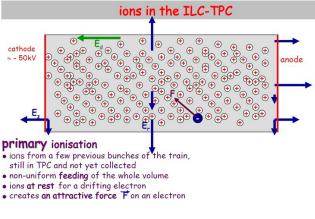
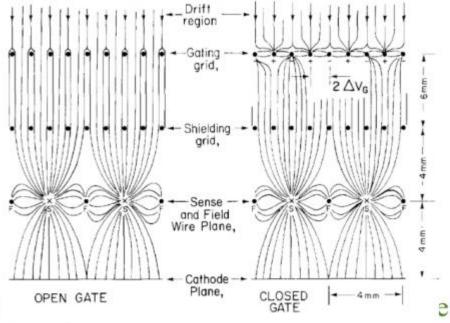


Exploring Size Variation of Ionic Clusters in Gas Detectors: A Comparative Analysis of Ar-CO₂ and Ne-CO₂ Gas Mixtures


Yalçın KALKAN

Nuclear Radiation Detectors Research Center of Bolu Abant İzzet Baysal University, Turkiye

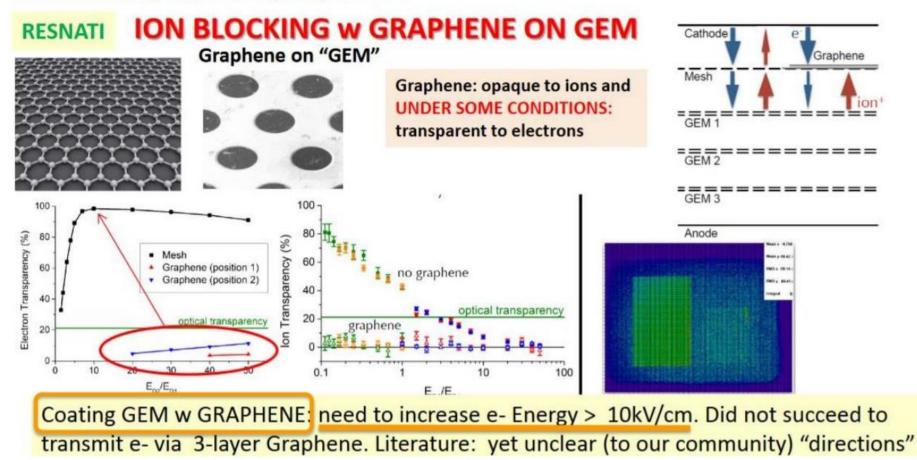
Motivation

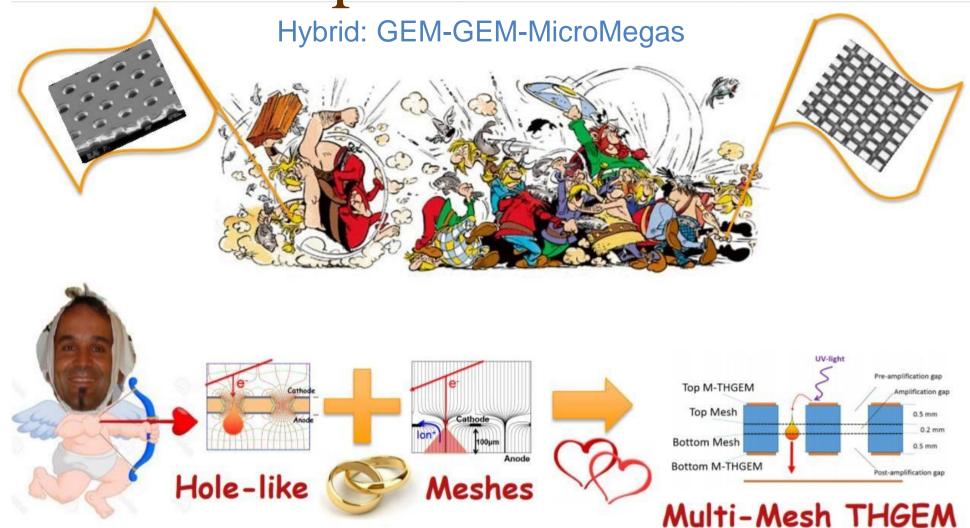

- The ions, generated in the proportional multiplication process
- Atomic or molecular ions react with the carrier gas to form molecular ions and cluster ions.
- Measurements of ion mobility in most common used mixtures show that the ions are heavy, hence slow so signal induced the ion motion are altered.
- There they build up a space charge cloud
- Still, simulation programs still do not take ions into account.

[Y. Kalkan et al, "Cluster ions in gas-based detectors", JINST 10 P07004, 2015.] [Y. Kaya et al, "Protonated water clusters in TPC's", NIMA 824, 2016.]

Gated TPC

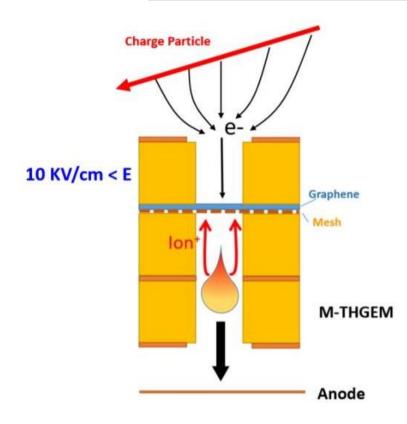
[Peter Némethy et al, 1983, "Gated Time Projection Chamber", Nuclear Instruments and Methods in Physics Research, 212, Issues 1–3,273-280.]





[C.K. Hargrove, "The Time Projection Chamber Proceedings 108, 1 (1984)]

Solution Attempts MM-THGEM with inner Graphene electrode


Franchino et al., NIMA 824 (2016) 571-574

[M. Cortesi, 2019, "Development of new MPGD structures for nuclear physics applications, MPGD19 La Rochelle, France]

MM-THGEM with inner Graphene electrode

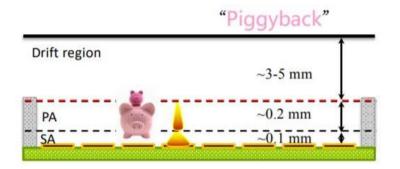
The idea:

sandwich a layer graphene inside the MM-THGEM transparent to the drifting electrons and opaque to ions to suppress the IBF!

-) Hole-type structure → e- collection -) first stage MM-THGEM first stage → pre-amplification and mechanical support for the graphene -) last stages M-THGEM

ightarrow gas avalanche process

Parameters to be estimated:

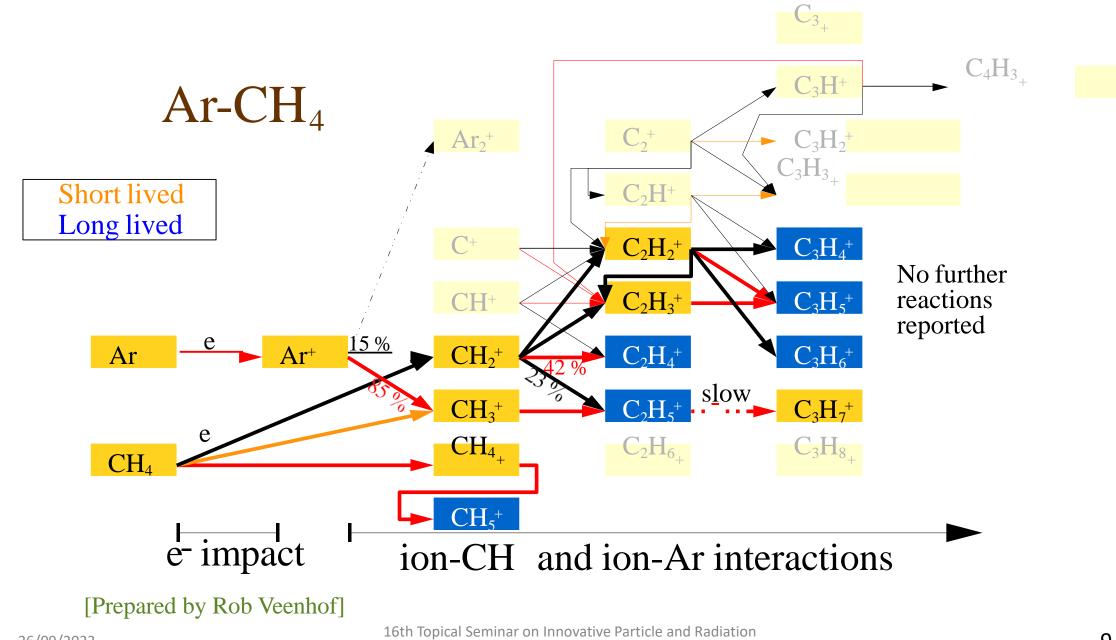

-) Electrons/ions transparency vs gain/bias configuration

- -) Homogeneity of the graphene
- -) Mechanical Robustness and stability
- -) Aging (radiation-induced damages)
- -) Production techniques
- -) IBF reduction (including cascade geometries)
- -) Multi-layer THGEM and possible different configurations
 - (intermediate layers between different electrodes)

[M. Cortesi, 2019, "Development of new MPGD structures for nuclear physics applications, MPGD19 La Rochelle, France]

DMM Design

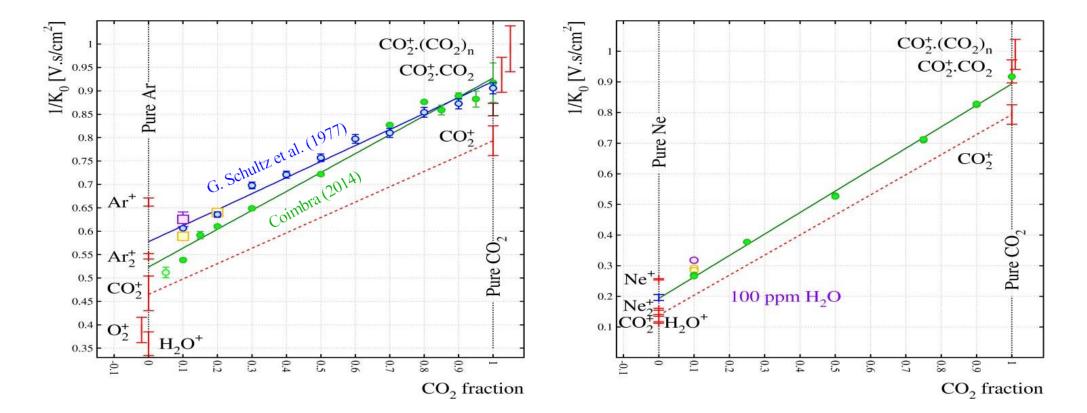
- DMM: Double Micro-Mesh gaseous structure
 - \circ Hole-type \rightarrow mesh-type : to strongly reduce IBF
 - o Double mesh: cascading avalanche for high gain



Stacked two meshes

- Gap between the stacked meshes: 200-300um, serving as pre-amplification (PA)
- Gap between the bottom mesh and anode: 50-100um as secondary amplification (SA)
- Allows to achieve very high gain, and yet significantly reduce ion back-flow.

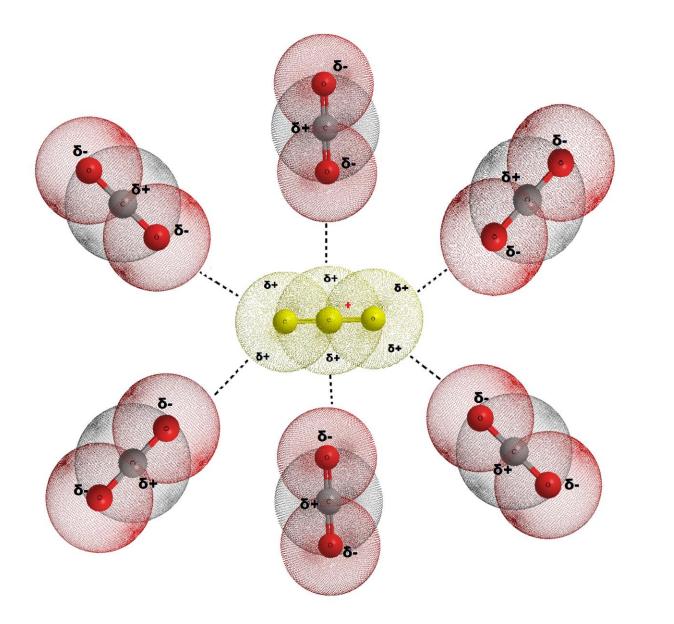
[L. Jianbei, 2019, "A high-gain and low ion-backflow DMM gaseous structure, MPGD19 La Rochelle, France]

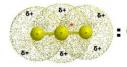

P. Bhattacharya et al 2015 JINST10 P09017 Z-Axis [µm] Y-Axis [µm] 100 100 200 20 300 -20 MM-THGEM 400 **Charged Particle** 500 **Drift Region** X-Axis [µm] 600 100 140 e-X-Axis [µm] EDrift $DMM \rightarrow larger gain, lower IBF$ MM ΔVTHGEM Mechanical stability of DMM over large area? ΔV_{MM1} DMM 105 ΔV_{MM2} --- Double micromesh ----- Single micromesh Ugention 0.015 --- Double micromesh Gas: Ar 90% + Isobutane 10% 41 Gain 10' Backflow Drift Field: 200 V/cn 0.01 Transfer Field: 1000 V/cm Drift Field: 200 V/cn 5 Transfer Field: 1000 V/cm Gas: Ar 90% + Isobutane 10% 10¹26 32 34 36 38 42 28 30 40 0.005 Amplification Field [kV/cm] 10² 10 Gain

Detectors, (IPRD23) 25-29 September 2023 Siena, Italy

Ions drifting in Ar-CO₂ and Ne-CO₂

Little Ar⁺, Ne⁺, CO₂⁺ but $CO_2^{+}(CO_2)_n$


Clustering reactions involving CO₂

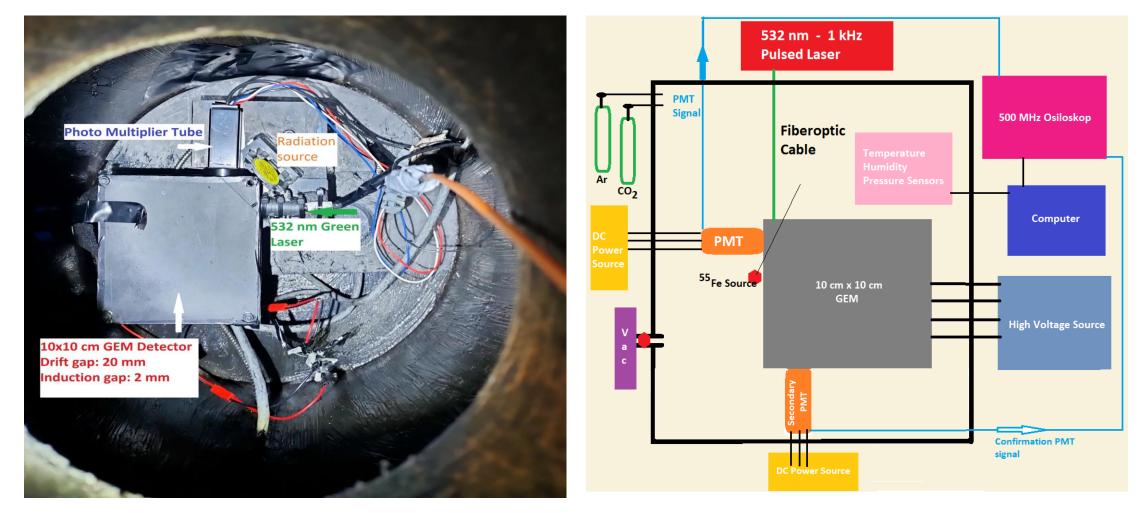

Ar⁺: charge exchange,
$$\tau \approx 0.85$$
 ns
Ar⁺ + CO₂ → Ar + CO₂⁺

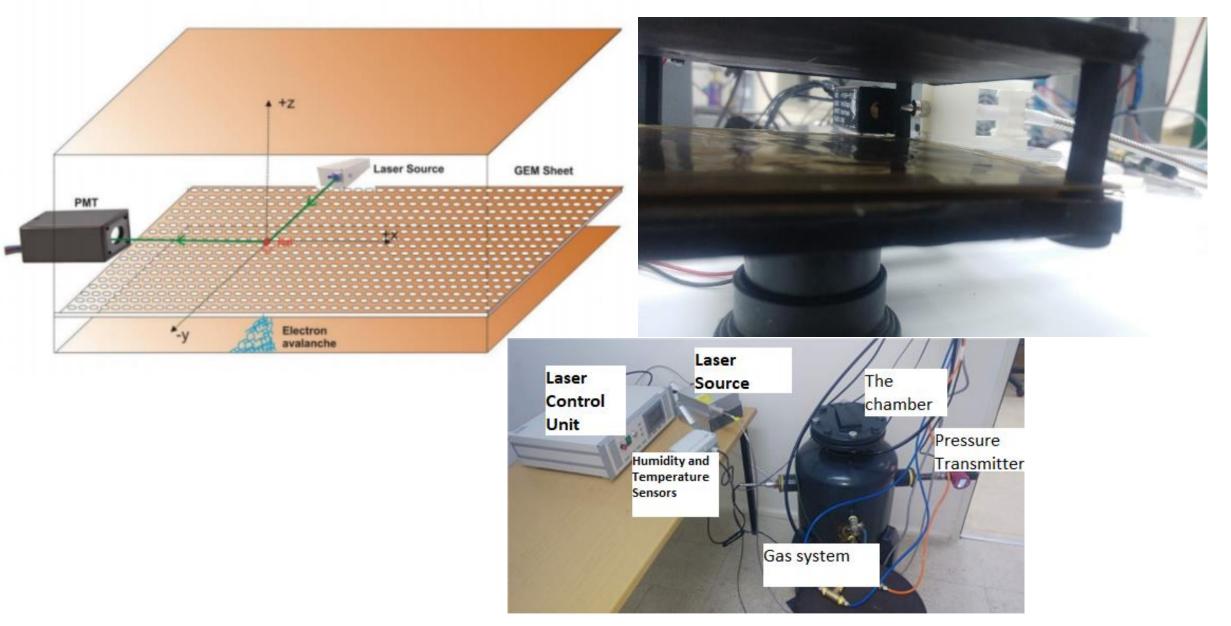
Ne⁺: charge transfer in 2steps, τ ≈ 8 ns
Ne⁺ + CO₂ → Ne + CO⁺ + O
CO⁺ + CO₂ → CO + CO₂⁺

► CO_2 : 3body association, $\tau = 0.72$ ns (faster if Ar helps) ► $CO_2^+ + 2CO_2 \rightarrow CO_2^+ \cdot CO_2 + CO_2$

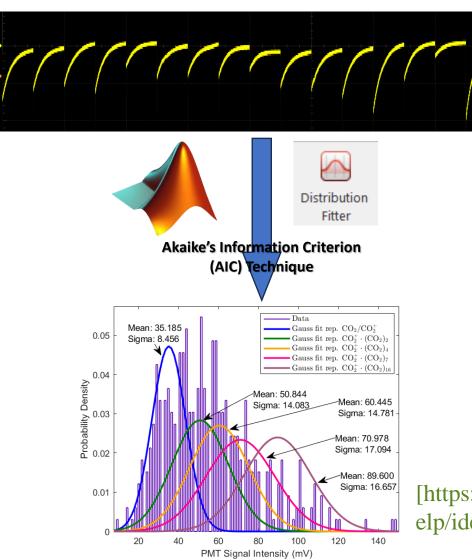
► [For 10 % CO₂, atmospheric pressure, room temperature]

: Carbon dioxide cation




•

: Carbon dioxide molecule with partially charge


ion-dipole chemical interactions to form cluster

Experimental Setup

Data Analysis

Particle	Size (pm)	Signal (mV)	
Ar/Ar ⁺	376	27	
CO_2/CO_2^+	474	35	
$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)$	596	44	
$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_2$	681	51	
$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_3$	749	56	
$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_4$	813	60	
$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_5$	856	63	
$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_6$	901	67	
$\operatorname{CO}_2^{\mp} \cdot (\operatorname{CO}_2)_7$	941	70	
$\operatorname{CO}_2^{+} \cdot (\operatorname{CO}_2)_{10}$	1046	78	
$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_{12}$	1105	82	
$\operatorname{CO}_2^{\mp} \cdot (\operatorname{CO}_2)_{16}$	1207	90	
H ₂ Õ	275	20	

[https://www.mathworks.com/h elp/ident/ref/idmodel.aic.html]

for pure CO₂

			•	-					
Gas mixture	Pressure (Atm)	Mean value of Gauss fit (mV) (Sigma value)	for pure Detected particle	Ar	Gas mixture	Pressure (Atm)	Mean value of Gauss fit (mV) (Sigma value)	Detected particle	
Pure Ar	1	27.381 (7.235)	Ar/Ar ⁺			1	35.758 (9.350)	CO_2/CO_2^+	
		45.03 (6.83)	Ar dimers				44.497 (5.056)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)$	
	2	27.649 (5.557)	Ar/Ar ⁺				51.296 (7.44)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_2$	
		49.01 (10.487)	Ar dimers				56.268 (7.095)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_3$	
	3	27.833 (5.425)	Ar/Ar ⁺				60.901 (7.719)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_4$	
		48.398 (9.496)	Ar dimers			2	35.185 (8.456)	CO_2/CO_2^+	
	4	26.571 (8.504)	Ar/Ar ⁺				50.844 (14.083)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_2$	
		41.677 (7.782)	Ar dimers				60.445 (14.781)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_4$	
	5	26.764 (6.799)	Ar/Ar ⁺				70.978 (17.094)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_7$	
	c .	44.324 (9.885)	Ar dimers				89.6 (16.657)	$\operatorname{CO}_2^{+} \cdot (\operatorname{CO}_2)_{16}$	
				_		3	44.44 (8.78)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)$	
		Mean value of Gauss fit (mV)	for %25	Ar	Pure CO ₂		51.119 (8.684)	$\operatorname{CO}_2^{+} \cdot (\operatorname{CO}_2)_2$	
Cogmintung	Pressure (Atm		1 1		1 uic CO ₂		56.017 (15.646)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_3$	
Gas mixture	Fressure (Ath	(Sigina value)	Detected particle				67.61 (9.981)	$\operatorname{CO}_2^{\overline{+}} \cdot (\operatorname{CO}_2)_6$	
	1	27.646 (7.039)	Ar/Ar ⁺				78.413 (17.910)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_{16}$	
		35.74 (10.272)	CO_2/CO_2^+			4	35.175 (9.26)	\tilde{CO}_2/CO_2^+	
		44.414 (9.032)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)$				44.142 (10.692)	$CO_2^+ \cdot (CO_2)$	
		56.926 (10.369)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_3$				51.467 (12.0)	$\operatorname{CO}_2^{+} \cdot (\operatorname{CO}_2)_2$	
	2	27.050 (7.285)	Ar/Ar ⁺	for %25 Ne			70.547 (15.294)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_7$	
25% Ar-75% C	O_2	35.840 (10.097)	CO_2/CO_2^+		, , , ,	5	44.926 (8.69)	$CO_2^+ \cdot (CO_2)$	
		44.040 (8.825)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)$	Data			56.32 (13.058)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_3$	
		60.224 (10.997)	$\operatorname{CO}_2^{\mp} \cdot (\operatorname{CO}_2)_4$	0.2 - Gauss fit m	sp. Ne /Ne+		67.239 (16.61)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_6$	
	3	35.102 (9.674)	CO_2/CO_2^+		ep. CO2/CO2		82.281 (15.181)	$CO_2^+ \cdot (CO_2)_{12}$	
		44.31 (9.334)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)$	0.15	ep. CO ₂ ⁺ · (CO ₂)		02.201 (15.101)	$(00_2)^{12}$	
		63.368 (10.965)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_5$		751				
	4	27.786 (7.846)	Ar/Ar ⁺	Arr Mean: 14.7 Sigma: 8.33					
		44.711 (8.605)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)$	0.1					
		63.521 (10.98)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)_5$		Nean: 35.477 igma: 11.18				
	5	27.542 (9.776)	Ar/Ar ⁺	0.05	-Mean: 44.74				
		35.337 (11.504)	CO_2/CO_2^+		Sigma:9.18				
		44.483 (6.052)	$\operatorname{CO}_2^+ \cdot (\operatorname{CO}_2)$		2				

Conclusion

Characterization of cluster ions is essential for an effective solution

- Rayleigh Scattering technique is usefull to estimate the cluster size in gas detectors.
- Neon is less aggresive to forming the cluster ions.
- Pressure has a role onto the clustering mechanism in gaseous detectors.

Thank You ! Yalçın KALKAN

<u>y.kalkan@cern.ch</u>

yalcin.kalkan@ibu.edu.tr