THE HIGH ENERGY PARTICLE DETECTOR (HEPD-02) FOR THE SECOND CHINA SEISMO-ELECTROMAGNETIC SATELLITE (CSES-02)

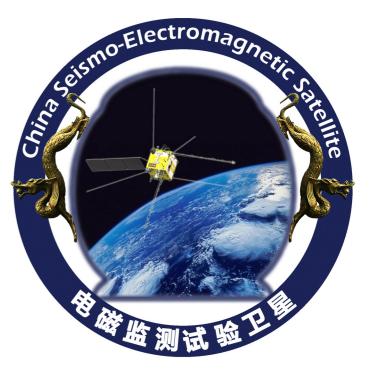
Cristian De Santis (INFN)

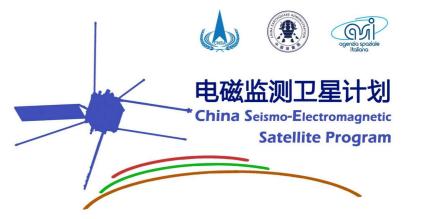
on behalf of the CSES-Limadou Collaboration

Innovative Particle and Radiation Detectors (IPRD23)

25-29 September 2023

Siena, Italy

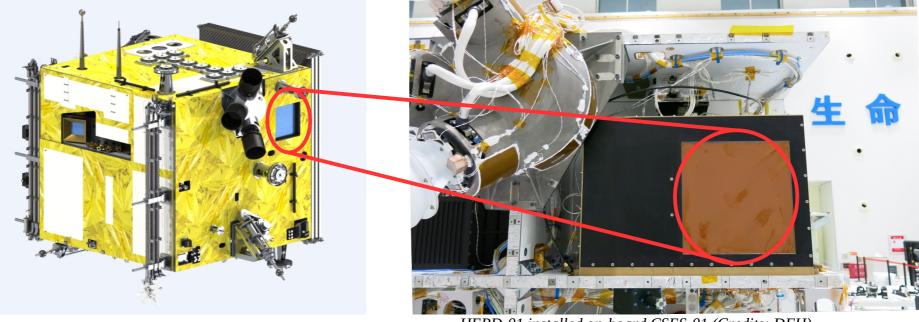




UNIVERSITÀ DEGLI STUDI DI TORINO

CSES MISSIONS – SCIENTIFIC OBJECTIVES

- Monitoring of the electromagnetic near-Earth space environment
- Analysis of the ionospheric and plasmaspheric fluctuations
- Measurements of iono-magnetospheric perturbations possibly due to seismo-electromagnetic phenomena
- Study of fluxes of high & low energy charged particles precipitating from the Inner Van Allen radiation belt
- Measurements of magnetospheric and solar activity
- Monitoring of the e.m. anthropic effects at LEO altitude
- •Observations of e.m. transient phenomena caused by tropospheric activity

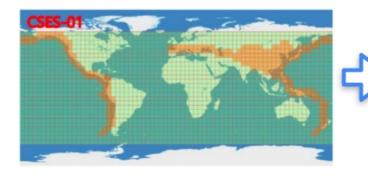

CSES-01 - HIGH ENERGY PARTICLE DETECTOR (HEPD)

CSES-01: launch February 2nd, 2018 (97.4° sun-synchronous circular orbit, altitude 507 km)

The High-Energy Particle Detector (HEPD) on board CSES-01 can:

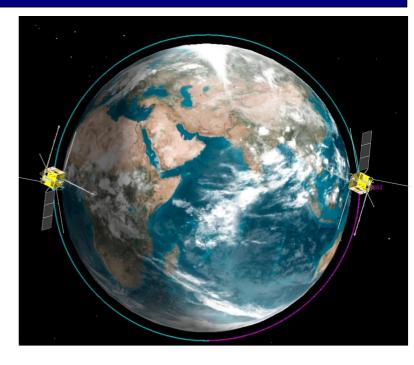
- measure the increase of the electron and proton fluxes due to short-time perturbations of the radiation belts caused by solar, terrestrial and anthropic phenomena
- detect different particle populations (solar, trapped, galactic, etc.) according to the satellite position and energy The energy range explored is 3 - 100 MeV for electrons and 30 - 200 MeV for protons

HEPD-01 is installed on board the satellite with its entrance window pointing to the zenith



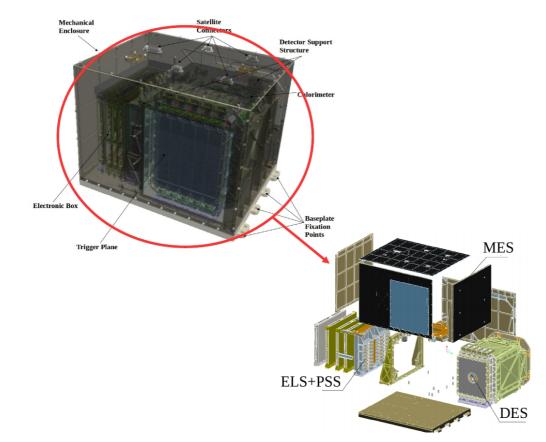
HEPD-01 installed on-board CSES-01 (Credits: DFH)

CSES-02 SATELLITE


- The second CSES satellite (CSES-02) is expected to be launched in 2024
- CSES will be a sophisticated multi-satellite space observatory (*F. M. Follega The CSES mission: a sophisticated multi-point space observatory, 27/09 11:50*)
- Same DFH CAST-2000 platform of CSES-01 with some upgrades
 - Earth oriented 3-axis stabilization system with orbit maneuver capability
 - X-Band Data Transmission 120Mbps \rightarrow **150Mbps**
 - Storage 160Gb → 512Gb
 - Total Mass: 730kg → **900kg**
 - Peak Power Consumption: ~900W
 - Design Life-span: 5 years → 6 years
- Complementary Ground Track wrt CSES-01
 - Identical Orbit Plane with 180° Phase Difference
 - Track interval: 5° → **2.5**°
 - Return cycle: 5 days → **2.5 days**
- Operation mode: Full time operational

Operation area between lat [-65,65]

Full coverage at extreme latitudes



CSES-02 – PAYLOAD CONFIGURATION

Category	Payload Name	Observation Targets
Energetic Particle	High Energy Particle Detector (HEPD) Italy Medium Energetic Electron Detector (MEED)	Proton : 2MeV~200MeV Electron : 30keV~50MeV
Electro-Magnetic Field	Electric Field Detector (EFD) <u>Italy</u>	Electric Field: DC \sim 3.5MHz
	High Precision Magnetometer (HPM): FGM1, FGM2, CDSM <u>Austria</u>	Magnetic Field: DC \sim 15Hz
	Coherent Population Trap (CPT)	Magnetic Field: DC \sim 15Hz
	Search Coil Magnetometer (SCM)	Magnetic Field: 10Hz \sim 20kHz
In Situ Plasma	Plasma Analyzer Package (PAP)	Composition : H^+ , He^+ , O^+
		$N_i: 5 \times 10^2 \sim 1 \times 10^7 cm^{-3}$
		<i>T_i</i> : 500K~10000K
	Langmuir Probe (LP)	$N_e: 5 \times 10^2 \sim 1 \times 10^7 cm^{-3}$
		$T_e: 500K \sim 10000K$
Plasma Profile	GNSS Occultation Receiver	TEC by GNSS Occultation Signal
	Tri-Band Beacon (TBB)	TEC by transmit VH/U/L Signal
	Ionospheric Photometer (IP)	135.6nm and N ₂ LBH airglow

HEPD-02

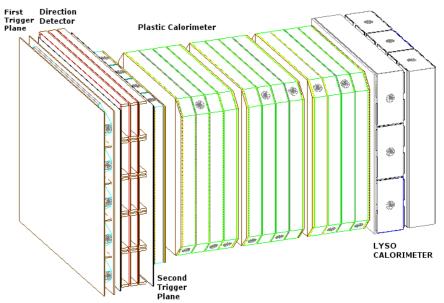
- Compact and lightweight payload (40.36x53x38.15 cm³, 47.2 kg)
- Low power consumption (~43 W)
- Acceptance and calibration campaign completed
- To be delivered to China October/November 2023

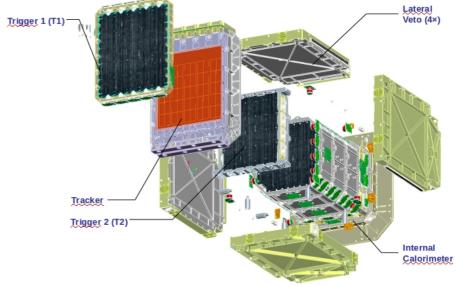
Operating temperature	-10 °C ÷ +35 °C
Operating pressure	$\leq 6.65 \cdot 10^{-3} \text{ Pa}$
Data budget	$\leq 100 \text{ Gb/day}$
Mass budget	$\leq 50 \text{ kg}$
Power budget	≤ 45 W
Electron kinetic energy range	3 MeV ÷ 100 MeV
Proton kinetic energy range	30 MeV ÷ 200 MeV
Angular resolution	$\leq 10^{\circ}$ for e^- with E > 3 MeV
Energy resolution	$\leq 10\%$ for e^- with E > 5 MeV
Pointing	Zenith
Scientific data bus	RS-422
Data handling bus	CAN 2.0
Life cycle	> 6 years

HEPD-02 DETECTOR LAYOUT AND UPGRADES WRT HEPD-01

TRigger plane TR1 (200x180 mm²) segmented in 5 plastic scintinllator bars (2 mm thick) \rightarrow upgrade wrt HEPD-01: additional trigger plane, decrease energy threshold and increase redundancy

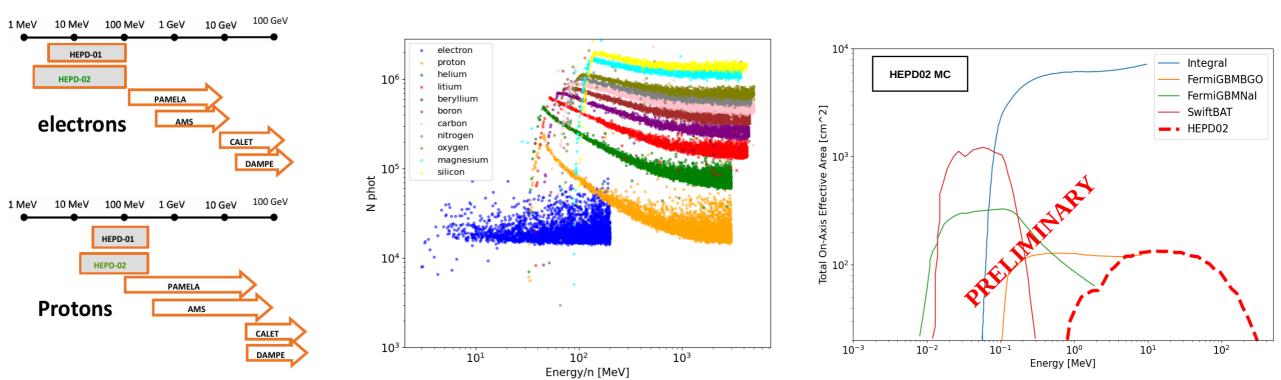
Direction Detector DD ("tracker") made of five standalone tracking modules ("turrets"), each composed of three sensitive planes ("staves")

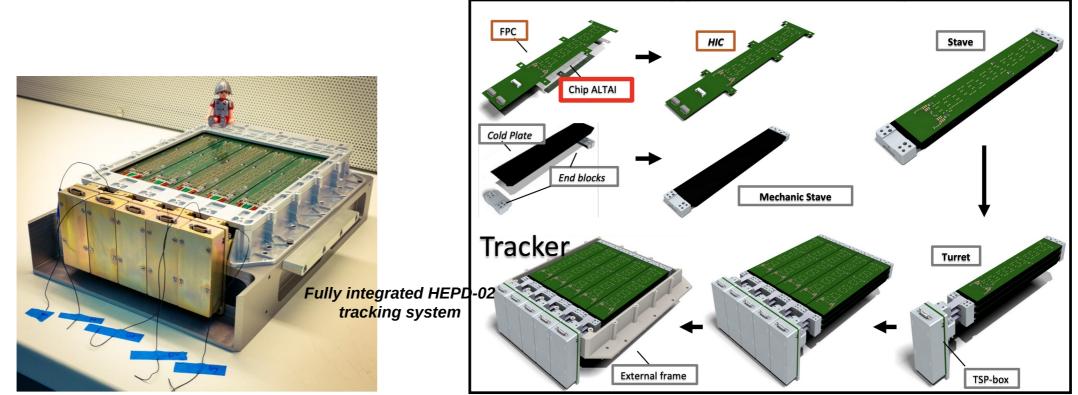

TRigger plane TR2 (150 x 150 mm²)


- **Energy Detector ED** ("calorimeter") composed of:
- 12 plastic scintillator planes (150 x 150 x 10 mm³) \rightarrow 16 planes in *HEPD-01*

2 crystal (LYSO) scintillator planes (150 x 150 mm² segmented in 3 bars 1000 mm thick) \rightarrow upgrade wrt HEPD-01: 6 bars instead of 9 cubes, increase energy range, position sensitivity and redundancy.

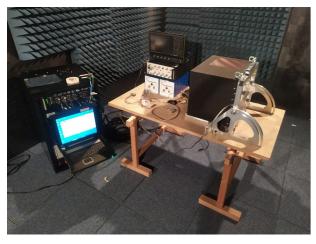
Containment Detector CD surrounding the calorimeter on 5 sides, made of plastic scintillator planes (4 lateral and 1 bottom plane), 8 mm thick.


Plastic scintillators: Eljen EJ-200; PMTs: Hamamatsu R9880-210

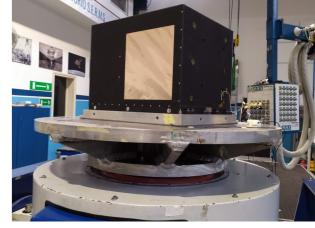

HEPD-02 DETECTOR CAPABILITIES

- Designed to measure fluxes of electrons, protons and nuclei in a wide energy range
- Implements a logic to trigger on sudden increases of GRB masks counts, integrated @ 200 Hz (V. Scotti, The DAQ and trigger of the High Energy Particle Detector (HEPD-02) for the CSES-02 space satellite, 26/09 18:00)

HEPD-02 DIRECTION DETECTOR


- Based on the MAPS developed for the ALICE experiment at CERN (*E. Ricci, Design and characterisation of the HEPD-02 MAPS-based tracker for operations in space, 25/09 09:50*)
- Pixel size 29.24 µm x 26.88 µm (~ 4 µm single-hit resolution)
- ALTAI: 512x1024 pixels -> 10 chips per stave;
- 5 turrets, each made of 3 staves with active area $15 \times 3 \text{ cm}^2$ each; <u>A 80 megapixel CMOS camera for charged radiation</u>

HEPD-02 ACCEPTANCE TEST CAMPAIGN


Environmental test campaign February-July 2023

- Vibration Test (sine 8 g & random 7.55 GRMS)
- Thermal Cycling Test (14.5 cycles, -20 °C ~ + 45 °C)
- EMC Test (CE102, CS101, CS114, RE102, RS103)
- Thermal Vacuum Test (3.5 cycles, -20 °C ~ + 45 °C)

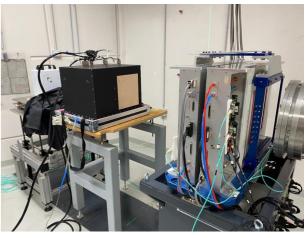
HEPD-02 FM in thermal chamber @SERMS

HEPD-02 FM vibration test @SERMS

HEPD-02 FM EMC test @IFAC-CNR

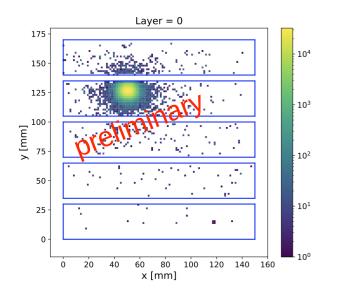
HEPD-02 FM in thermal vacuum chamber @SERMS

- Beam test campaign June-July 2023
- e⁻(6-12 MeV)/gamma @ LINAC S. Chiara (Trento, Italy)
- e⁻ (>30 MeV) @ BTF (Frascati, Italy)
- Proton (70-230 MeV) @ APSS (Trento, Italy)
- Carbon/proton (115-398 MeV/amu) @ CNAO (Pavia, Italy)

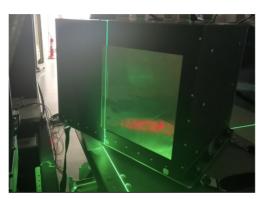


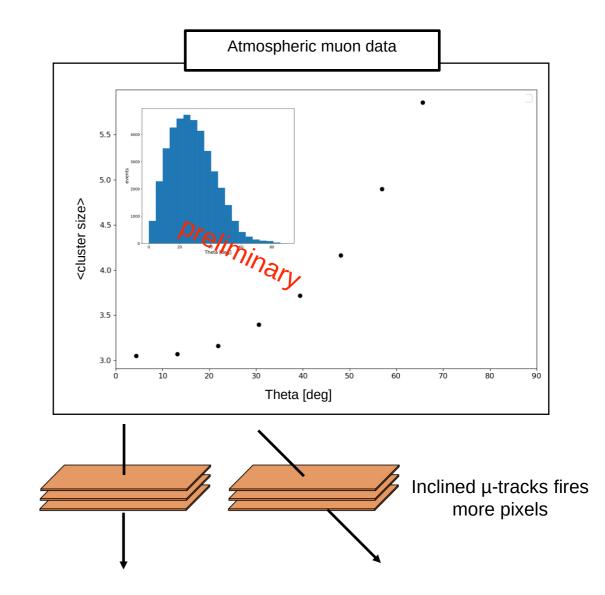
HEPD-02 FM beam test w/ electrons and gammas @LINAC S. Chiara

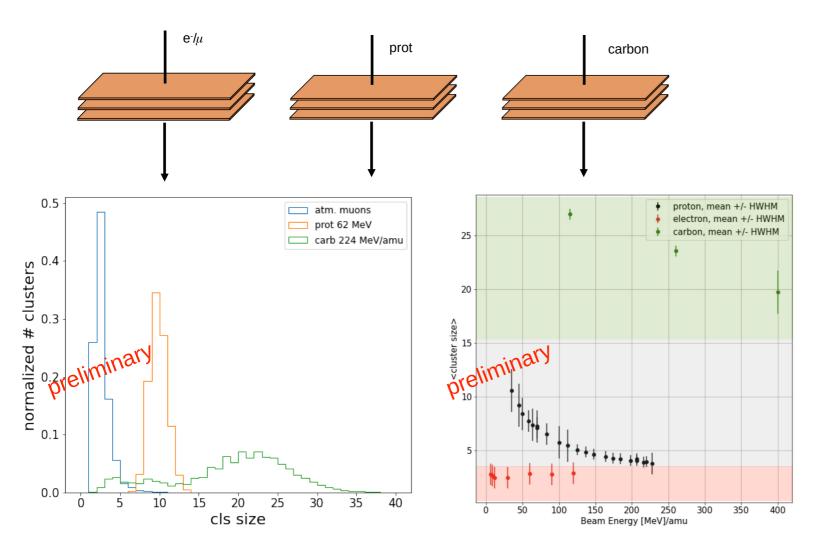
HEPD-02 FM beam test w/ electrons @BTF

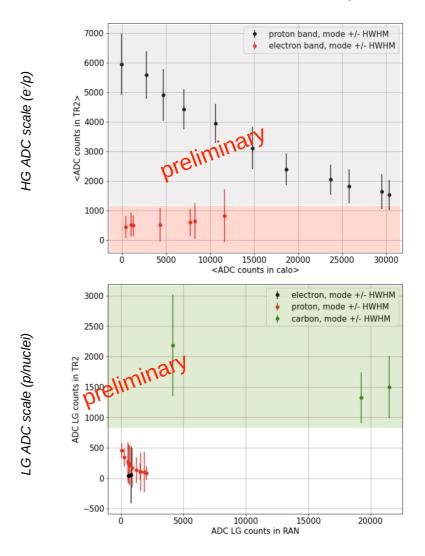

HEPD-02 FM beam test w/ protons @Proton Therapy Trento

HEPD-02 FM beam test w/ protons+carbon nuclei @CNAO


HEPD-02 TEST BEAM RESULTS - POSITION AND TRACKING

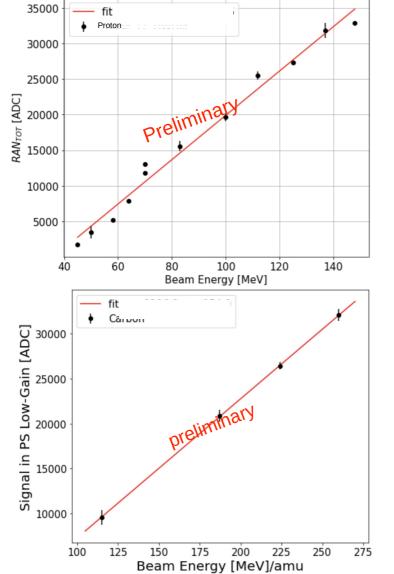

Proton beam


Carbon beam

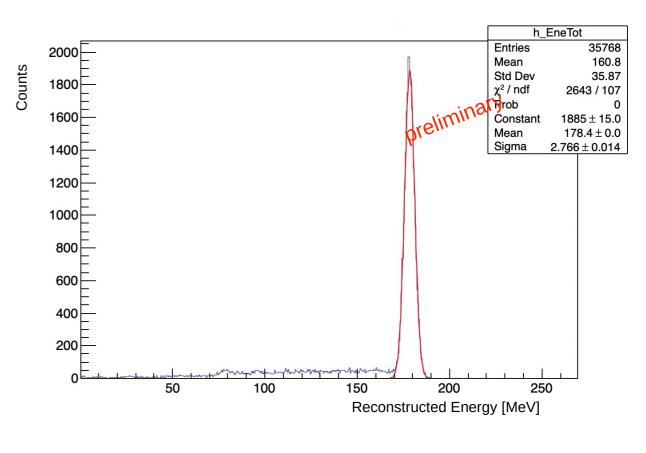


HEPD-02 TEST BEAM RESULTS – PARTICLE IDENTIFICATION

Particle identification using cluster size (Tracker information)



Particle identification calo signal



HEPD-02 TEST BEAM RESULTS – ENERGY RECONSTRUCTION

Proton beam @ Proton Therapy Center (Trento)

< 5% resolution on high energy protons

Credits: F. M. Follega

- The High Energy Particle Detector (HEPD-02) has been developed to be launched on board of the second China Seismo-Electromagnetic Satellite (CSES-02) in 2024
 - Detector design and capabilities have been improved wrt HEPD-01
 - Designed to measure fluxes electrons, protons and nuclei in a wide energy range
 - A dedicated GRB trigger logic has been implemented and tested
- Acceptance and beam test campaign completed → ready for delivery to China
- Preliminary beam test analysis demonstrates that the performance is compliant with simulations and main mission requirements