HTS for the future of HEP

Accelerator Opportunities and Infrastructures Required

Presented by L. Bottura, CERN

I-FAST Industry Workshop on HTS Development, 18 April 2023, Trieste, Italy

Partly funded by the European Union under Grant Agreement n. 101094300

IFAST

Outline

- The HEP landscape a recap
- Why HTS ?
- Infrastructures & Co.
- Summary

Outline

- The HEP landscape a recap
- Why HTS ?
- Infrastructures & Co.
- Summary

HEP Landscape - Linear Colliders

HEP Landscape - Circular Colliders

Muon Collider magnets

Outline

- The HEP landscape a recap
- Why HTS ?
- Infrastructures & Co.
- Summary

The need for energy

- CERN uses today **1.3 TWh** per year of operation, with peak power consumption of **200 MW** (running accelerators and experiments), dropping to **80 MW** in winter (technical stop period)
- Electric power is drawn directly from the French 400 kV distribution, and presently supplied under agreed conditions and cost
- Supply cost, chain and risk are obvious concerns for the present and future of the laboratory

15-Oct-2022 11:23:19	Fill #: 8272	Energy: 6800 GeV	I(B1): 3.35e+14	I(B2): 3.35e+14		
Experiment Status	ATLAS		CMS	LHCb		
Instantaneous Lumi [(ub.s)^	-1] 0.468	0.002	13.754	6.239		
BRAN Luminosity [(ub.s)^-	1] 96.8	1.1	1.1	6.7		
Fill Luminosity (nb)^-1	0.000	0.000	0.000	0.000		
Beam 1 BKGD	0.000	7.432	4.355	0.033		
Beam 2 BKGD	0.000	5.049	5.936	8.736		
Beta*	0.60 m	10.00 m	0.60 m	2.00 m		
Crossing Angle (urad)	-170(V)	170(V)	170(H)	-170(H)		
LHCb VELO Position OUT G	ap: 54.0 mm		ΤΟΤΕ	M: STANDBY		
Performance over the last 24 Hr	5			Updated: 11:22:58		
3.5+14 3E14 2.5514 1.5E14 1E14 5E13 14:00	17:00 20:00	23:00 02:0	0 05:00	7000 6000 5000 00 2000 u 1000 08:00 11:00		
- 1(81) - 1(82) - Energy						
Beam 1 BKGD 10 10 10 10 10 10 10 10 10 10	Update	Beam 2 BKGD Beam 2 BKGD 08:00 11:00 08:00 10 08:00 11:00 08:00 11:00 08:00 08:00 08:00 08:00 08:00 08:00 08:00 08:00 08:00 08:00 08:	:00 17:00 20:00 23:00 ALICE — CMS — LHCb	Updated: 11:23:06		

Energy efficient cryogenics

HTS may be the only path towards a future collider

6 Publications Briefings de l'Ifri

Aurélien REYS, Vincent BOS

Hélium : les nouvelles géographies d'une ressource critique Briefings de l'Ifri, 16 juin 2022

Future helium supply is limited and entails a substantial economical and availability **risk**

Consequences

Current situation

- Market shortage is affecting industrial and scientific customers
- Manufacturing industry contracts are impacted with volume limitations
- Large scientific instrument cannot do so & rely on established industrial partnership

Helium market still at risk in 2023 and for the coming years

- Uncertainty on the effective Russian production capacity and market access
- Algerian gas production transferred using pipeline instead of LNG
- No more back-up from the US federal authorities, Cliffside for sale ! (C&en News)

CERN

Courtesy of F. Ferrand, CERN 10

Helium is a by-product of natural gas

Tentative forecast in 2026 based on public announcements of new capacities available in quantity of Iso container of 4.5 tonnes

The need for economics

- A large component in the magnet cost is the **amount of superconductor** (coil cross section)
- High-field superconductors are (significantly) more expensive than *good-old* Nb-Ti
 - Need to work in two directions:
 - Reduce the coil cross section (increase *J*!)
 - Reduce unit conductor cost

Compact windings

We need to increase the winding current density to fall in a *reasonable* range of tape length (the same applies to **conductor mass** for LTS)

Unresolved issues:

- Winding geometry for tapes and stacks (ends, alignment, transposition possibly superfluous ?)
 - Mechanics of coils under the exceptional electromagnetic loads (longitudinal stress in the range of 600 MPa, transverse stress in the range of 400 MPa)
 - Quench management at high current and energy density (above 100 MJ/m³)
 - Radiation hardness of materials and coils (40…80 MGy and 10²² n/m²)

CERN

Impressive cost reduction in HTS!

Outline

- The HEP landscape a recap
- Why HTS ?
- Infrastructures & Co.
- Summary

DISCLAIMER: next is a **personal and biassed** opinion based on the perceived risks and potential, setting a horizon of five years, and intended as motivator for guided discussion

Superconductor infrastructure

- Compared to LTS (Nb-Ti) HTS are still **novel materials**, and there is scope for:
 - Material and wire/tape research (e.g. composition, pinning, basic properties and specific characterization such as electro-mechanics and radiation effects)
 - **R&D on production routes and their optimization/simplification** (e.g. increase volume, improve yield, reduce cost)
 - Not yet clear whether "cables" require dedicated infrastructure (NI winding technology ? Transposition ? AC loss ?)

HTS R&D – Example

Schaltschränke ABAD2

KC⁴: KIT-CERN Collaboration on Coated Conductor

Magnet infrastructure

- Even more so than conductors, HTS magnets are only in the early infancy, and there is need of:
 - Flexible winding tooling (e.g. from simple to complex winding shapes, single to multiple wires/tapes) with good controls but modest dimension
 - Flexible process tooling (e.g. impregnation with alternative polymers, soldering, HT if required) of modest dimensions
 - Upscaling not yet necessary (e.g. long coils, series production), use *tailored solutions* if and when required

Magnet R&D – Examples

18th Int. Conf. on Acc. and Large Exp. Physics Control SystemsISBN: 978-3-95450-221-9ISSN: 2226-0358

ICALEPCS2021, Shanghai, China JACoW Publishing doi:10.18429/JACoW-ICALEPCS2021-TUPV034

DEVELOPMENT OF AN AUTOMATED HIGH TEMPERATURE SUPER-CONDUCTOR COIL WINDING MACHINE AT CERN

H. Reymond, M. Dam, H. Felice, A. Haziot, P. Jankowski, P. Koziol, T.H. Nes, F.O. Pincot, S.C. Richter, CERN, Geneva, Switzerland

ERI

Flexible is the keyword !

Test infrastructure

- We are in dire need of more:
- **UHF testing of materials and conductors**: higher **HTS !** field, and more facilities in the range of 20 T...40 T
- HF testing of cables: high field (B≈20 T), high current (I≈100 kA) and cryogenic temperature above IHe (T≈4 K to 100 K)
- HTS!
 Background field test facilities: test of small scale windings (OD≈150 mm x L≈0.1 m to 1 m) in relevant conditions of field (B≈20 T) and force (limiting factor, this is not a cable test facility !)
 - Variable temperature test facilities: coils and magnets tests at cryogenic temperature above IHe (T≈4 K to 100 K)

Test facilities - Examples

CERN

Expand, increase and improve capability !

TFD LBNL

Outline

- The HEP landscape a recap
- Why HTS ?
- Infrastructures & Co.
- Summary

Summary – 1/2

- The next step at the energy frontier of high energy physics needs
 - High fields (dipoles and quadrupoles from 16 T up to 20 T, solenoids from 20 T up to 40 T and more)
 - Energy efficiency (increase operating temperature to profit from Carnot, *minimal cryogen* usage)
 - Economics (high J_E, compact magnets, to reduce construction costs, sustainable Maintenance and Operation)
 - HTS may offer it all, provided...
 - We develop a new magnet technology palette, higher current density, higher operating temperature (large degree of innovation required), using present conductor: do not wait for better
 - Deploy rapidly for users: they get to know the features of the new devices, cope and (may) adapt demands
 - Profit from cost reduction: one more "factor two reduction" possible ? That would be disruptive (HTS/LTS cross over)

Summary – 2/2

- Yes, there is arguably a lot of work to do, but
 - The HEP interest is **directly shared** with:
 - Fusion and other power applications
 - NMR and High Magnetic Field science
 - We are likely at a technology hinge, i.e. there may not be another way, we might as well embrace it
 - Expanding the support infrastructure for HTS conductor and magnet R&D, and in particular the test facilities, can provide the technology bootstrapping needed

. . .

www.cern.ch

Collider Choices

- Hadron collisions: compound particles
 - LHC collides 13.6 TeV protons
 - Protons are mix of quarks, anti-quarks and gluons
 - Very complex to extract physics
 - But can reach high energies

- Lepton collisions: elementary particles
 - LEP reached 0.205 TeV with electron-positron collisions
- Clean events, easy to extract physics
- Lepton collisions ⇒ precision measurements
- Hard to reach high energies

Electron-positron linear colliders **avoid synchrotron radiation**, but are **single pass** Typically cost proportional to energy and power proportional to luminosity,

Hence present energy frontier is probed by proton rings

Novel approach: the **muon collider** Large mass suppresses synchrotron radiation => circular collider, **multi-pass** Fundamental particle yields clean collisions => **less beam energy** than protons **But lifetime at rest only 2.2 µs** (increases with energy)

The muon collider is part of the European Accelerator R&D Roadmap

Courtesy of D. Schulte

e⁻: 0.511 MeV μ: 106 MeV p⁺: 938 MeV

Proton-driven Muon Collider Concept

CERN

HTS is the only path beyond 16 T

Target and capture – 2/2

MIT "VIPER" conductor

M. Takayasu et al., IEEE TAS, 21 (2011) 2340 Z. S. Hartwig et al., SUST, 33 (2020) 11LT01

Operating current: 58 kA Operating field: 20 T Operating temperature: 20 K STAINLESS STEEL JACKET STAINLESS STEEL WRAP COPPER FORMER SOLDERED HTS STACK

Strong connection to HTS magnets for fusion

HTS cable mechanics

May this be the reason why soldered and twisted high field and high current cables are also subject to degradation ?

 σ_{tensile} //c

ANSYS Release 19.2

(AVG)

Build 19.2 NODAL SOLUTION

STEP=1

SUB =7

TIME=1

RSYS=SOLU PowerGraphics

EFACET=1 AVRES=Mat

SMX =.297E+08 0 .700E+07

DMX =.00299 SMN =-.221E+09

.140E+08

.210E+08

.280E+08

.350E+08

.420E+08

.490E+08

.560E+08

.630E+08

τ //ab

ANSYS Release 19.2

(AVG)

Build 19.2

STEP=1

SUB =7

TIME=1

RSYS=SOLU

EFACET=1

AVRES=Mat

DMX =.00299 SMN =-.383E+08

SMX =.532E+08

-.383E+08

-.282E+08

-.180E+08

-.782E+07

.236E+07

.125E+08

.227E+08

.329E+08

.430E+08

.532E+08

SXY

NODAL SOLUTION

PowerGraphics

Courtesy of J. Lorenzo Gomez, F4E, Barcelona (Spain)

Strong connection to HTS magnets for science

CERN

HTS for accelerators

		Specification	Target
Minimum J _{non-Cu} (4.2 K, 20 T)	(A/mm ²)	1500	3000
Minimum J _{non-Cu} (20 K, 20 T)	(A/mm ²)	600	1250
$\sigma(I_{C})$	(%)	10	5
Minimum copper RRR	(-)		20
Minimum Unit Length (UL)	(m)	200	500
Minimum bending radius	(mm)	15	10
Allowable σ _{longitudinal non-Cu}	(MPa)	800	1000
Allowable compressive $\sigma_{transverse}$	(MPa)		400
Allowable tensile $\sigma_{transverse}$	(MPa)		25
Allowable shear $\tau_{transverse}$	(MPa)		20
Allowable peel σ_{peel}	(MPa)		TBD
Allowable cleavage ocleavage	(MPa)		TBD
Range of allowable <i>E</i> longitudinal	(%)	-0.10.4	-0.1+0.5
Internal specific resistance p _{transverse}	(nΩ/cm²)		20
Width: 412 mm			

vvidth:	412 mm
Substrate (non-magnetic alloy):	40…60 μm
Copper stabilizer (total):	2040 μm
Total tape thickness:	60…100 μm

