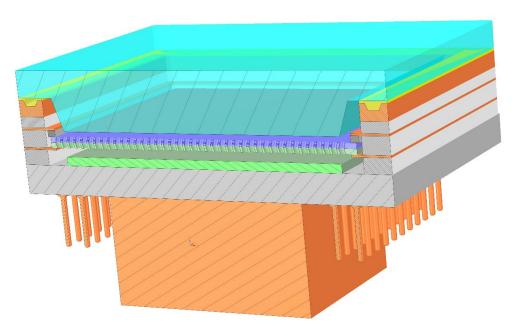
Hybrid single-photon detector based on microchannel plate and the Timepix4 ASIC as pixelated anode

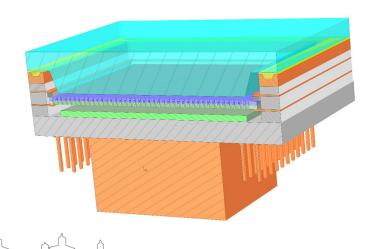
J. A. Alozy¹, R. Ballabriga¹, <u>N. V. Biesuz²</u>, R. Bolzonella^{2,3}, M. Campbell¹, V. Cavallini^{2, 3}, A. Cotta Ramusino², M. Fiorini^{2,3}, E. Franzoso^{2,3}, M. Guarise^{2,3}, X. Llopart¹, G. Romolini^{2,3}, A. Saputi²

> ¹CERN ²INFN sezione di Ferrara ³ Università di Ferrara

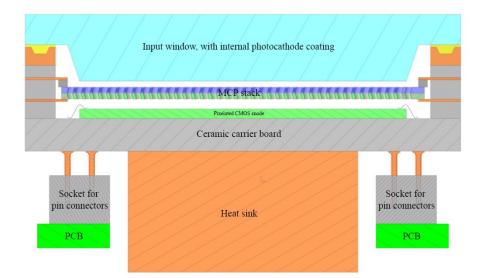


European Research Council

Overview


- Detector concept
- The Timepix4 ASIC
- Expected performance
- DAQ system
- Results on detector components

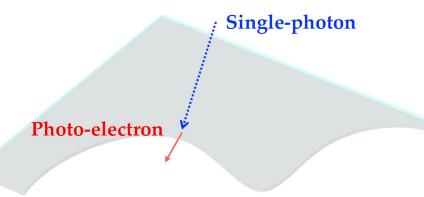
The 'hybrid' detector [M. Fiorini et al. JINST 13 (2018) C12005]


We are developing a single-photon detector:

- based on a vacuum tube
- transmission photocathode with high QE in the spectral region of interest
- micro-channel plate stack
- a pixelated CMOS read-out anode with integrated front end electronics

Timing resolution	few 10 ps
Position resolution	5-10 µm
Maximum rate	10 ⁹ hits/s
Dark count rate	10 ² counts/s
Active area	~7 cm ²
Channel density	0.23 M channels

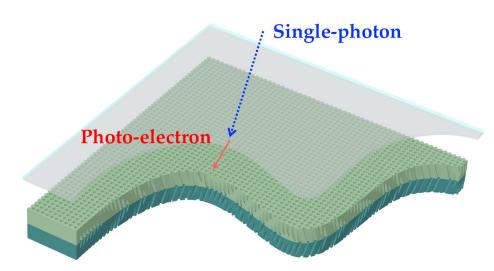
The detector assembly


On the left: cross-section of the detector assembly

- Vacuum-tube based detector
 - Assembly under high vacuum
 - Assembly and bonding to minimize distance between components
- High-speed connections through pins in ceramic carrier board
 - custom PGA 2.54 mm pitch
- Socket for detector I/O and low voltage
- Heat sink under AISC
 - Assembly < 20° C with ASIC @ peak power
- PCB allows connection to FPGA-based DAQ system

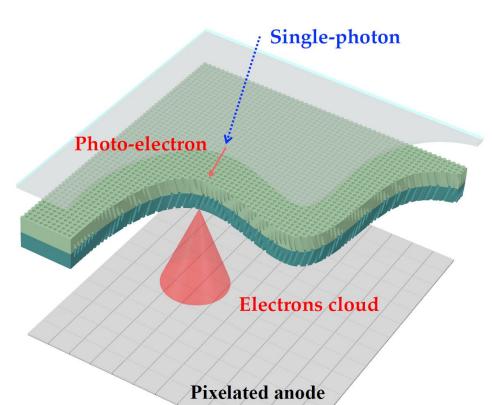
The hybrid detector: entrance window + photocathode

Photon conversion using high Quantum Efficiency (QE) Photocathode

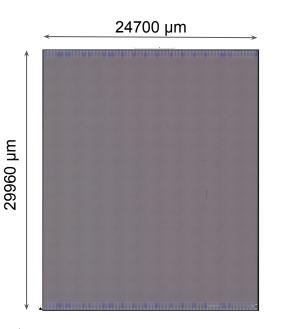

- E.g. bialkali photocathode
 - **30-50% QE**
 - \circ ~10² Hz dark count rate @300 K
 - Best for timing
- Flexible design allows to use different photocathodes

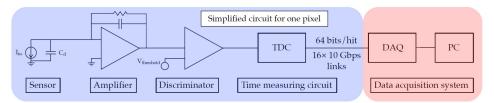
Hybrid single-photon detector based on microchannel plate and the Timepix4 ASIC as pixelated anode - N. V. Biesuz - IPRD23 - 2023/09/26

The hybrid detector: MCP stack


- Microchannel plate stack (chevron)
 - dual or triple stack
 - > 10⁴ gain
 - \circ 5-10 μm pore size
- Possibility of atomic layer deposition for increased lifetime:
 - >30 C/cm²
- Proximity focus
 - Short distance from MCP to cathode and anode for best time and position resolution

The hybrid detector: active anode


Pixelated anode:

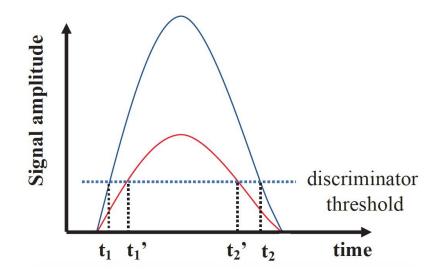

- Electron cloud spread over a number of pixels
- Anode is an ASIC that integrates digital and analog front-end
 - pixels coordinates
 - pixels Time of Arrival (ToA)
 - pixels Time over Threshold (ToT)

The hybrid detector: active anode [X. Llopart et al 2022 JINST 17 CO1044]

- Timepix4 ASIC in 65 nm CMOS
 - Developed by Medipix4 collaboration
- 512 \times 448 pixels (55 μ m \times 55 μ m pitch)
- Large active area: 7 cm²
- Bump pads used as anode

Signal from MCP amplified and discriminated

- Time-stamp provided by Time-to-Digital Converter (TDC)
 - 195 ps bin size for ToA
 - ~ 56 ps r.m.s. resolution
 - 1.56 ns bin size for ToT
- High rate capability:
 - maximum bandwidth: 160 Gb/s
 - maximum hit rate: 2.5 Ghits/s
- Output:
 - 64 bits of data per hit with 64b/66b encoding
- transmitted via 16 high-speed links up to 10.24 Gbps


Improving the Timepix4 resolution

For each pixel, it provides combined measure of:

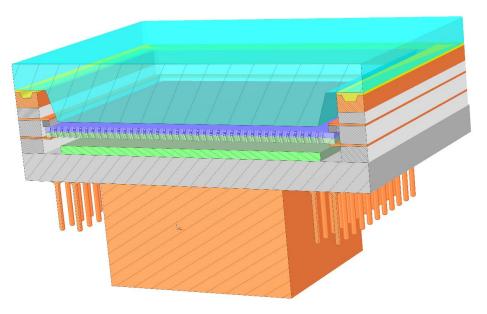
- Time-of-Arrival [t1]
- Time-over-Threshold [t2 t1]

Time over Threshold used to:

- Correct for time-walk effect [t1- t1']
- Improve resolution on cluster centroid
 - ~16µm → ~5µm
- 3D clustering (space and time)
 - Improve timing resolution by multiple sampling
 - \circ Cluster Time of Arrival Resolution few 10s ps

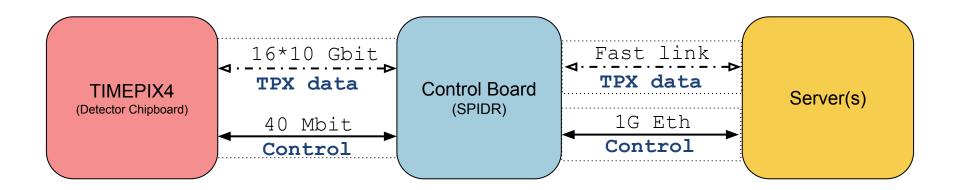
Design status

• Thinned (300 µ) Timepix4 v2 ASIC available:


- Behaviour well understood
- $\circ \quad \ \ {\sf CERN} \ {\sf working} \ {\sf on} \ {\sf single} \ {\sf chip} \ {\sf probing}$

• Ceramic carrier

- First prototypes received in July 2023
- Fully characterised
- $\circ \qquad \text{Already integrated with Timepix4 v2}$


• Tube design ongoing

 \circ estimated production 2024

The Data AcQuisition (DAQ) system

SPIDR)

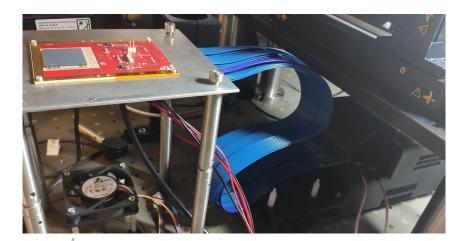
DAQ system composed by:

- Detector and Front-End (Timepix4)
- Control Board
- Server(s)

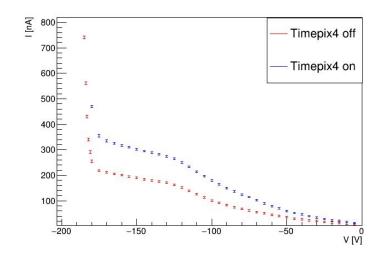
Signal collection and digitization

Data-handling, interface to DAQ servers

System control (master), data storage and post-processing

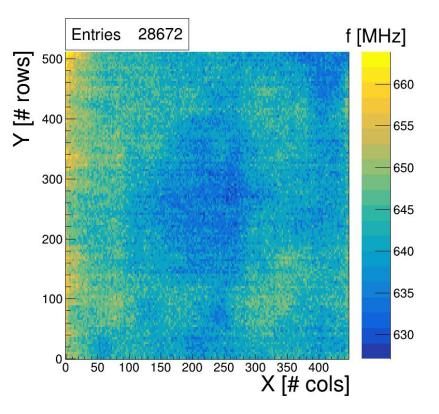

Timepix4 characterization - Setup

Control board:


• SPIDR4 control board, developed by NIKHEF

Timepix4_v2:

- bonded to a 100 μ m n-on-p Si detector biased at -150 V
- metallization with holes pattern
- Courtesy of the CERN and NIKHEF Medipix4/VELO groups

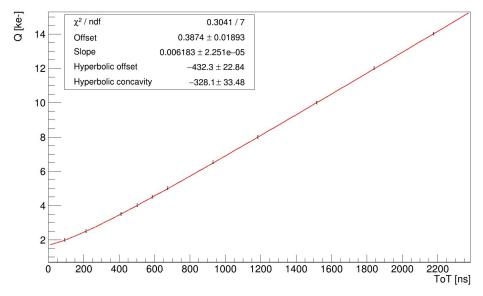


Timepix4 characterization - VCO calibration

The TDC is based on a DLL

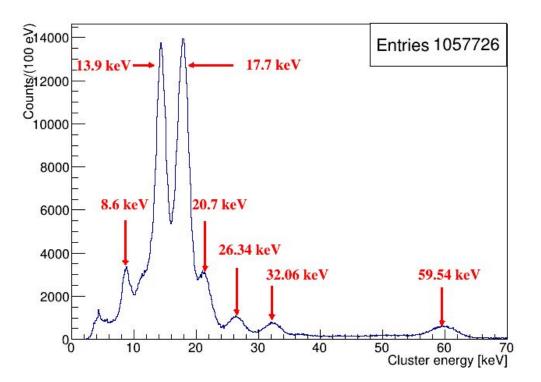
- One per pixel group (8pixels)
- It uses a Voltage Controlled Oscillator (VCO)
- Ideally all pixels are locked to the same clock
 - $\circ \qquad \text{Reality: different VCOs} \rightarrow \text{different frequencies}$
- Finer ToA bins generated with different width
- ToA and ToT heavily affected by VCO drift
- Use internal test pulse to calibrate VCO
 - \circ the whole matrix (~28.7k VCO)

Timepix4 characterization - ToT vs Q calibration

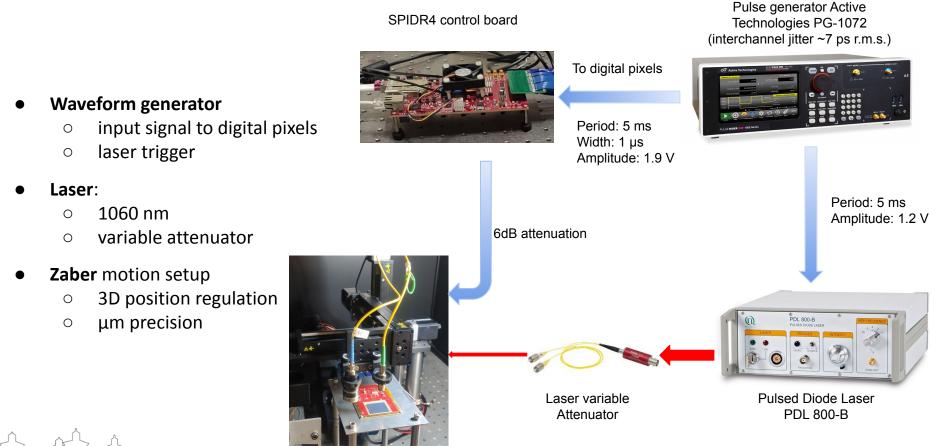

Procedure:

- 1. Set threshold to 1K e
- 2. Send pulse to the pixel input
 - signal amplitude is known
 - signal generated by the Timepix4
 - Analog test-pulse
- 3. Observe Timepix4 response
- 4. Plot injected charge against ToT
- 5. Repeat from 2 changing the signal amplitude
- 6. Repeat for all pixels in the matrix
 - ~230k pixels

Results:


• Non linear calibration

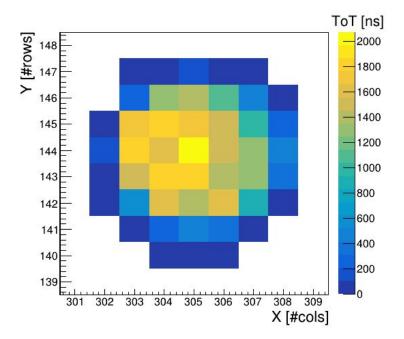
Calibration of pixel [305,144]



Timepix4 characterization - calibration validation

Calibration validated using radioactive sources (¹³⁷Cs and ²⁴¹Am superimposed spectra)

Timepix4 characterization - Timing resolution setup

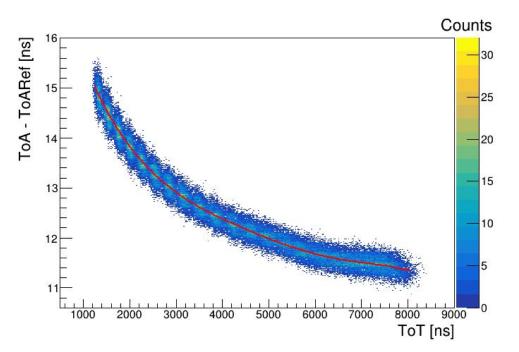

Hybrid single-photon detector based on microchannel plate and the Timepix4 ASIC as pixelated anode - N. V. Biesuz - IPRD23 - 2023/09/26

Timepix4 characterization - Timing resolution

Laser focused using micro-collimator:

• σ = 1.4 pixel = 77 μm

Laser spot in fixed position for all presented measurements

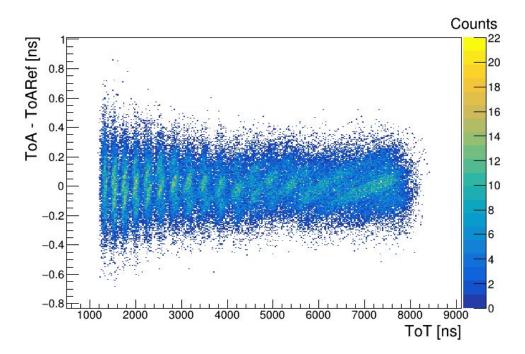

Timepix4 characterization - Time walk correction

Measurements using variable laser attenuation

• populate a wide ToT range

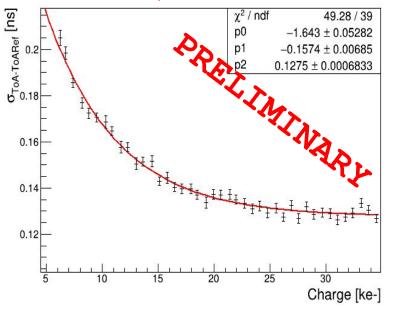
Different time walk trends on different pixels

• Time walk corrected separately on each pixel

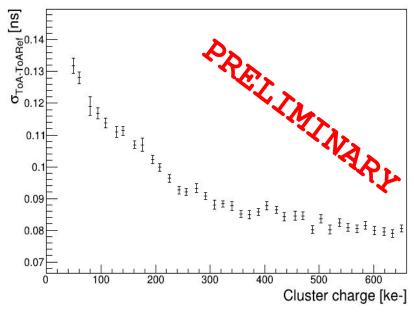

Timepix4 characterization - Time walk correction

Measurements using variable laser attenuation

• populate a wide ToT range


Different time walk trends on different pixels

• Time walk corrected separately on each pixel


Timing resolution

 $\sigma_{ToA-ToARef}(ToT) = Exp(p_0 + p_1 \cdot ToT) + p_2$

Single-pixel best resolution:

- 128±1 ps rms
- **111±1 ps rms** (W/O ToA_{ref} contribution)

Multi-pixel cluster best resolution:

- 79 ± 1 ps rms
- 49 ± 1 ps rms (W/O ToA_{ref} contribution)

Summary

We are developing a detector for visible single photons:

- based on a vacuum tube
- a bare Timepix4 CMOS ASIC (anode)
- a Micro Channel Plate stack

This detector will allow the detection of up to 10⁹ photons/s with simultaneous measurement of time and position with excellent resolutions

- Fully exploit both timing and position resolutions of a MCP
- High-performance data acquisition (up to ~160 Gbps)

The first tests on the Timepix4 ASIC are encouraging

- ToT vs Q per pixel calibration
- single pixel timing resolution:
- cluster timing resolution:

 $\rightarrow \sigma ToA$ = 111 ± 1 ps rms

 $\rightarrow \sigma ToA = 49 \pm 1 \text{ ps rms}$

