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Precision timing at CMS for HL-LHC

e At HL-LHC (2029 — 2042), instantaneous luminosity & pileup = 4-6x higher than current LHC levels
o L ,25%10%cm™?s, up to 140-200 nearly-simultaneous collisions (pileup)
o challenging radiation levels to withstand for all sub-detectors

e Precision MIP timing with tens-of-ps resolution allows recovering current LHC level of vertex merge

rate & track purity
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e CMS strategy for pileup mitigation: upgraded tracker + a dedicated detector for precision timing,

the MTD (Mip Timing Detector)



Impact of precision timing

e Precision timing brings an ample spectrum of downstream gains to the CMS physics programme at the
HL-LHC:

o x2reduction of wrong track-vertex associations — improved reconstruction performance of ~all physics
objects and therefore ~all CMS analyses
m e.g. improve expected HL-LHC HH significance as much as ~2-3 additional years of HL-LHC data taking
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Impact of precision timing

Precision timing brings an ample spectrum of downstream gains to the CMS physics programme at the
HL-LHC:

O

x2 reduction of wrong track-vertex associations — improved reconstruction performance of ~all physics
objects and therefore ~all CMS analyses
m e.g. improve expected HL-LHC HH significance as much as ~2-3 additional years of HL-LHC data taking

genuinely new information to the CMS event record (e.g. PID)
m relevant for flavor / HI physics
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Impact of precision timing

Precision timing brings an ample spectrum of downstream gains to the CMS physics programme at the
HL-LHC:

o x2reduction of wrong track-vertex associations — improved reconstruction performance of ~all physics

objects and therefore ~all CMS analyses
m e.g. improve expected HL-LHC HH significance as much as ~2-3 additional years of HL-LHC data taking

o  genuinely new information to the CMS event record (e.g. PID)
m relevant for flavor / HI physics

o new handle for long-lived particles (e.g. mass reconstruction from velocity measurements)
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MTD design

e The MTD detector is a thin, hermetic (|n| < 3) precision timing
layer for MIP particles, to be installed between the tracker and
the calorimeter

e Different sensor technologies for barrel / endcap detectors,
dictated by:
o technology maturity / radiation tolerance
o CMS integration and overall CMS Upgrade schedule
o cost and power effectiveness

ETL: Si with internal gain (LGAD):
+ On the CE nose: 1.6 <|n| < 3.0
+ Radius: 315 <R <1200 mm

BTL: LYSO bars + SiPM readout:
+ TK/ECAL interface: |n| < 1.45
+ Inner radius: 1148 mm (40 mm thick)
+ Length: +2.6 m along z
+ Surface ~38 m2; 332k channels
* Fluence at 4 ab': 2x10"n,/cm?

+ Position in z: £3.0 m (45 mm thick)
+ Surface ~14 m?, ~8.5M channels
* Fluence at 4 ab™": up to 2x10% n, Jcm?




BTL design detector module Readout unit
2 sensor modules + FE in a copper 12 detector modules, optical readout + DC/DC

housing converters

sensor module
16 LYSO bars with double-ended
SiPM readout

FE hoards
2 TOFHIR ASICs +
2 ALDO LV/HV regulators

sadid 8u1|00v0 ‘09 Buojw gz




BTL sensors

e LYSO:Ce scintillating crystals

fast scintillation rise time (< 100 ps)
short decay time (~40 ns)

high light yield (~40000 ph./MeV)
tolerant to radiation

m light output loss < 10% for 50 kGy
(end of HL-LHC + safety margin)

o O O O

e Silicon photomultipliers

o fast response, crucial for timing

o compact & insensitive to magnetic field

o mini Thermo Electric Coolers (TECs)
integrated in the SiPM package

S ? f f2x1F(;14 g_2 ted bar geometry (~3x3x56 cm?)
neutron fluence o cm _1expec e 16 bars / LYSO array
by the end of HL-LHC (3000 fb™) — 16 SiPM channels / array
high level of radiation-induced dark noise

mini TECs

e The SiPM radiation damage is the biggest challenge for the BTL performance & operations
o it's the first time SiPMs will be used for a particle detector in such a harsh environment!



The BTL performance
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The BTL solution to high dark noise

e Smart thermal management thanks to the usage of TECs

o lower local SiPM temperature (AT =-10° C)
w.r.t. the CO, temperature during operations
(from-35° Ct0-45° C) —

DCR reduction of a factor of about 2

o high-temperature cycles during technical stops / machine
shutdowns to anneal SiPM radiation damage (up to 60° C,
when the CO, runs at 10° C)

o ~5xreduction in DCR compared to the case of no TECs

e SiPM spad size optimized
o trade-off between PDE and gain (better for large spad area) and
DCR / power dissipation
o 25 pm? spad size identified as the optimum for the BTL case

e DCR mitigation within the TOFHIR ASIC
o inverted and delayed current pulse added to the original pulse
(DLED)
o mitigate noise / baseline fluctuations
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Performance validation

e The performance of non-irradiated BTL module
prototypes was validated through beam and laboratory

measurements
o excellent agreement between beam and laboratory
results

o larger SiPM spad area beneficial for the performance
o 530 ps achieved for conditions representative of
HL-LHC startup

e Module prototypes with SiPMs irradiated to the full
expected HL-LHC fluence were also tested on beam
o SiPMs annealed and tested at a temperature that emulate
the expected conditions for end of HL-LHC operations
(3000 fb™)
o ~65 ps measured for 25 pm SiPMs, within the available
detector power budget

time resolution [ps]
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LYSO thickness optimization

e Variable LYSO thickness along the detector’s b
pseudorapidity was assumed in the initial design b g1 .."..'!!-.Ell.lllIlm:!!m

o module prototypes were tested in three different
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Towards assembly & integration
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4 BTL Assembly Centers (Milano-Bicocca, Caltech, U.
Virginia and Peking U.) are being set up for the detector
assembly

Common tools for module assembly (e.g. gluing tools and
tester boards) are being finalized

2 trays/month assembled and tested @ each assembly
center, then shipped to CERN. Starting Summer 2024

Tray integration at CERN @ Tracker Integration Facility

Final installation in the BTL Tracker Support Tube by
Summer 2025

Commissioning in CMS starting in 2027




Summary

e The BTL prototyping phase is now concluded, now transitioning to production & assembly
o major sensor procurements have started
o detector module assembly at the Assembly Centers slated to begin in Summer 2024,
integration at CERN by Fall 2024

e The unprecedented challenges posed by the operation of SiPMs
in the harsh radiation environment of the BTL detector require
smart solutions:

o noise cancellation in the ASIC

o  SiPM spad size optimization

o thicker LYSO for increased energy deposition

o  extreme temperature cycles [-45° C — 60° C]
for DCR mitigation + annealing
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e The performance of the final prototypes is aligned with the
design (TDR) target
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