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Introduction

Why are timing detectors needed?

High collision rates expected at future particle colliders — high track density and pile-up will
seriously challenge events reconstruction algorithms.

= Up to 200 vertices expected at HL-LHC every 25 ns over ~4.5cm in space.

Precise evaluation of the time information both at the calorimeter and vertex levels — possibility
to select only the events exhibiting coherent energy deposition with the primary vertex timestamp.

= Time resolution of 0(20) ps needed for such application for the HL-LHC.

Other benefits brought by precise time tagging:

=» Identification of potential long-lived
particles (LLPs) through precise time

=» Capability of particle identification for
charged hadrons (kaons, pions, and
protons) through their time-of-flight. reconstruction of distanced vertices.
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Introduction

Scintillator-based MIPs timing detector

= A combination that already demonstrated to approach (and
sometimes break) this limit is given by
Fast inorganic scintillators
(LYSO:Ce, LSO:Ce,Ca, aluminium garnets)
+
silicon photomultipliers (SiPMs)
A. Benaglia et al., NIM A 830 (2016) 30-35
M. T. Lucchini et al,NIM A (2017) 1-19

@ LYSO:Ce for Barrel Timing Layer at CMS for the HL-LHC.

=» Numerous R&D efforts are currently underway across many groups to
investigate novel materials and light-based processes to fulfil the
demand for fast detectors in numerous fields such as medical imaging
and high-energy physics. Therefore...
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can we delve into new scintillators and ultra-fast light emission
processes for timing detectors in high-count rate environments?
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Test beam activities and materials tested

Test beam activities and materials tested
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Testbeams at CERN SPS facility - MIPs detectors

August 2021:

@ Readout performed with NINO ASIC electronics

igh frequeney SiPM
eadout (2023)

September 2022:

@ Custom high frequency SiPMs readout
@ 6 crystals measured in a row
@ 150 GeV charged pion beam
@ Pulses were recorded for offline analysis

June 2023:

@ Same readout chain as 2022 test beam

@ Up to 5 crystals measured in a row

@ 150 GeV charged pion beam

@ Temperature stabilization system implemented
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Test beam activities and materials tested

Sept. 2022 and June 2023 TBs at CERN SPS - Test beam setup

150 GeV

Dark box containing the samples

i
LRl

Scintillating

pads MCPs DWCs

Setup from the beam:

2 scintillating pads for trigger

2 micro-channel plates (MCPs) in combination as time
reference (Top)
— Intrinsic time resolution of ~ 13 ps

3 Delay Wire Chambers (DWC) for tracking
Prototype enclosed in a dark box on a moving stage

In 2023 TB: cooling of the dark box implemented

Pulses recorded with a V1742 CAEN digitizer (DRS4-based),
5 Gs/s, bandwidth 500 MHz.

Roberto Cala
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Sept. 2022 and June 2023 TBs at CERN SPS - Materials tested

Sept. 2022 TB

“Standard” reference materials

= LYSO:Ce and LSO:Ce,Ca,

= GFAG,

= Highly co-doped GAGG:Ce,Mg,
= Plastic scintillators (EJ232).

Materials exploiting Cherenkov light

= PWO,
= PbF,,
= BGO and mixed BGSO.

Cross-luminescent materials

= BaF and BaF5:Y (3 x 3 x 10mm?®).

June 2023 TB

“Standard” reference materials

= GFAG,

= Highly co-doped GAGG:Ce,Mg -
different sample.

Materials exploiting Cherenkov light
= BGO, BSO and mixed BGSO.

Cross-luminescent materials

= BaF; and BaF5:Y (2 x 2 x 10mm?®).

v

All samples have dimension 2 X 2 X 10 mm? with the
exceptions of:
= EJ232 (3% 3% 3mm?),
= BaFg and BaF2:Y - Sept. 2022 TB
(3% 3x10mm?).
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Data analysis

Position and energy selections

20210
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Amplitude [V]
@ Transverse x-y coordinates of the beam provided by @ Peaks highlighted — events where the pion travelled
the DWCs employed to cut the events where the and deposited energy through the entire sample

pion missed the sample length
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Data analysis

Time-walk effect
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September 2022 TB - Timing dependency from the SiPMs bias voltage
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SiPMs employed for this study: HPK S13360,

3 x 3mm? active area, 50 pm spad size,
Vpr ~53V.

@ An overall improvement of the time
resolution obtained is observed
powering the SiPM at higher voltage.

@ We observe an increase in both the
noise level and the dark count rate for
voltages above 56 V.

=» The Hamamatsu devices were
therefore operated at 56 V
during the rest of the
measurement campaign.
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Results discussion

Sept. 2022 TB - Time resolution of some standard scintillators

0, [ps]

S G,=20pS 9l
Sacl
<
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—e— highly co-doped GAGG
—e— EJ232
GFAG
Lyso:Ce Prelir innry
E —e— LSO:Ce,Ca
(AR SRR IR IUTRTEN ERTEN IR B
0 100 200 300 400 500 600
Leading edge threshold [mV]
Crystal Size Time resolution Energy
ot (ps) deposited (MeV)
GAGG:Ce,Mg  2x2x10mm? 16.4+0.9 9.5
EJ232 3x3x3mm? 15.3+£0.2 0.54
2% 2x 10mm? 9.5
2x2x10mm? 10.6
LSO:Ce,Ca 2% 2x 10mm? 12.1+0.4 10.8

@ Crystals Teflon wrapped and Meltmount
coupled to
HPK S13360-3050PE SiPMs.

Extremely promising results
(< 20 ps) for many materials as
timing detectors!

Roberto Cala
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Results discussion

Sept. 2022 TB - Time resolution of some materials exploiting Cherenkov

Crystal Size Time resolution Energy
7 70 ai (ps) deposited (MeV)
s R e BGO 2x2x10mm®  36.4+15 99
6015~ PWO BGSO 2x2x10mm? 31.1+0.5 9.9
H PbE 2% 2% 10mm? 11.2
50 N — LYSZO:Ce 2 x2x10mm® 10.3
| LYSO:Ce 2x2x 10mm? 13.140.4 10.6
{ b L
a0l et
R T
30[—&
% => BGSO presented better timing than
20 P3ege- BGO.
0,=20ps T __ oo oo
10 R S aie S => PWO and PbF5 showed a resolution
Preliminary well below 30 ps.
o v v v e e .
0 100 200 300 00 500 600
Leading edge threshold [mV] ~ EXPI?Itmg Cherenkov' pho.tops may
provide a cost-effective timing
capability.
@ Crystals Teflon wrapped and Meltmount coupled to /
HPK S13360-3050PE SiPMs.

R. Cala, et al., paper in preparation
Roberto Cala
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Sept. 2022 TB - Time resolution of BaF, and BaF,:Y

@ BaF, and BaFs:Y

7 20¢

- 3%x3x10mm° crystals %. 18F

=» Viscasil coupling 165 .

2 6 x 6mm? HPK S13370 VUV-SiPMs (50 z4m spad size) Fe o

- Energy deposited: 6.7 MeV/cm 14 Vsgce 3 %3 s mm N SO N N R
12 s ;
1010 =148+ 067 E

@ LYSO:Ce As = ;

2 2Xx2x5mm> and 2 X 2 X 10mm? crystals Sf

=» Meltmount coupling A= veliviiiiar

2 3% 3mm2 HPK S13360 SiPMs (50 um spad size) £ y

- Energy deposited: 10.6 MeV/cm £ ‘

Y concentration [mol.%]

@ 0, < 20ps achieved for all samples.
@ Time resolution almost independent of yttrium concentration.

@ Results obtained close to those of LYSO:Ce but with sub-20%
weighted PDE (LYSO ~ 55%) of SiPMs.

BaF> and BaF;:Y good candidates for timing layer detectors

R. Cal3, et al. (2022), Exploring BaFy:Y Ultra-fast Emission for Future HEP Applications, oral presentation at SCINT 2022 conference
R. Cal3, et al., paper in preparation
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June 2023 TB - Time resolution of the samples tested

Crystal Time resolution o (ps) Energy
Sept. 2022 TB  June 2023 TB | deposited (MeV)
GFAG 14.3+0.6 14.1+0.8 95
GAGG:Ce,Mg - 1 16.4+0.9 - 9.5
GAGG:Ce,Mg - 2 - 13.3+0.9 9.5
Fvers TTEY: 379500 50 =» Good match between the two
BGSO 311405 329417 9.9 TB measurements.
BSO - 35.7+1.3 9.9 qLa q
. =» BGSO exhibits a slightly better
BaF 15.8+£0.6 14.3:0.6 6.7 time resolution compared to
BaF:Y * 17.0+0.4 13.4+0.9 6.7 pure BGO and BSO
* Sept. 2022 TB: 3 X 3 X 10mm?® samples measured with 6 X 6mm? VUV-SiPMs. -> GFAG, GAGG:Ce,Mg, BaFQ
June 2023 TB: 2 X 2 X 10mm® samples measured with 3 X 3mm? VUV-SiPMs. and BaF2 :Y achieve a t|me
GAGG:Ce Mg BaF, 3 mol.% Y performance compatible with a
£ LYSO:Ce sample of the same
70F6,=193 +12ps . . _
o183 20958 T o diimarsien (o = el i)
5'3; 305— >
€ wor £ o5
3 30; 8 20;—
20E T 3
E N i 105
10 i +f’ ‘#* SE- iy
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Results discussion

Materials scintillating and timing properties correlated to the time performance

Time-walk corrected o [ps]
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It X \/LO-Edep LCE - PDE

T : rise time

T,: decay time

E, : energy deposited inside the sample
LO: light output in ph/MeV

LCE: light collection efficiency

PDE: SiPM photon detection efficiency

We can assume 7., LCE, and PDE almost
independent from the sample.

September 29, 2023



Conclusions

Conclusions

=» Test of many materials and their fundamental properties for high-energy physics
applications is currently ongoing

=» Measurements of the timing properties of many scintillators coupled to SiPM devices and
readout by high-frequency electronics under 150 GeV charged pions irradiation

o Best performance of o =12 ps obtained for LSO:Ce,Ca with 10.8 MeV energy deposition.
o GFAG and GAGG:Ce,Mg exhibited a time performance compatible with the LYSO:Ce one.
e Timing performance close to 20 ps for materials exploiting Cherenkov radiation.

o Cross-luminescence in BaF2 and BaFs:Y produces a time performance similar to LYSO:Ce.
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GAGG:Ce scintillation acceleration through heavy Ce3* /Mg?* doping (1)

Increase of Ce3 1 and Mg2+

Increase of Ce®t and Mg?* concentrations =
10 X reduction of the effective decay time &
slow component suppression.

PL 1 23456

Absorbance and photoluminescence Scintillation kinetics distributions

Eff. decay time —PL1

4 @71 1 (b)
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L. Martinazzoli, et al. (2022), Mater Adv, 3:6842-52
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GAGG:Ce scintillation acceleration through heavy Ce3* /Mg?* doping (2)

Scintillation kinetics distributions CTR FWHM versus effective decay time
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Scintillation kinetics acceleration = loss in light output
No major loss of time resolution!

Direction for future R&D on GAGG to be employed
in LHCb phase Il calorimeter.

L. Martinazzoli, et al. (2022), Mater Adv, 3:6842-52
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Light output and decay time of BGSO
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For a Ge fraction between 30% and 50%: constant light output, but
faster decay time with respect to BSO (z = 0).

R. Cala’, et al. (2022), NIM A, 1032:166527
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BaF, and BaFs:Y scintillating and timing properties

Emission kinetics under X-ray excitation CTR at 511keV
z F
= o z uop
E  BaFs1mol%Y z E
£ — BaF,:3mol.% Y o 1200
= BaF,: 5 mol.% Y 5 r b
101 BaF,: 10 mol.% Y
g E E
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= r
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L e e i L 3 2
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0 500 - 2000 2500 ° Y concentration (%]
Increasing the amount of yttrium used as dopant the slow . e . q A 1R
component is heavily suppressed, while the fast one is left No '_mPaCt on t'm'"g_desp'te a reduction in light output
unmodified. varying Y concentration.
=» Light output significantly drops when Y-doping is -> Possibility to employ BaF, in high radiation

employed. environments.

R. Cala’, et al. (2022), Exploring BaF,:Y Ultra-fast Emission for Future HEP Applications,
oral presentation at SCINT 2022 conference
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