

Istituto Nazionale di Fisica Nucleare

16TH TOPICAL SEMINAR ON INNOVATIVE PARTICLE AND RADIATION DETECTORS (IPRD23)

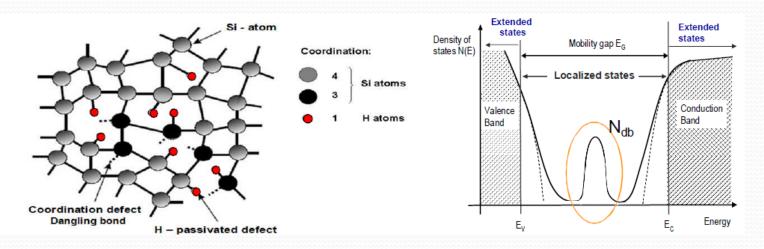
HASPIDE: A PROJECT FOR THE DEVELOPMENT OF HYDROGENATED Amorphous Silicon Radiation Sensors on a flexible Substrate

a-Si:H

LUCA TOSTI 25/09/2023

SUMMARY

INTRODUCTION PRO-CON AND POSSIBLE APPLICATIONS PERFORMANCES CONCLUSIONS

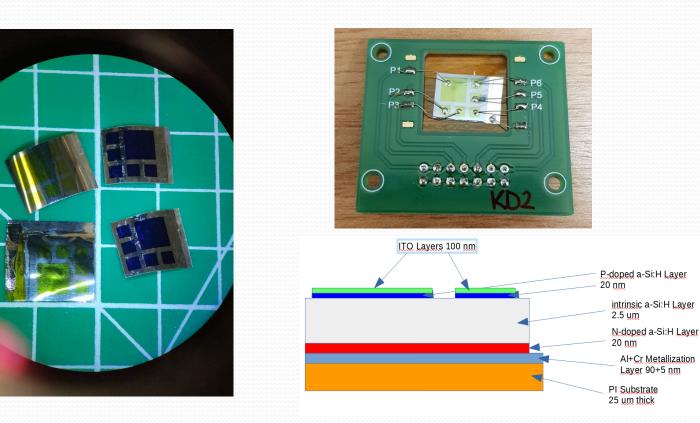

Hydrogenated Amorphous Silicon (A-Si:H)

- Amorphous
 - Order in the disorder (short range order, ~ nm)
 - Disorder due the presence of di-vacancies
 - Disorder leads to localized states in gap

Hydrogenated

Passivation of dangling bonds by H a-Si \rightarrow a-Si:H : N_{db} : 10¹⁹ cm⁻³ \rightarrow 10¹⁵ cm⁻³

A-Si:H as radiation detector material pros & cons


• Pros:

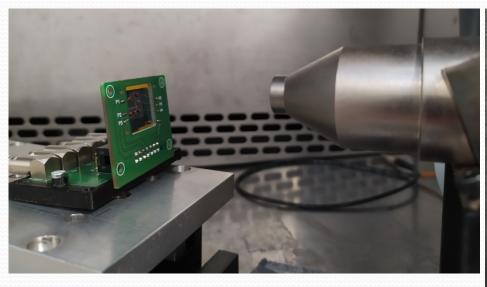
- Extremely low radiation damage.
- Low cost production.
- Possible deposition in many different substrate materials
- Good flexibility below 15 um
- Photosensitive: usable in photodiode fabrication

• Cons:

- High depletion voltage (about 1100 V for 50 um thickness)
- Growth on a non-removable substrate
- Maximum processing temperature 250-300 °C
- Limited thickness of substrates (max 100-150 um)
- Pretty low S/N ratio due to poor charge collection efficiency: below 50% (on a 30 um thick detector) energy to create a e-h pair similar to crystalline silicon (3.4-4.0 eV) and high leakage current (around uA/cm² on a 30 um detector)
- Low mobility (from 1 to 10 cm² /Vs for electrons 2 orders of magnitude less for holes)

HASPIDE prototype

- Hydrogenated Amorphous Silicon PIxels DEtectors
- On Polyimide substrate (kapton) for flexibility
- Production Array of 20 2x2 mm² p-i-n diodes and 4 5x5 mm² p-i-n diodes
- 2.5 μ m thickness

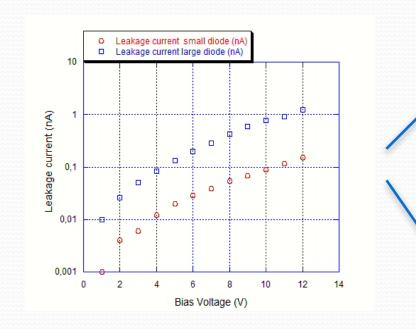

Application as a rad-hard flexible detector

- Beam monitoring for dosimetry and beam profile (Active membrane)
- Beam dosimetry and beam profile for radiotherapy (X-rays, electrons, protons, possibly ions)
 - Possibility of dose measurement in the curved surfaces of a patient body
- Particle fluxes determination in solar events
- Thermal Neutron monitor with the addition of a Boron layer

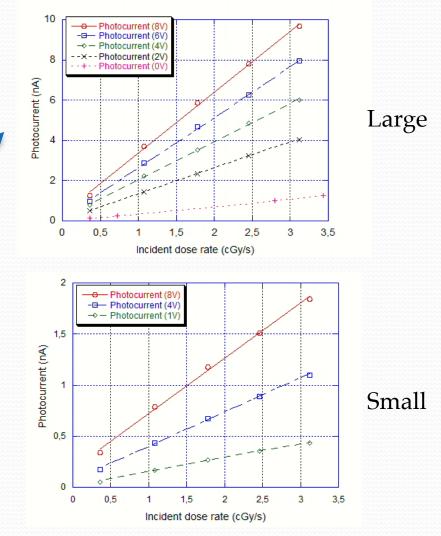
Detector R&D

- Two device architectures
 - Planar P-i-n diodes (most commonly used and baseline option)
 - Charge selective contacts devices (MoO_x as hole selective contact and TiO₂ or Al:ZnO as electron selective contact)
- Three deposition techniques
 - PECVD (the most commonly used and baseline technique)
 - Reactive Sputtering for intrinsic silicon (in Hydrogen environment)
 - Reactive Laser Ablation (RLA) of doped and un-doped Silicon (in Hydrogen)
 - Plasma Laser Deposition (PLD) for the electrodes

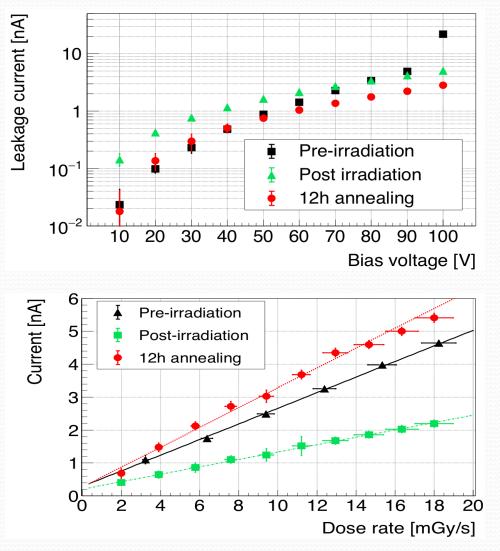
Test under X-Rays



- X-ray tube 10 W by Newton scientific
- Vmax= 50 kV, Imax=200 μ A
- Cobia Flex dosimeter using T20 probe
- Measuring range

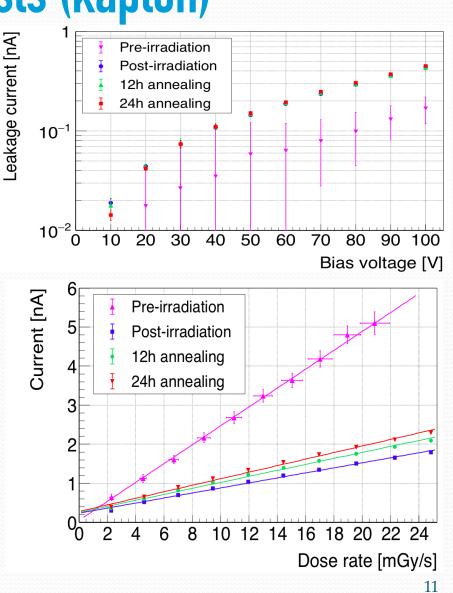

 (1.5 μGy/s-1500 mGy/s)

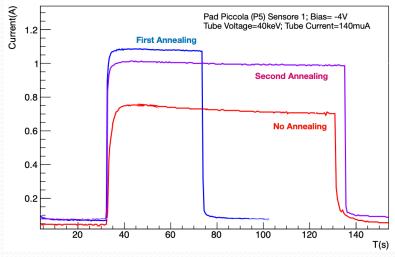
Current response and dose rate (x-rays) linearity


- linear sensitivity
- Dependence on reverse bias voltage

Preliminary radiation tests (c-Si)

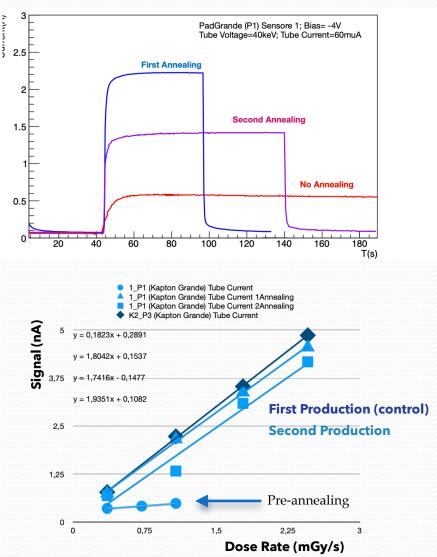
- P-i-n deposited on c-Si
- Max Leackage current O(nA)
- Beneficial effect of the annealing procedure

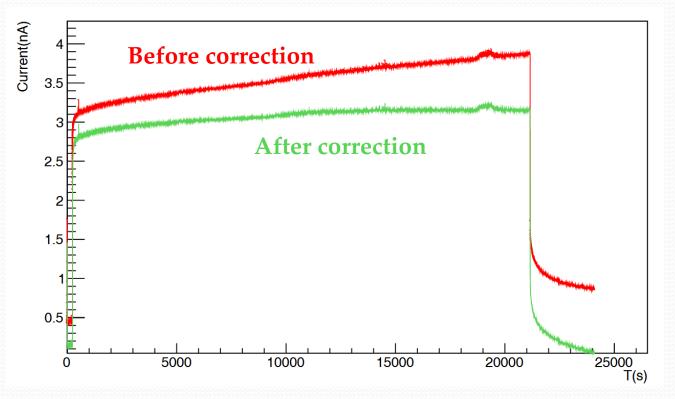

Test at $10^{16} n_{eq}^2/cm^2$


Preliminary radiation tests (kapton)

- P-i-n deposited on kapton
- Max Leackage current ~ c-Si O(nA)
- Less effect of the annealing procedure

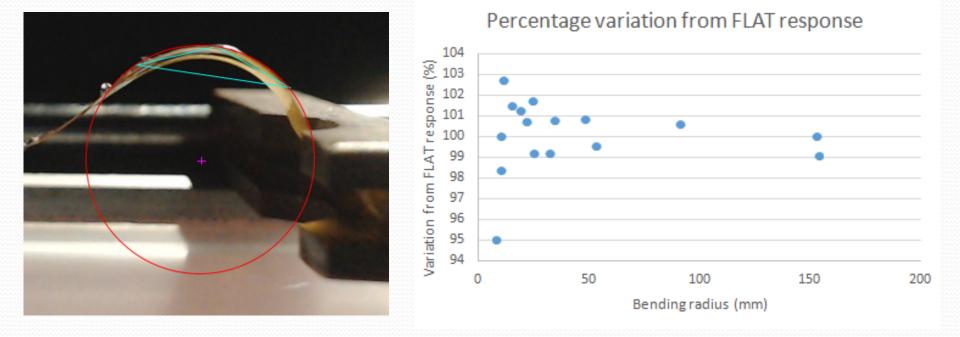
Test at 5 x 10¹⁶ n_{eq}/cm^2


Annealing effect


3

X-rays Exposure for sensitivity measure and homogeneity of the batch

Sensors are annealed (ones at 100°C for 12h) to match the performances of the batch



Long term stability

- 5x5 mm² device irradiated for ~6h (dose rate of 0.4 cGy/s, 40 kV tube bias voltage)
- linear extrapolation between the dark current before and after irradiation-> complete trend correction

Flexibility test (Australian WG)

- Detector is glued on a flexible Polyimide PCB support
- Deviation from the flat response is below 3%
- Little difference between flat to bend and bend to flat (relaxation) response

Conclusions and future plans

- We have initiated the development of a:Si-H flexible devices for flux measurement for beam monitoring applications, SEP flux evaluation, personal dosimetry, neutron detection.
- P-i-n prototype devices successfully fabricated on PI and characterized
- Future plans include:
 - Flux measurements on proton and electron beam of prototypes
 - Fabrication and characterization of new thicker p-i-n and CSC devices
 - Further radiation damage tests

Current response and dose rate (x-rays) linearity

	Device Area (mm²)	Bias Voltage (V)	Dosimetric sensitivity (nC/cGy)	Regression coefficient R
Large	5x5	0	0.367	0.99999
		2	1.283	0.99991
		4	1.900	0.99975
		6	2.505	0.99972
		8	3.027	0.99926
Small	2x2	1	0.137	0.99878
		4	0.335	0.99961
		8	0.540	0.99881

Detector type and bias	Pre-rad Sensitivity (nC/cGy)	Sensitivity after irradiation (nC/cGy)	Sensitivity after 12h annealing (nC/cGy)	Sensitivity after 24h annealing (nC/cGy)
CSC at 30V bias	11.1 ± 0.3	5.0 ± 0.1	6.5 ± 0.2	7.2 <u>+</u> 0.2
CSC at 0V bias	0.86 ± 0.03	0.10 ± 0.02	0.24 ± 0.02	0.30 ± 0.02
P-i-n diode at 60V	2.39 ± 0.09	1.13 ± 0.08	3.0 ± 0.1	-

The HASPIDE collaboration

INFN Sezione di Firenze and Universities of Florence and Urbino:

Fabi Michele, Grimani Catia, Pallotta Stefania, Sabbatini Federico Talamonti Cinzia, Villani Mattia.

INFN Sezione di Lecce and University of Salento.

Calcagnile Lucio, Caricato Anna Paola, Martino Maurizio, Maruccio Giuseppe, Monteduro Anna Grazia, Quarta Gianluca, Rizzato Silvia.

INFN Laboratori Nazionali del Sud

Catalano Roberto, Cirrone Giuseppe Antonio Pablo, Cuttone Giacomo, Petringa Giada.

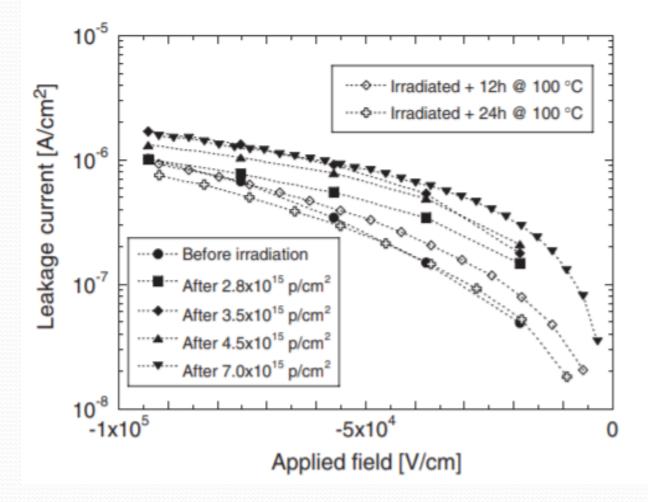
INFN Sezione di Milano and University of Milano

Frontini Luca, Liberali Valentino, Stabile Alberto.

INFN Sezione di Perugia University of Perugia and CNR-IOM Perugia

Croci Tommaso, Ionica Maria, Kanxheri Keida, Menichelli Mauro, Morozzi Arianna, Moscatelli Francesco, Passeri Daniele, Pedio Maddalena, Peverini Francesca, Placidi Pisana, Tosti Luca, Rossi Giulia, Servoli Leonello, Zema Nicola.

INFN Sezione di Torino and Polytechnical University of Torino


Mazza Giovanni, Piccolo Lorenzo, Wheadon Richard James,

EPFL Neuchatel (CH) Antognini Luca, Dunand Sylvain, Wyrsch Nicolas.

University of Wollongong Bashiri Aishah, Large Matthew, Petasecca Marco.

Displacement damage on a 30 um a-Si:H planar detector

