Plastic scintillator fiber detectors for heavy ion trajectory reconstruction for the Super-FRS at FAIR

M. Czogalik¹, C. Nociforo¹, M. Alfonsi¹, C. Caesar¹, J. A. Galvis Tarquino¹, H. Heggen¹, M. Heil¹, N. Kurz¹, S. Minami¹, D. Savran¹, H. Simon¹, M. Winkler¹

¹GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

At the FAIR facility, currently under construction at GSI (Darmstadt), a 1.5 AGeV uranium beam with intensities up to intensity $2.5 \times 10^{11} \, {}^{238}$ U/spill will impinge on a graphite target at the entrance of the Superconducting Fragment Separator (Super-FRS) for the production of a wide range of rare isotopes by projectile fission and fragmentation. The next generation in-flight magnetic separator Super-FRS [1] operated up to a magnetic rigidity of 20 Tm with a large angular acceptance ($\Delta\theta = \pm 40 \text{ mrad}$, $\Delta\phi = \pm 20 \text{ mrad}$) and momentum acceptance ($\Delta p/p = \pm 2.5\%$) requires a new generation of tracking detectors with a position resolution of 0.2 mm (σ_x) over large detector areas of about 30 cm².

Besides gas detectors, planar detectors made of scintillating fibers are an option worth investigating not only because of the comparable material budget but especially for the fast response and high-rate capability. In addition, large area detectors made of 200 μ m squared fibers are being developed at GSI and used already in some R³B experiments [2].

On the poster a one-dimensional prototype consisting of 128 fibers with active area of $25.6 \times 100 \text{ mm}^2$ coupled to Multi-Pixel-Photon Counters (MPPCs) and readout by FPGA TDC will be presented together with some recent ¹⁹⁷Au beam test results.

References:

[1] M. Winkler et al., The status of the Super-FRS in-flight facility at FAIR, Nucl. Instr. Meth. B 266 (2008) 4183

[2] S. Paschalis et al., Heavy-ion tracking detectors for the R3B setup, GR-2014-1-NUSTAR-KR-10, GSI Report 2014-1