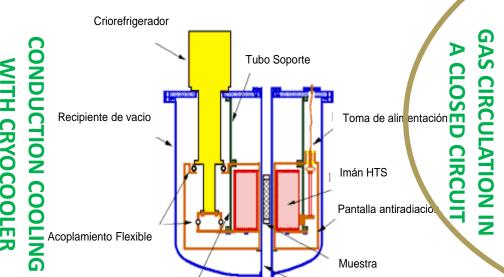
Based on HTS magnet cooled down with a He gas circulation system

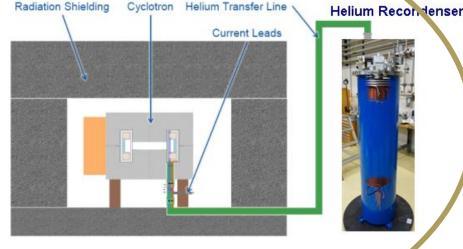
Based on a high strength steel flywheel and a Switched Reluctance Machine

Based on an arrangement of Supercapacitors


The Superconducting Modular Magnet: Options

CONFIGURATION		CONFIGURATION	ADVANTAGES	DISADVANTAGES	IMPROVED OPTIONS	
	SOLENOID		* Simpler fabrication * Apparently, better energy density (Not clear for HTS) * Easier to manage Lorentz forces which are balanced	* High perpendicular B component at the coil ends > Lower J _c * High Stray Field, requiring active or passive shielding (Maritime Applications)	*Arrangement of multiple solenoids to reduce the Stray Field	
	TOROID		* Very low stray field (Maritime Applications) * Magnetic field rather parallel to the tape * Filling the bore with iron can increase the energy significantly.	* Not compensated net coil Lorentz forces. * More difficult cryostating * Apparently less energy density (J/kg)	* D-shape coils to cancel the coil unbalance	r_i r_o


The Cooling & Power Conditioning Systems



COOLING SYSTEM OPTIONS

Tubo Soporte

CURRENT SOURCE CONVERTER

POWER CONDITIONING SYSTEM OPTIONS

y Tecnológicas

VOLTAGE SOURCE CONVERTER

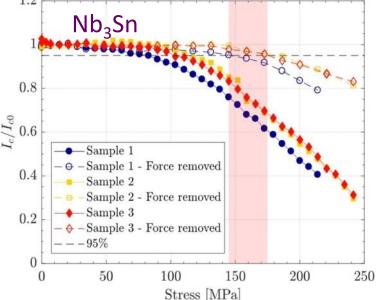
Voltage Source Converter DC-DC chopper using IGBT **THYRISTOR-BASED** I_{sm} (DC current) using IGBT using IGBT Transformer Transformer Transformer SMES Three-phase AC Three-phase AC coil Three-phase AC DC link Centro de Investigaciones DE CIENCIA INDICEPTATION WORLSHOP ON HTS DEVELOPMENTS & APPLICATIONS, Trieste, April 18th 2023 Eneraéticas, Medioambientales

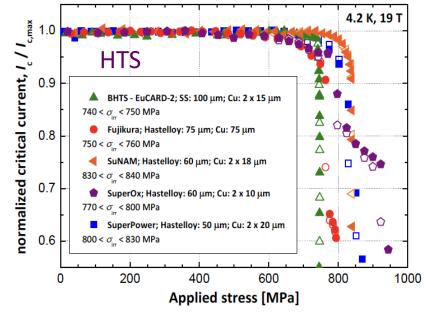
The limits for the stored energy density

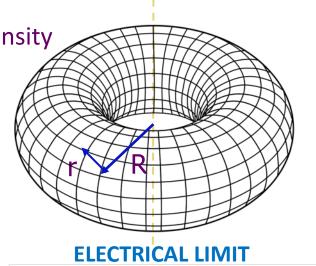
SC properties & Magnet Geometry limit the stored energy density "e"

For an infinitely long solenoid or for a slender toroid (R>>r), the energy density

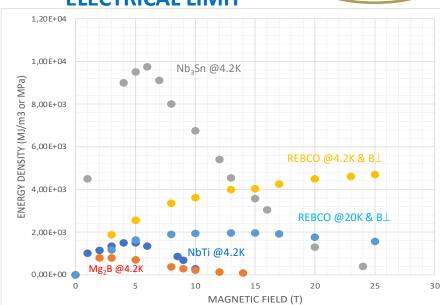
MECHANICAL LIMIT


"e" in Joules per Kg of superconductor, has two limits:


* MECHANICAL $e = K_m \cdot \sigma$

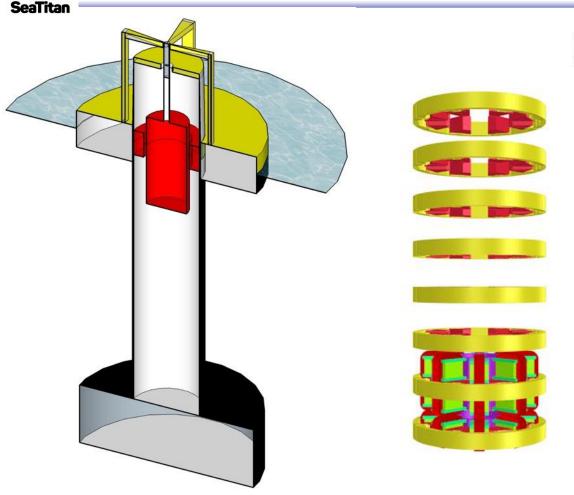

(σ=Max allowable stress)

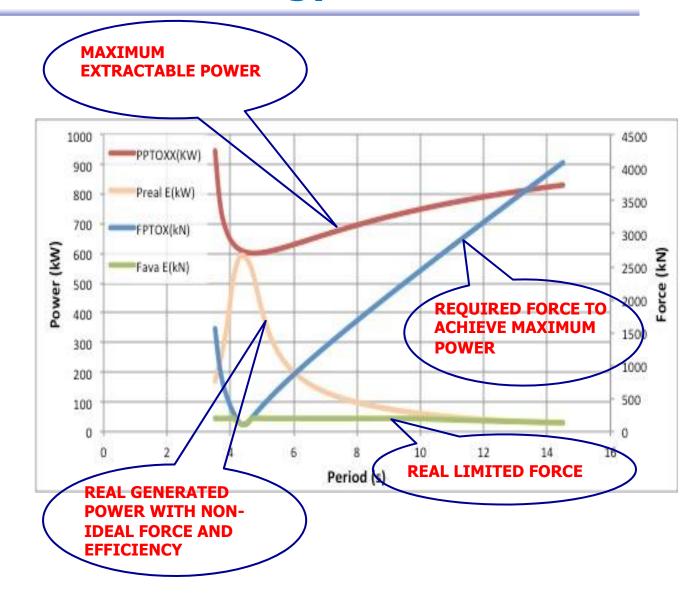
* ELECTRICAL e= K_e·(B·J)


Nb₃Sn

Magnet Configuration & SMES Operation

MAGNET CONFIGURATION			SMES OPERATION	
	Energy	100 kJ	Weight Constrains	According to the ship
	Power	100 KW	Volume Constrains	According to the ship
	Voltage	500 V	Max. Acceleration	0.4g Vert. 0,25 g Hor.
	Op. Temperature	TBD (10K-60K)	Max. Inclination	+- 45° during 12 s
	Conductor	REBCO Tape	Vibration	UN. DOT 38.3
		BiSCCO 2223 Tape	Shock	UN DOT 38.3 T4
		MgB ₂ ?	Humidity	100% RH
	Magnet Topology	TOROID	Stray Field	< 0.5 mT
		IRON-SCREENED SOLENOID		
	Pancake Configuration	Layer jump vs 2 soldered tapes		
		Former (Y/N)		
		Connections		
		Mechanical Structure		




Development of a Linear Superconducting Power Take-Off SMES for Wave Energy Conversion

How does a Wave Energy Converter works?

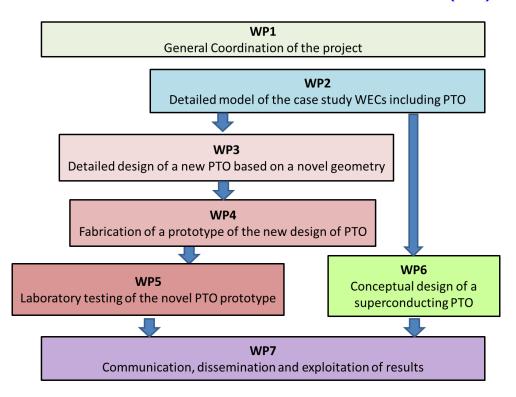
It is clearly necessary to use high-force and highefficiency PTOs to improve the capture capacity in real seas.

The SEA TITAN Project

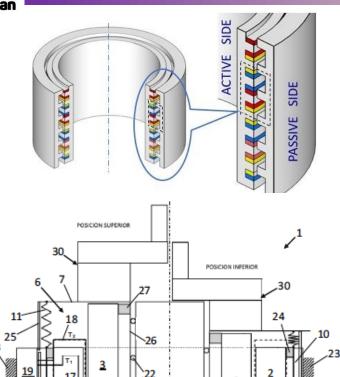
Surging Energy Absorption Through Increasing Thrust And efficieNcy GOALS:

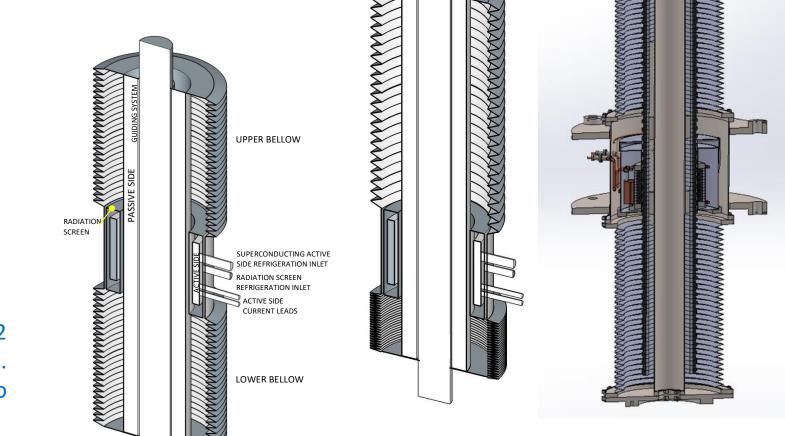
- Developing a new PTO based on a Linear SRM
- Force Density x 2
- IPCR x2
- Increasing the FtWE up to 80%
- Reducing Capex/kW down to 25%
- Reducing LCoE in about 30%
- Modular & Cross Cutting up to 500 kN & 3m/s
- 3ª Generation based on a Superconducting PTO

	Participant Organization name	Туре	Country
1 (C)	Wedge Global S.L.	WEC Developer	Spain
2	CIEMAT	Pubilc R&D Center	Spain
3	WavEC - Offshore Renewables	R&D Center	Portugal
4	CorPower Ocean	WEC Developer	Sweden
5	Centipod LTD	WEC Developer	UK
6	Hydrocap Energy SAS	WEC Developer	France
7	OCEM Energy Technology srl	Power Electronics	Italy
8	Columbus Superconductors (AGS)	Superconductors	Italy
9	Engie Fabricom	Installation & Services	Belgium
10	EDP Center New Energy Technologies	R&D Center	Portugal
11	Asociación Española de Normalización	Regulatory Body	Spain



POWER ELECTRONICS




The Superconducting version of the Switched Reluctance Machine

SeaTitan

Based on a modified version of the 3rd configuration and on a cylindrical SRM, a new extremely compact concept was designed, analysed and patented. It is based on the

idea of a deformable cryostat.

INDUSTRIAL WORKSHOP ON HTS DEVELOPMENTS & APPLICATIONS, Trieste, April 18th 2023

The SEA TITAN Project analysed the use of MgB2 as SC material, presenting many advantages. Nevertheless HTS superconductors, can also represent a very attractive option.

Summary

- > CIEMAT has a long track record in applications of superconductivity. Most of the developments have been based on NbTi technology but recently we have a growing interest for exploring HTS technology.
- > In this regard, and apart from magnets for Particle Accelerators, CIEMAT has started to investigate the HTS technology for energy applications, since energy is one of the core activities of the Laboratory.
- > The first application is Superconducting Magnetic Energy Storage (SMES) with an initial application to waterborne transport. Nevertheless there are also other applications for SMES, particularly in systems requiring very fast response and very high number of charging/discharging cycles like laboratories, testing facilities, industry, etc.
- > The second one is Wave Energy Conversion based on Superconducting Reciprocating PTOs. In spite the complexity of superconductivity for marine applications, the extremely high force than they can produce, makes attractive to explore this application which can also be translated to other sectors where High-Force reciprocating machines may be used.