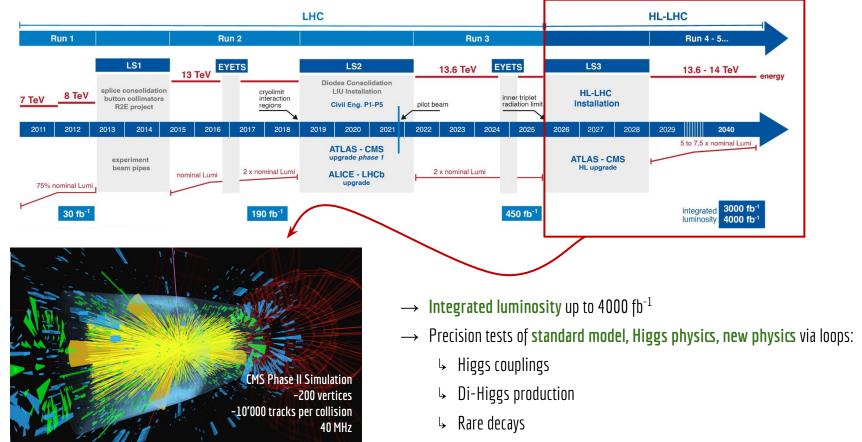
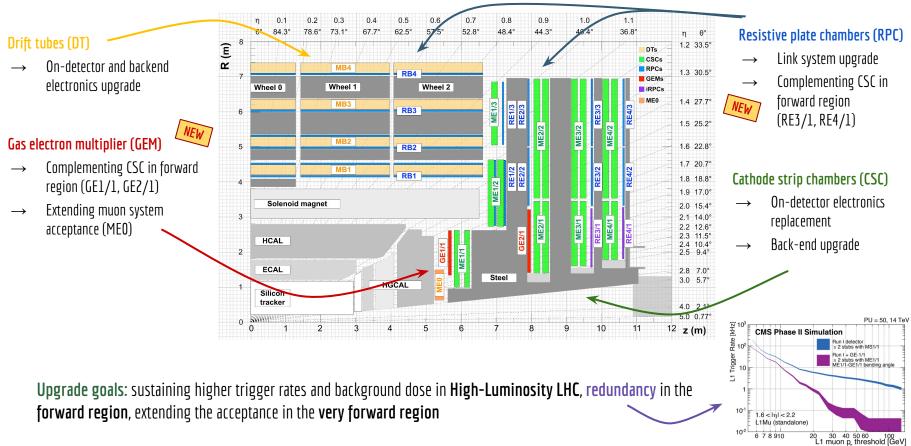


The upgrade of the CMS muon system for the High Luminosity LHC


September 25th, 2023

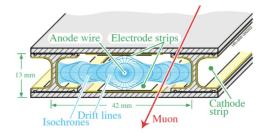
Antonello Pellecchia¹ on behalf the CMS Muon group

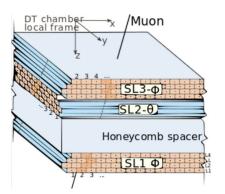
INFN, Sezione di Bari

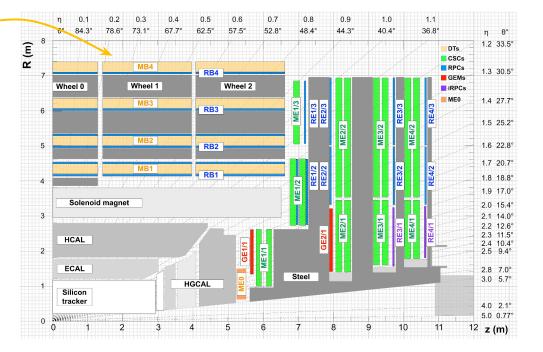

High-luminosity LHC

 \sim

CMS muon system upgrade

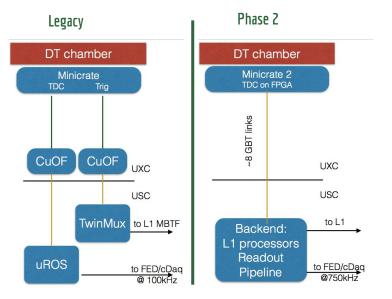

Sep 25th 2023




DT upgrade

Drift tubes (DT)

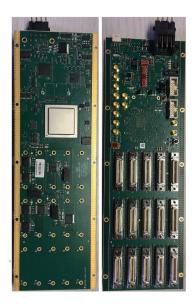
→ On-detector and backend electronics upgrade

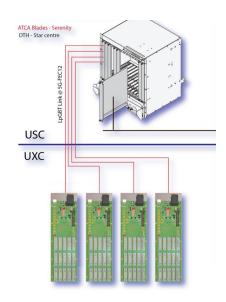

DT electronics upgrade

Motivations for upgrade of MiniCrate electronics:

- \rightarrow $\,$ Allow L1 rate up to 750 kHz $\,$
- ightarrow Enhance reliability by moving components to USC

Trigger primitives generated in back-end


Allows for higher complexity, exploit full DT timing



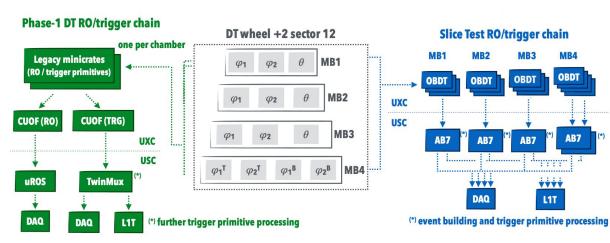
DT electronics changes foreseen in the upgrade

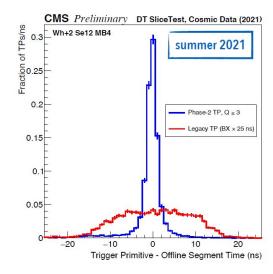
The core of the upgraded MiniCrate 2 is the OBDT:

- \rightarrow 2 board types (theta/phi)
- \rightarrow **240 TDC channels** implemented in FPGA (σ_t (lns, DNL(2%))
- \rightarrow 1/3 power of MiC1, higher channel density
- → Two versions: v1 with front-end over **GBTx** and **SFP**+ to backend v2 upgrades to IpGBT and VTRX+

S

DT demonstrators


First slice test: YB+2 S12

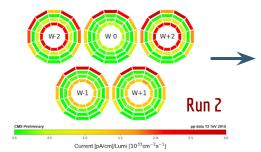

- \rightarrow 13 OBDT v1 installed, integrated and active doing cosmics and first collisions
- → Slice test read out in parallel between legacy and Phase 2 electronics

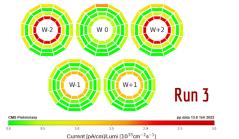
1 Phase-2 back-end also tested: trigger primitives with full granularity

Second slice test in YB+2 S1:

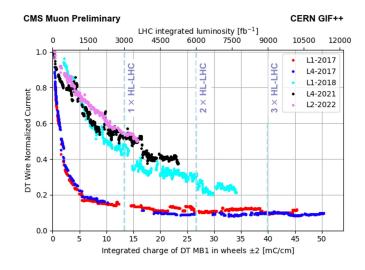
- → Installed in 2022/23 YETS, tested with cosmics
- \rightarrow Uses OBDTv2 and monitoring and safety system (MONSA)

The upgrade of the CMS muon system for the High Luminosity LHC

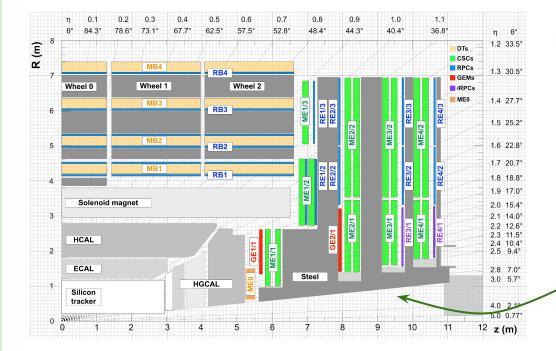


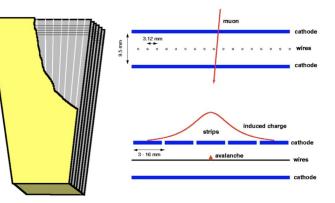

DT longevity

DTs use Ar/CO₂ 85%:15%. Aging mostly due to wire deposits during avalanche

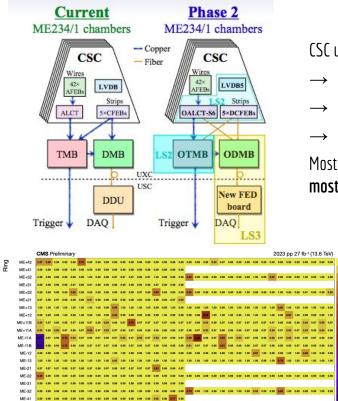

- \rightarrow Ongoing irradiation at GIF++ since 2017
- → Irradiated 3 layers of a DT SuperLayer (SL), other 2 SLs kept as reference for **muon** efficiency measurement
- **Results** from aging measurements:
 - → Layers installed before 2018 show larger gain drop than later ones Aging seems correlated to carbon peak in observed with spectroscopy
 - → However, integrated charges tested will only be reached in high-η wheels of MB1 during HL-LHC (mitigation strategies also implemented)

The redundancy there is already high also thanks to RPC and CSC: negligible impact on physics performance is expected




Sep 25th 2023

 ∞



Cathode strip chambers (CSC)

- \rightarrow On-detector electronics replacement
- \rightarrow Back-end upgrade

CSC electronics upgrade

CSC upgrade involves all of **electronics**:

- → On- and off-chamber **front-end boards** (FEBs)
- \rightarrow Front end driver (FED) & EMTF
- \rightarrow **Power** systems

0.8

0.6

0.4

0.2

35 Chamber #

Most upgraded during LS2 and validated during Run 3. Excellent trigger primitive **efficiency**, **mostly > 98%**

To be **added in LS3**:

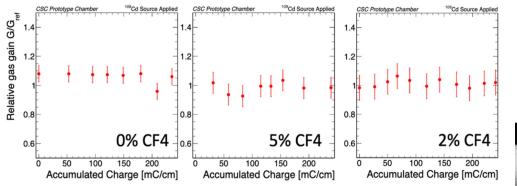
→ 180 upgraded off-chamber Optical Data MotherBoard (ODMB7/5) boards Passed electronics status review in May 2023

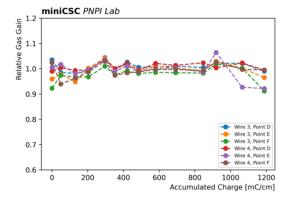
DMB7: 9U VME board for CSC chamber

 \rightarrow Common FED with GEM (X20) for production readiness review in fall

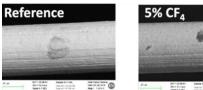
Sep 25th 2023

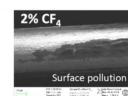
CSC longevity

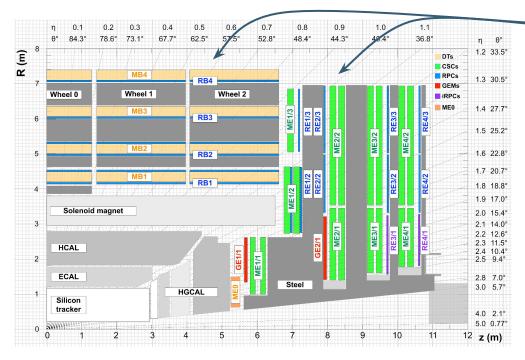

CSCs use Ar/CO₂/CF₄ 40%:50%:10%. Ongoing **optimization to reduce CF**₄ fraction


- \rightarrow 5% and 2% CF₄ mixtures tested at GIF++
- → No gain drop observed, but pollution visible at microscope Ongoing studies, 5% CF₄ looks more promising

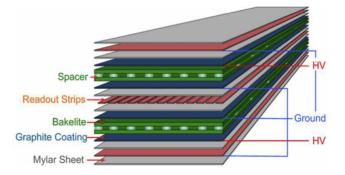
Tested also mini-CSC with **HFO-1234ze** mixture:

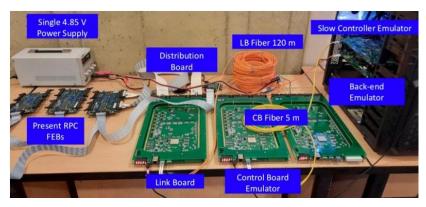

 \rightarrow No gain drop after 10× HL-LHC integrated charge


Dark current increase observed, to be-retested on full-size CSC



Sep 25th 2023

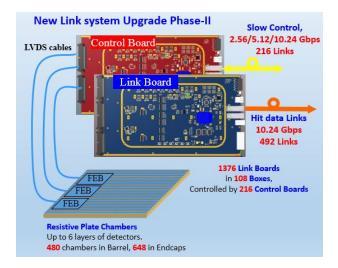

RPC upgrade


Resistive plate chambers (RPC)

- \rightarrow Link system upgrade
- \rightarrow Complementing CSC in forward region *RE3/1, RE4/1*

RPC link system upgrade

Test stands for link system at CERN:

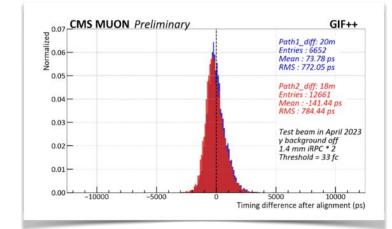

- → Prototypes of production-design version available Validated at CHARM irradiation studies
- → Firmware integration with slow control emulator and back-end emulator completed
- $\rightarrow\,$ Pre-production started. Integration tests at CERN by the end of the year

Run 2 RPC link system is sensitive to **possible failures**:

- \rightarrow Non **rad-hard** to HL-LHC rates
- \rightarrow Uses **discontinued** ASICs and FPGA

New link system uses upgraded link board and control board:

- \rightarrow Sub-BX timing at 2.5 ns to improve background rejection
- \rightarrow Compliance with IpGBT standard

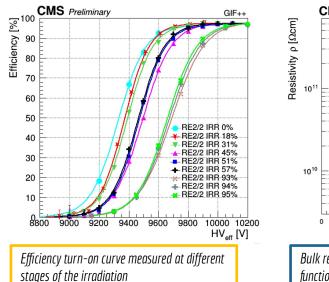


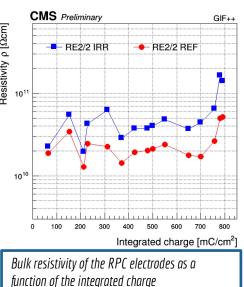
RE3/1 and RE4/1 production

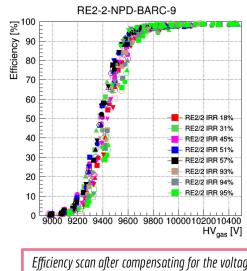
Improved RPC (iRPC) design:

- → Uses new front-end: 2 FEBs/chamber, 6 Petiroc-2C ASICs per FEB
- ightarrow 96 strips, readout on both strip sides for 2D position at 2 cm $\sigma_{
 m n}$
- \rightarrow On-FPGA TDC for <1 ns timing
- → Low-impedence strips + low front-end noise
 - Low thresholds (<50 fC) \rightarrow lower gap amplification
- \rightarrow Production: 14 RE3/1 and 4 RE4/1 assembled at CERN and Ghent, to be validated with cosmics

	Present	iRPC
HPL Resistivity (Ohm/cm)	1-6x1010	0.9-3 x1010
Gap thickness	2mm	1.4mm
Electrode thickness	2 mm	1.4mm
Eta coverage	0 – 1.9	1.8 – 2.4
Rate Capability (Safety factor=3 included)	600 Hz/cm ²	2 kHz/cm ²
Max int. charge@3ab ⁻¹ (SF = 3 included)	~ 0.8 C/cm ²	~ 1.0 C / cm ²
Phi granularity	~ 0.3°	~ 0.2°
Eta resolution	~ 20 cm	~ 2 cm
Time resolution	1.5 ns	< 1 ns


RPC longevity

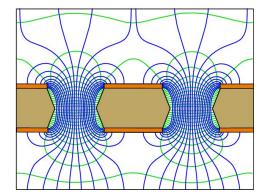

iRPC longevity to be verified up to 0.8 C/cm² (safety factor 3 × HL-LHC). Ongoing irradiation at GIF++:


→ Status of the studies: **RE2 up to 96%**, **RE4 to 57%**

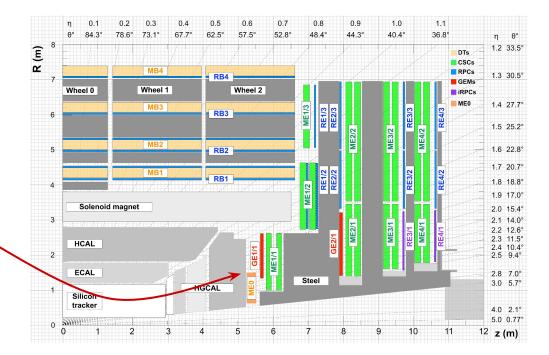
Efficiency measured with μ beam after extended irradiation

- \rightarrow No ageing observed without background, but observed shift up to 200 V in the efficiency turn-on point with source on
- → Effect ascribed to increase in the **bakelite resistivity** after irradiation. The **curves overlap by compensating** for the corresponding voltage drop. **Result: no effect of aging observed.**

Efficiency scan after compensating for the voltage drop on the electrodes


14

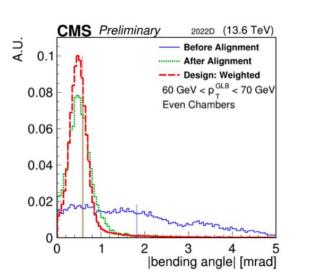
The upgrade of the CMS muon system for the High Luminosity LHC



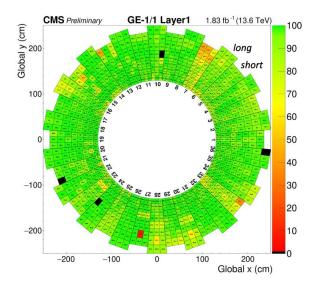
GEM upgrade

Gas electron multiplier (GEM)

- \rightarrow Complementing CSC in forward region *GE1/1, GE2/1*
- → Extending muon system acceptance *MEO*



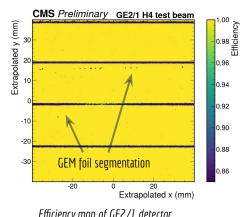
GEM upgrade: GE1/1 and GE2/1

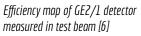

Motivation: complementing closest CSC stations (ME1/1 e ME2/1)

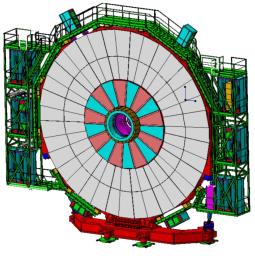
- → Better p_T resolution in trigger \rightarrow x 10 trigger rate reduction For each station, one disk per endcap:
- **GE1/1: 36 super-chambers** per endcap (10° aperture)
- ► **GE2/1: 18 super-chambers** per endcap (20° aperture) Each **super-chamber is a 2-layer** triple-GEM detector stack

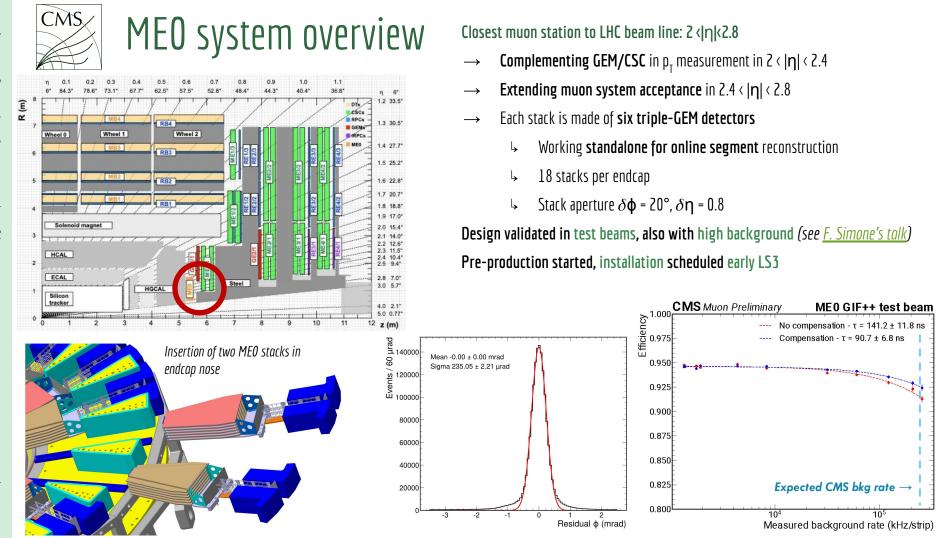
GE1/1 detector installed in LS2, commissioned and operated in cosmic runs and Run 3:

- Plateau efficiency measured for all detectors [5]
 - \rightarrow Main efficiency loss causes: HV (short circuits), electronics (VTRx optical power loss)
- \twoheadrightarrow Space and time alignment with respect to CSC with collision data
- -** Muon bending angle ϕ_{CSC} ϕ_{GEM} measured using offline data
 - \longrightarrow Observable dependency on \textbf{p}_{T} after alignment
 - \rightarrow To be implemented in trigger




GE2/1 detector production


- GE2/1 detector undergoing production:
- \rightarrow Design similar to GE1/1, over larger area
- \rightarrow Performance measured in test beam [6]
 - ← Very high efficiency (> 99% excluding GEM foil segmentation)
 - 、 < 300 µrad **space resolution**
- \rightarrow GE2/1 demonstrator installed and integrated in CMS DAQ / DCS
- → New chambers to be installed **starting 2023 technical stop**



First GE2/1 chamber assembled at CERN

 ∞

CMS

Conclusions

The CMS muon system is undergoing an **upgrade** in its detectors and electronics **to sustain the HL-LHC rates** and extend its **acceptance**:

- The DT and CSC stations are upgrading their front- and back-end electronics; production ongoing
- The RPC stations are upgrading their link systems; two improved RPC detectors to be installed in the forward region are in mass production
- Three GEM stations will complement the existing system in the **forward region and extend** the muon system acceptance; production of the latter two stations is ongoing

All existing stations are leading **aging studies** to validate the system against HL-LHC integrated charge; from projections of ongoing studies **expect no degradation** of physics performance.