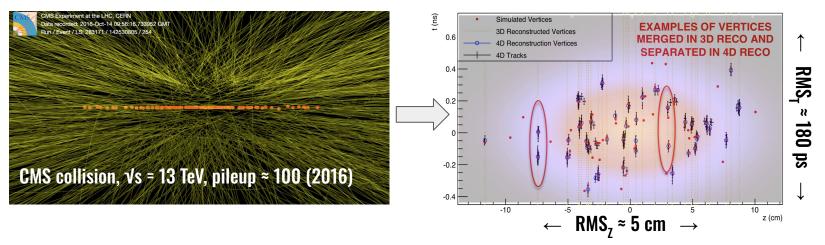


Design validation of the CMS MTD Barrel Timing Layer

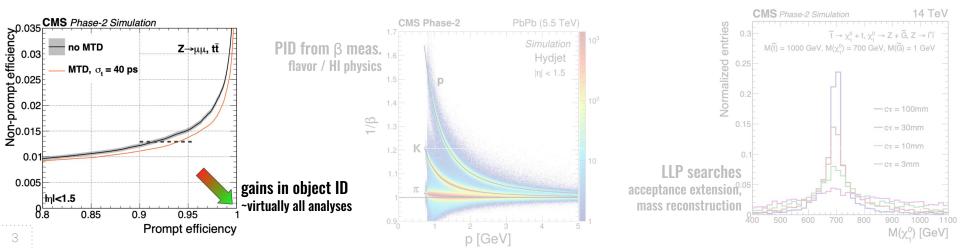
IPRD23 - Siena, 25-29 September 2023 September 26th, 2023


A. Benaglia¹ on behalf of the CMS Collaboration ¹INFN Sez. Milano Bicocca

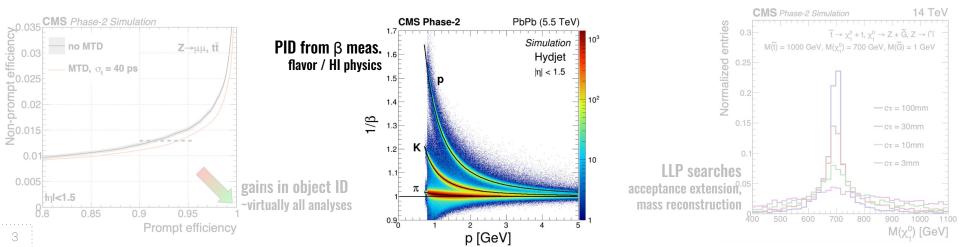
Outline:

- Introduction to MTD and BTL
- The challenges of BTL
- Performance validation
- Towards the assembly

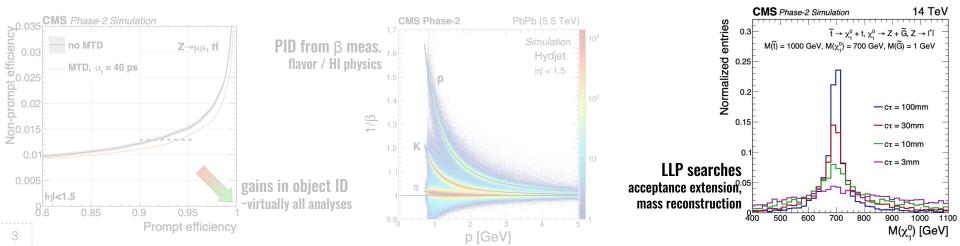
Precision timing at CMS for HL-LHC


- At HL-LHC (2029 \rightarrow 2042), instantaneous luminosity & pileup \approx 4-6× higher than current LHC levels
 - $L_{inst} \gtrsim 5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$, up to 140-200 nearly-simultaneous collisions (pileup)
 - o challenging radiation levels to withstand for all sub-detectors
- **Precision MIP timing with tens-of-ps resolution** allows recovering current LHC level of vertex merge rate & track purity

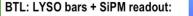
 CMS strategy for pileup mitigation: upgraded tracker + a dedicated detector for precision timing, the MTD (Mip Timing Detector)


Impact of precision timing

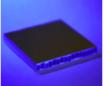
- Precision timing brings an ample spectrum of downstream gains to the CMS physics programme at the HL-LHC:
 - ×2 reduction of wrong track-vertex associations → improved reconstruction performance of ~all physics objects and therefore ~all CMS analyses
 - e.g. improve expected HL-LHC HH significance as much as ~2-3 additional years of HL-LHC data taking


Impact of precision timing

- Precision timing brings an ample spectrum of downstream gains to the CMS physics programme at the HL-LHC:
 - ×2 reduction of wrong track-vertex associations → improved reconstruction performance of ~all physics objects and therefore ~all CMS analyses
 - e.g. improve expected HL-LHC HH significance as much as ~2-3 additional years of HL-LHC data taking
 - genuinely **new information** to the CMS event record (e.g. **PID**)
 - relevant for flavor / HI physics


Impact of precision timing

- Precision timing brings an ample spectrum of downstream gains to the CMS physics programme at the HL-LHC:
 - ×2 reduction of wrong track-vertex associations → improved reconstruction performance of ~all physics objects and therefore ~all CMS analyses
 - e.g. improve expected HL-LHC HH significance as much as ~2-3 additional years of HL-LHC data taking
 - genuinely **new information** to the CMS event record (e.g. **PID**)
 - relevant for flavor / HI physics
 - new handle for long-lived particles (e.g. mass reconstruction from velocity measurements)



MTD design

- The MTD detector is a thin, hermetic (|η| < 3) precision timing layer for MIP particles, to be installed between the tracker and the calorimeter
- Different sensor technologies for barrel / endcap detectors, dictated by:
 - technology maturity / radiation tolerance
 - CMS integration and overall CMS Upgrade schedule
 - cost and power effectiveness

- TK / ECAL interface: |η| < 1.45
- Inner radius: 1148 mm (40 mm thick)
- Length: ±2.6 m along z
- Surface ~38 m²; 332k channels
- Fluence at 4 ab⁻¹: 2x10¹⁴ n_{eo}/cm²

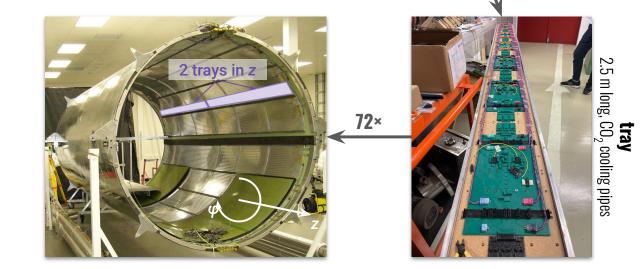
ETL: Si with internal gain (LGAD):

- On the CE nose: 1.6 < |η| < 3.0
- Radius: 315 < R < 1200 mm
- Position in z: ±3.0 m (45 mm thick)
- Surface ~14 m²; ~8.5M channels
- Fluence at 4 ab⁻¹: up to 2x10¹⁵ n_{ed}/cm²

4

BTL design

sensor module 16 LYSO bars with double-ended SiPM readout


FE boards 2 TOFHIR ASICs + 2 ALDO LV/HV regulators

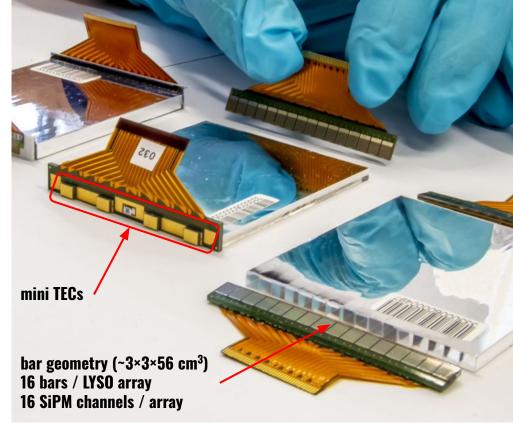
detector module 2 sensor modules + FE in a copper housing

1×

12×

Readout unit

12 detector modules, optical readout + DC/DC converters


6×

BTL sensors

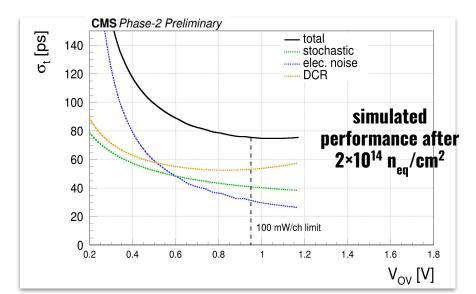
- LYSO:Ce scintillating crystals
 - fast scintillation rise time (< 100 ps)
 - short decay time (~40 ns)
 - high light yield (~40000 ph./MeV)
 - tolerant to radiation
 - light output loss < 10% for 50 kGy (end of HL-LHC + safety margin)

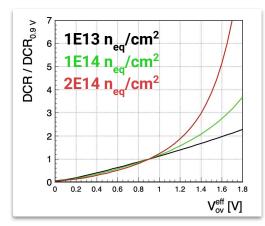
• Silicon photomultipliers

- fast response, crucial for timing
- compact & insensitive to magnetic field
- **mini Thermo Electric Coolers (TECs)** integrated in the SiPM package
- neutron **fluence of 2 \times 10^{14} cm⁻²** expected by the end of HL-LHC (3000 fb⁻¹) → high level of radiation-induced dark noise

- The **SiPM radiation damage** is the **biggest challenge** for the BTL performance & operations
 - it's the first time SiPMs will be used for a particle detector in such a harsh environment!

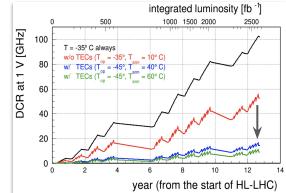
The BTL performance

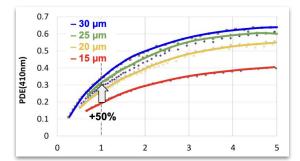

- The expected time resolution of the BTL detector can be described as $\sigma_t = \sigma_t^{\text{stat.}} \oplus \sigma_t^{\text{elec.}} \oplus \sigma_t^{\text{DCR}}$
- photostatistics contribution:

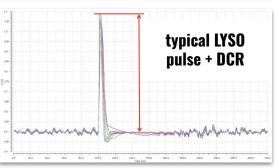

 $\circ \quad \sigma_t^{\text{ stat.}} \sim 1 \text{ / } \sqrt{N_{pe}}$

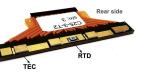
• electronics contribution:

 $\circ \quad \sigma_t^{elec.} \thicksim \sigma_{noise} / pulse slope \thicksim \sigma_{noise} / N_{pe}$

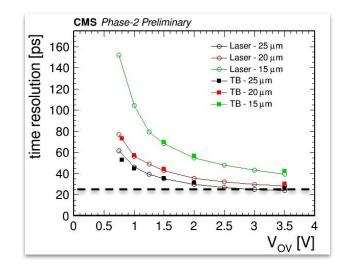

- benefits from large light output and fast SiPM response (e.g. high SiPM gain)
- dark count rate (DCR) contribution:
 - ⊃ σ_t^{DCR} ~ √ DCR / N_{pe}
 - dominant contribution for end-of-operation conditions (EoO)
 - expect O(10-30 GHz) of spurious DCR at EoO

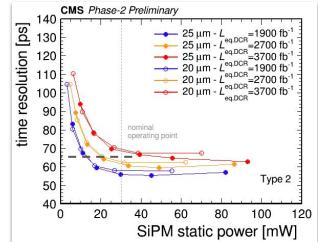





The BTL solution to high dark noise

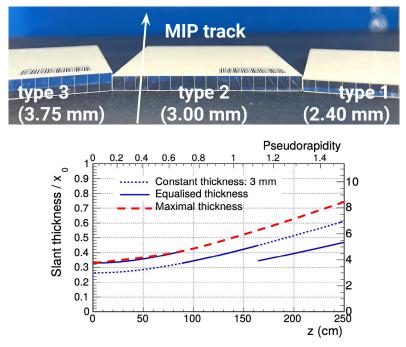
- Smart thermal management thanks to the usage of TECs
 - lower local SiPM temperature (ΔT = -10° C)
 w.r.t. the CO₂ temperature during operations
 (from -35° C to -45° C) →
 DCR reduction of a factor of about 2
 - high-temperature cycles during technical stops / machine shutdowns to anneal SiPM radiation damage (up to 60° C, when the CO₂ runs at 10° C)
 - \circ ~5× reduction in DCR compared to the case of no TECs
- SiPM spad size optimized
 - trade-off between PDE and gain (better for large spad area) and DCR / power dissipation
 - $\circ~~25\,\mu m^2\,spad\,size$ identified as the optimum for the BTL case
- **DCR mitigation** within the TOFHIR ASIC
 - inverted and delayed current pulse added to the original pulse (DLED)
 - mitigate noise / baseline fluctuations





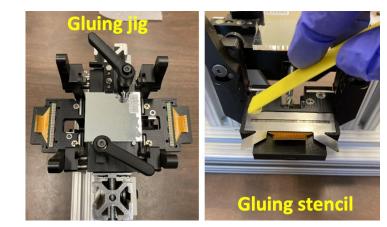
Performance validation

- The performance of **non-irradiated** BTL module prototypes was validated through beam and laboratory measurements
 - excellent agreement between beam and laboratory results
 - larger SiPM spad area beneficial for the performance
 - S 30 ps achieved for conditions representative of HL-LHC startup
- Module prototypes with **SiPMs irradiated** to the full expected HL-LHC fluence were also tested on beam
 - SiPMs annealed and tested at a temperature that emulate the expected conditions for end of HL-LHC operations (3000 fb⁻¹)
 - ~65 ps measured for 25 µm SiPMs, within the available detector power budget



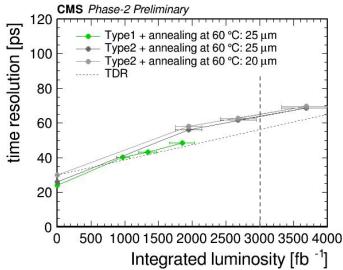
LYSO thickness optimization

- Variable LYSO thickness along the detector's pseudorapidity was assumed in the initial design
 - module prototypes were tested in three different thickness flavors [2.4, 3., 3.75 mm]
 - allowed for a ~uniform material budget in front of the electromagnetic calorimeter



- Thanks to a larger energy deposit, modules with thicker LYSO exhibit a better time resolution, both before and <u>after</u>
 <u>irradiation</u>
 - o downstream impact on ECAL still negligible
 - maximal thickness scenario now assumed as the new baseline, to gain performance margins

Towards assembly & integration


- 4 **BTL Assembly Centers** (Milano-Bicocca, Caltech, U. Virginia and Peking U.) are being set up for the detector assembly
- **Common tools** for module assembly (e.g. gluing tools and tester boards) are being finalized
- **2 trays/month** assembled and tested @ each assembly center, then shipped to CERN. Starting Summer 2024
- Tray integration at CERN @ Tracker Integration Facility
- Final installation in the BTL Tracker Support Tube by Summer 2025
- Commissioning in CMS starting in 2027

Summary

- The **BTL prototyping** phase is now **concluded**, now transitioning to production & assembly
 - major sensor procurements have started
 - detector module assembly at the Assembly Centers slated to begin in Summer 2024, integration at CERN by Fall 2024
- The **unprecedented challenges** posed by the operation of SiPMs in the harsh radiation environment of the BTL detector require smart solutions:
 - $\circ \quad \ \ \text{noise cancellation in the ASIC}$
 - SiPM spad size optimization
 - thicker LYSO for increased energy deposition
 - extreme temperature cycles [-45° C 60° C] for DCR mitigation + annealing
- The **performance** of the final prototypes is **aligned with the design** (TDR) **target**

