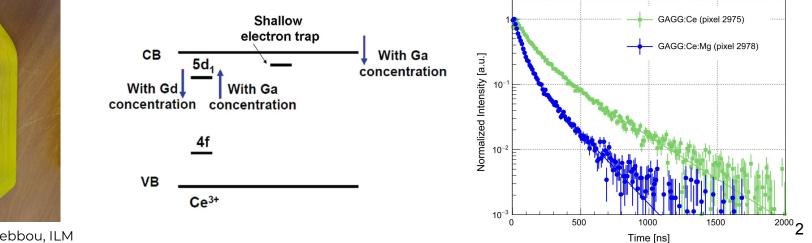
R&D on GAGG single crystals for fast timing detectors in high-rate and radiation environments

Loris Martinazzoli¹, Roberto Calà^{1,2}, Jan Pejchal⁴, Pavel Boháček³, Michal Dušek⁴, Jan Rohliček⁴, Martin Nikl⁴, Etiennette Auffray¹

¹CERN, Geneva, Switzerland
 ²Università degli Studi di Milano-Bicocca, Milan, Italy
 ³Institute of Physics of the Czech Academy of Sciences, 18221, Prague, Czech Republic
 ⁴Institute of Physics of the Czech Academy of Sciences, 16200, Prague, Czech Republic

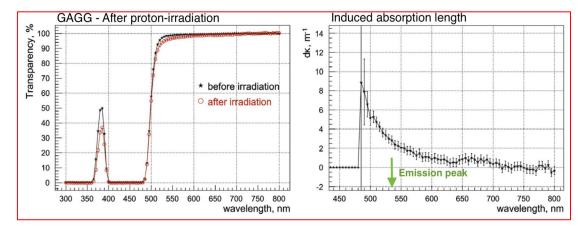

Gadolinium Aluminium Gallium Garnet

	light yield (photons/MeV)	first decay time (ns)	second decay time (ns)
$\mathrm{Gd}_3\mathrm{Al}_4\mathrm{Ga}_1\mathrm{O}_{12}$ $\mathrm{Gd}_3\mathrm{Al}_3\mathrm{Ga}_2\mathrm{O}_{12}$	15 895 45 931	316 (100%) 221 (100%)	
$\mathrm{Gd}_3\mathrm{Al}_2\mathrm{Ga}_3\mathrm{O}_{12}$	42 217	52.8 (73%)	282 (27%)
$Gd_{3}Al_{1}Ga_{4}O_{12} \\$	17912	42.2 (34%)	90.5 (66%)
$Gd_{3}Al_{0}Ga_{5}O_{12} \\$	0	*ND	*ND

K. Kamada et al., Cryst. Growth Des. 2011, 11, 10, 4484–4490 Ce-doped multi-component garnets discovered in 2011. Amongst them is Gadolinium Gallium Aluminium Garnet $Gd_3Al_2Ga_3O_{12}$ (GAGG):

- High light yield and fast scintillation
- Tunable composition
 - K. Kamada et al., Optical Materials 36 (2014) 1942–1945
- Acceleration of scintillation via divalent ions codoping (e.g. Magnesium)

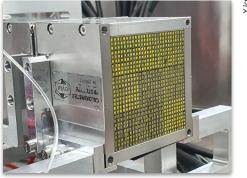
K. Kamada et al., Optical Materials 41 (2015) 63–66 M. Lucchini et al., NIM A816 (2016) 176-183

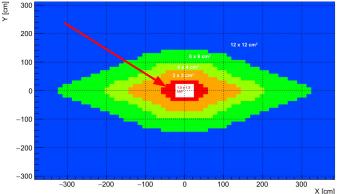


Courtesy of K. Lebbou, ILM

Radiation Hardness

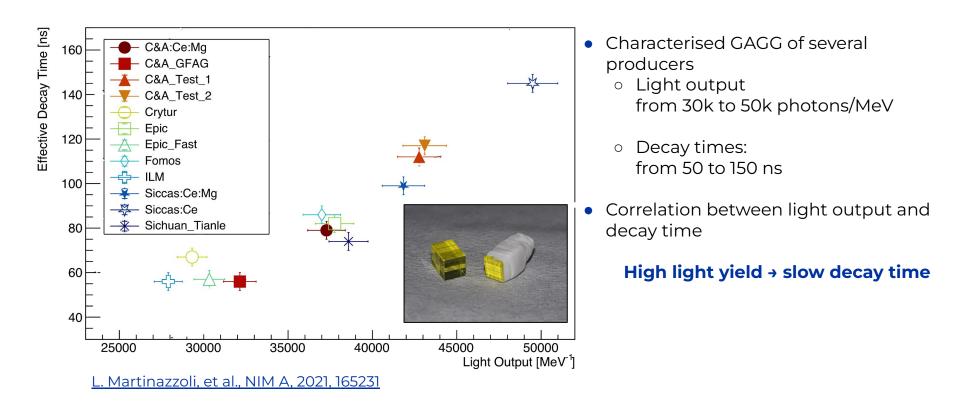
Garnets are radiation hard

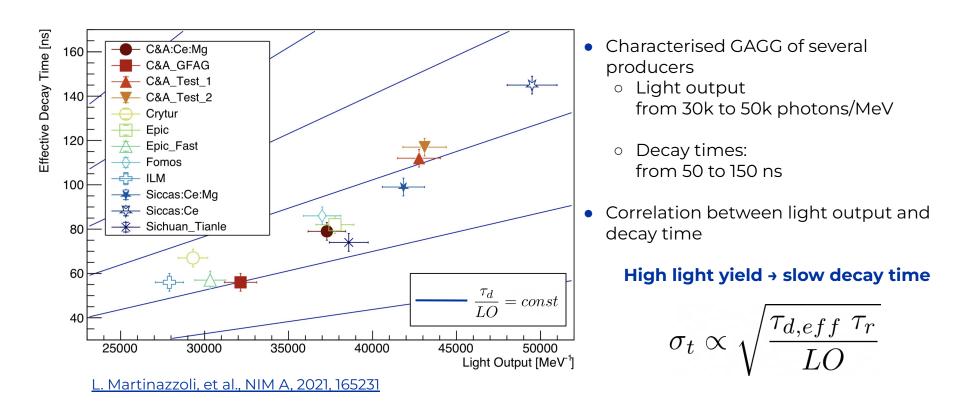

- GAGG irradiated w 3.1x10¹⁵ protons/cm⁻² (24 GeV/c)
 - Dose: 910 kGy
 Induced absorption below 4m⁻¹ at
 - the emission peak See: V. Alenkov et al., NIM A 816 (2016) 176



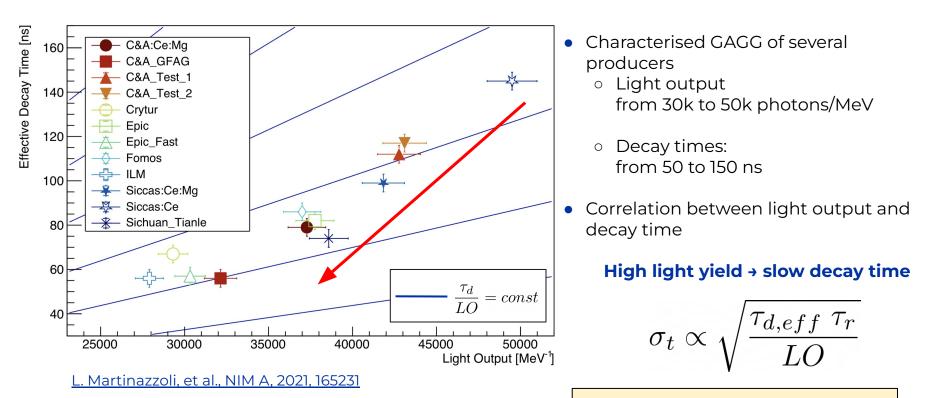
--> GAGG fibres are the baseline solution for the innermost region of the LHCb PicoCal

(see talk by E. Picatoste Tue 26)

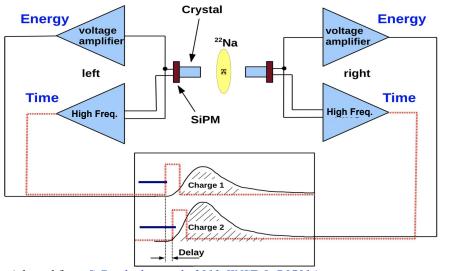



I. Present GAGG

II. Accelerating Scintillation


Light Output and Effective Decay Time

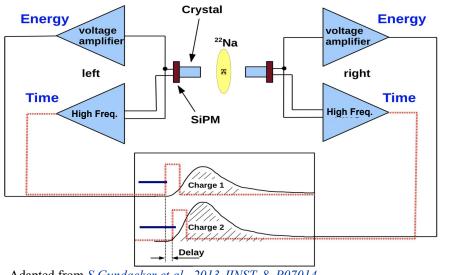
Light Output and Effective Decay Time


Light Output and Effective Decay Time

Faster samples have better timing

7

Coincidence Time Resolution


Adapted from S. Gundacker et al., 2013 JINST, 8, P07014

- Time resolution measured with two 511 keV photons in coincidence with ²²Na (CTR)
- High-Frequency amplifier (~1.5 GHz bandwidth) for timing

CTR of GAGG in line with LYSO:Ce

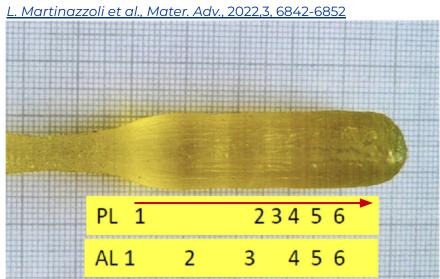
Crystal	$\begin{array}{c} \mathrm{CTR} \ \mathrm{(HF)} \ \mathrm{[ps]} \\ \mathrm{2x2x3} \ \mathrm{mm}^{3} \end{array}$
C&A GFAG	87 ± 2
ILM GAGG	90 ± 2
EPIC Fast GAGG	90 ± 2
LYSO:Ce	86 ± 2

Coincidence Time Resolution

Adapted from S. Gundacker et al., 2013 JINST, 8, P07014

However, decay time of ~ 50 ns (+ slow component)...

--> Pile-up at high rates!


- Time resolution measured with two 511 keV photons in coincidence with ²²Na (CTR)
- High-Frequency amplifier (~1.5 GHz bandwidth) for timing

CTR of GAGG in line with LYSO:Ce

Crystal	$\begin{array}{c} \text{CTR (HF) [ps]} \\ 2\text{x}2\text{x}3 \text{ mm}^3 \end{array}$
C&A GFAG	87 ± 2
ILM GAGG	90 ± 2
EPIC Fast GAGG	90 ± 2
LYSO:Ce	86 ± 2

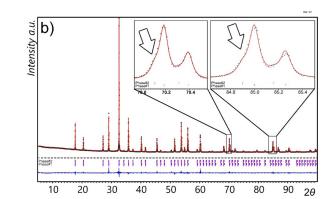
I. Present GAGGII. Accelerating Scintillation

The Samples

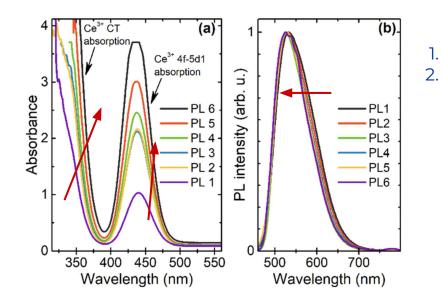
	g	Gd	Ce	Mg	Ga	Al
SC		2.955	0.015	0.03	3	2
AL1	0.065	2.917	0.0065	0.0051	2.787	2.284
AL2	0.155	2.944	0.0063	0.0053	2.813	2.231
AL3	0.416	2.978	0.0096	0.0058	2.845	2.160
AL4	0.618	2.954	0.0131	0.0039	3.043	1.986
AL5	0.703	2.959	0.0164	0.0060	3.108	1.982
AL6	0.789	2.952	0.0279	0.0112	3.251	1.758
			•	· · · · · · · · · · · · · · · · · · ·		

Samples produced from plates cut along the ingot

- AL to study composition
- PL to study luminescence

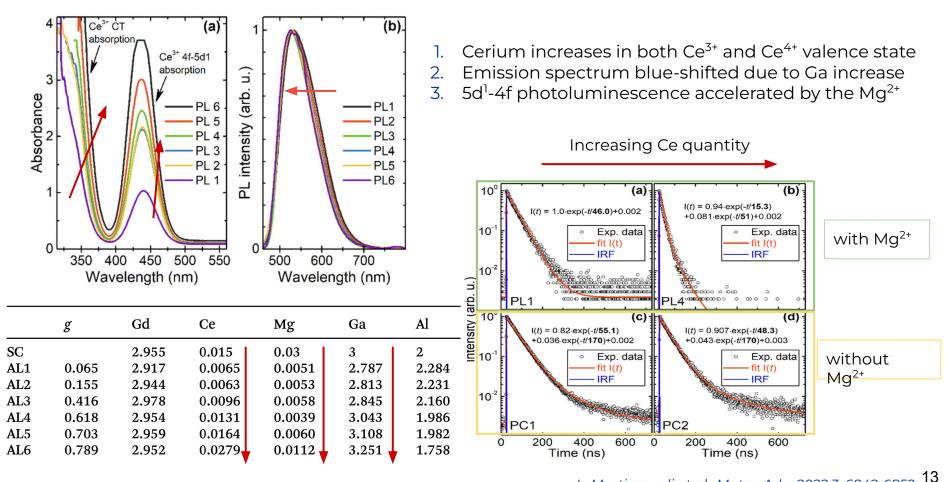

Along the ingot:

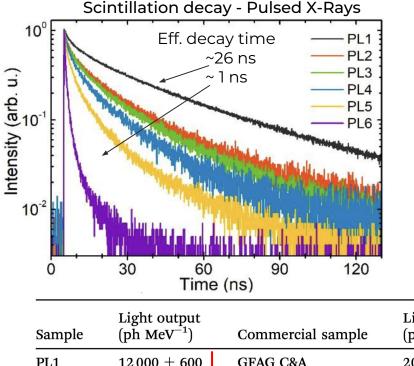
- Both Ce and Mg increasing


 Up to l at%!
- Ga increasing

Rietveld analysis found 2 garnet phases (80%-20%)

- Possibly due to Al/Ga subclusters See: Phys. Status Solidi A 2018, 215, 1701034
- No perovskite phase

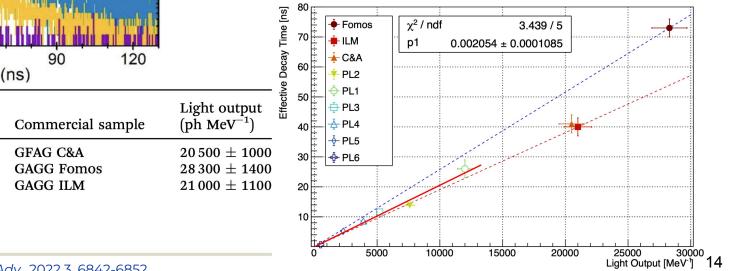

Photoluminescence


	g	Gd	Ce	Mg	Ga	Al
SC		2.955	0.015	0.03	3	2
AL1	0.065	2.917	0.0065	0.0051	2.787	2.284
AL2	0.155	2.944	0.0063	0.0053	2.813	2.231
AL3	0.416	2.978	0.0096	0.0058	2.845	2.160
AL4	0.618	2.954	0.0131	0.0039	3.043	1.986
AL5	0.703	2.959	0.0164	0.0060	3.108	1.982
AL6	0.789	2.952	0.0279	0.0112	3.251 🚽	1.758
			· · · · · · · · · · · · · · · · · · ·	•	•	

Cerium increases in both Ce³⁺ and Ce⁴⁺ valence state Emission spectrum blue-shifted due to Ga increase

Photoluminescence

Scintillation



Samples of 1x1x5 mm³ used

Light quenching observed moving along the ingot:

- Light output reduction by > 10x
- Decay time accelerated by > 10x

Acceleration compensating the Light Yield reduction to maintain the same initial photon time-density

L. Martinazzoli et al., Mater. Adv., 2022,3, 6842-6852

 7600 ± 380

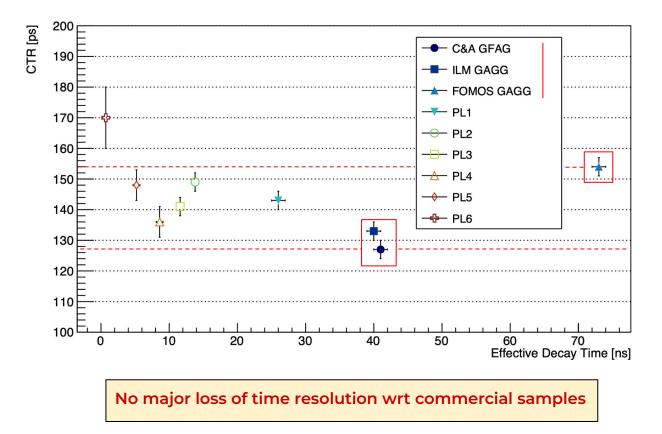
 5200 ± 260

 3900 ± 190

 2300 ± 230

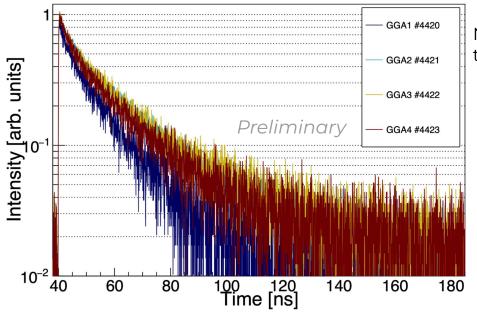
 500 ± 300

PL2


PL3

PL4

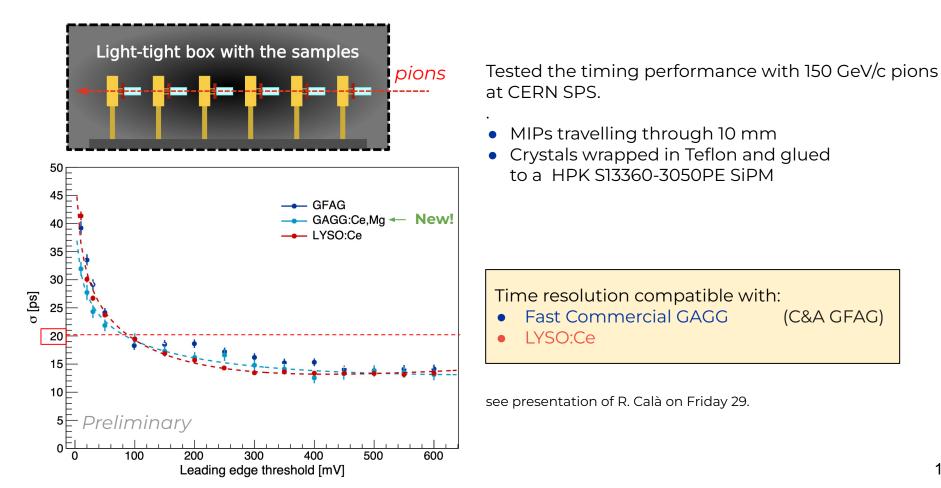
PL5


PL6

Timing

Note: different (worse) surface state for the new samples

New Samples



New and larger samples of **2x2x10 mm³** produced by the FZU institute, Prague.

- 4 samples with similar composition (and scintillation)
- Main decay time of 15-20 ns
- Slow component under study

Crystal	Photons Output $[MeV^{-1}]$	$ au_{d,1} \; [\mathrm{ns}]$	%	$\tau_{d,2} \; [\mathrm{ns}]$	%	$ au_{d,3} \; [\mathrm{ns}]$	%	$ au_{d,eff} \; [\mathrm{ns}]$
Sample 1	6'200	3	10	15	66	99	24	12
Sample 2	7'400	3	8	19	67	77	25	16
Sample 3	7'400	3	7	18	66	82	27	15
Sample 4	6'200	3	10	17	67	80	23	14

Timing with MIPs

Cerium-doped **GAGG** is:

- radiation hard
- fast and with high light output
- commercially available today

Cerium-doped **GAGG** is:

- radiation hard
- fast and with high light output
- commercially available today

Decay time can be accelerated with heavy (co)-doping:

- Heavy doping achieved up to ~1 at%
 - Thanks to the cubic structure and the melting temperature of GAGG
 - No perovskite phase observed
- Acceleration of the scintillation by >10x paired by reduction in light output
- Time resolution remains competitive

Cerium-doped **GAGG** is:

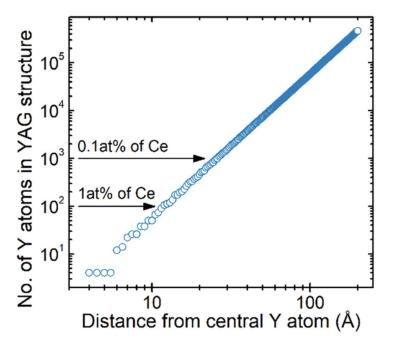
- radiation hard
- fast and with high light output
- commercially available today

Decay time can be accelerated with heavy (co)-doping:

- Heavy doping achieved up to ~1 at%
 - Thanks to the cubic structure and the melting temperature of GAGG
 - No perovskite phase observed
- Acceleration of the scintillation by >10x paired by reduction in light output
- Time resolution remains competitive

Ongoing R&D to develop large-size ingots with accelerated scintillation in:

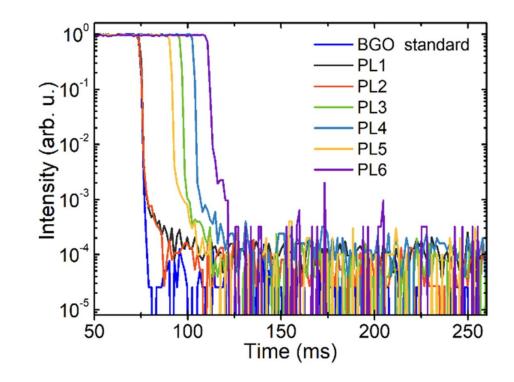
• **Crystal Clear Collaboration** and the **TWISMA project** TWIN European project between ISMA, CERN, ILM Lyon


(Grant agreement 101078960)

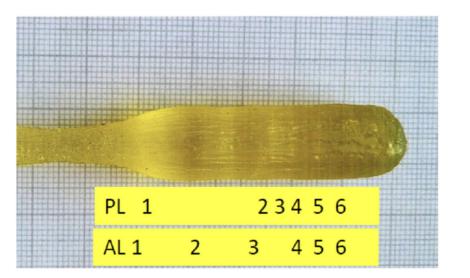
• Institutes taking part in the LHCb PicoCal

Back-up

Ce-Mg pairs

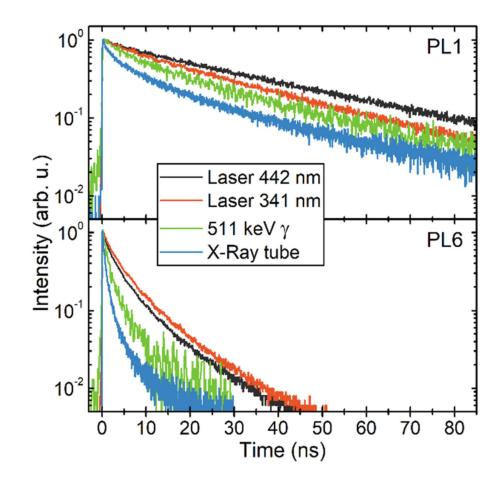


 Recent literature suggests that PL quenching in co-doped garnets is due to {Ce-Mg} pairs see:


Babin et al., Optical Materials **83** (2018) 290 Babin et al., J. Lumin. **215** (2019) 116608

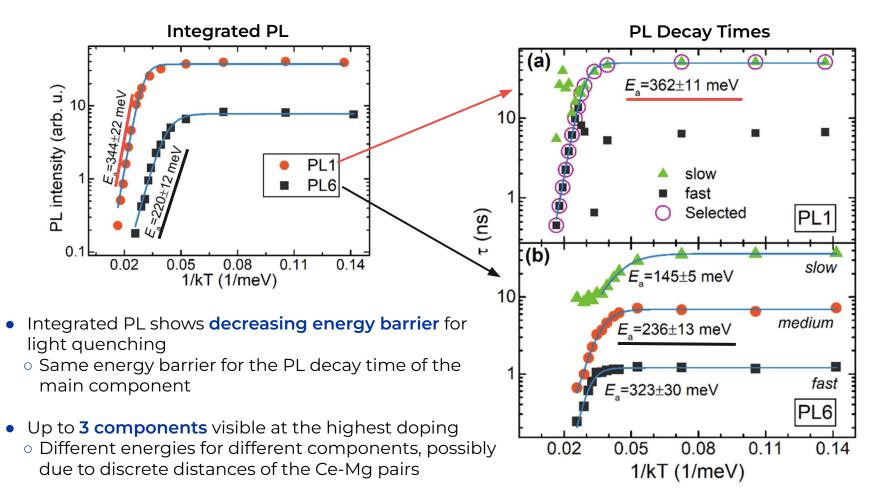
- Doping of 1 at% reduces the distance of dopants at the level of the lattice parameter
- Different components explained by discrete available distances between dopants.
- Similar behaviour observed in CeF₃ see: M. Nikl, et al., J.Phys.Cond.Mat. 7, 6355-6364 (1995)

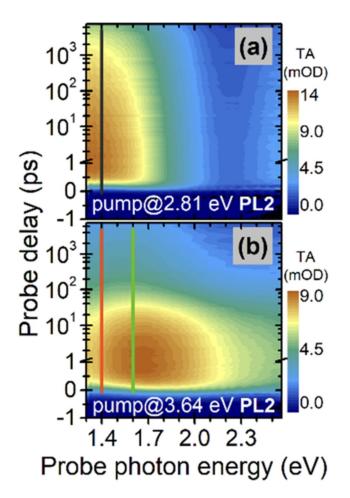
Afterglow


Ingot

	g	Gd	Ce	Mg	Ga	Al
SC		2.955	0.015	0.03	3	2
AL1	0.065	2.917	0.0065	0.0051	2.787	2.284
AL2	0.155	2.944	0.0063	0.0053	2.813	2.231
AL3	0.416	2.978	0.0096	0.0058	2.845	2.160
AL4	0.618	2.954	0.0131	0.0039	3.043	1.986
AL5	0.703	2.959	0.0164	0.0060	3.108	1.982
AL6	0.789	2.952	0.0279	0.0112	3.251	1.758

- Diameter: 12.5 mm
- Czochralski Iridium crucible
- Atmosphere: N + 2% O
- Cyberstar Mini-oxypuller machine
- Elementary cell parameters, 12.28279(5) Å and 12.29436(13) Å, with their volume ratio of 0.8 : 0.2.

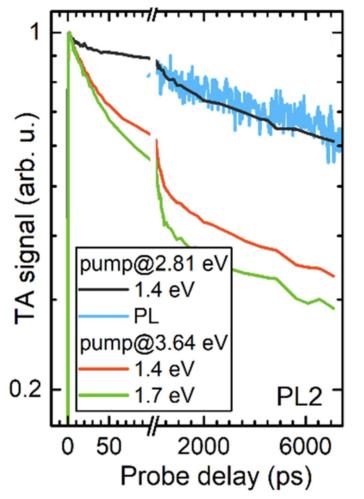

Kinetics Comparison


X-Rays Kinetics

Sample	τ_{r} (ps)	τ _{d1} (ns)	R_1 (%)	τ_{d2} (ns)	R_2 %	τ_{d3} (ns)	R ₃ (%)	$\tau_{d,eff}$ (ns)
C&A GFAG	32	6.0	4.6	44.5	69.2	222	26.3	41
ILM GAGG	37	4.0	3.2	40.4	56.4	138	40.4	40
Fomos GAGG	30	2.2	0.5	53.1	41.7	166	57.8	73
PL1	13	2.5	3.3	25.4	48.0	79.2	48.8	26
PL2	8	2.1	7.2	16.6	54.6	66.2	38.2	13.8
PL3	5	1.6	6.2	12.6	47.5	46.0	46.3	11.6
PL4	5	1.5	9.2	11.3	53.9	45.4	36.9	8.6
PL5	5	1.0	11.0	7.1	51.8	40.8	37.2	5.2
PL6	5	0.2	19.5	1.5	53.0	14.9	27.5	0.7

Temperature dependence of Photoluminescence

Transient Absorption


Studied non-equilibrium absorption bands:

• Pump 4f-5d¹ - 2.8 eV (a) :

absorption band in line with literature for GAGG
 see: G. Tamulaitis et al., J. Appl. Phys. 124, 215907 (2018)
 and Keynote presentation on Wednesday by G. Tamulaitis

- Pump 4f-5d² 3.6 eV (b):
 - new absorption band peaking at 1.7 eV
 - $\circ\,$ new band extending towards higher eV increasing dopants

Transient Absorption

Studied non-equilibrium absorption bands:

• Pump 4f-5d¹ - 2.8 eV (a) :

absorption band in line with literature for GAGG
 see: G. Tamulaitis et al., J. Appl. Phys. 124, 215907 (2018)
 and Keynote presentation on Wednesday by G. Tamulaitis

- Pump 4f-5d² 3.6 eV (b):
 - new absorption band peaking at 1.7 eV
 - $\circ\,$ new band extending towards higher eV increasing dopants
- Non-exponential decay of electrons in 5d¹ and 5d² confirms non-radiative recombination channels