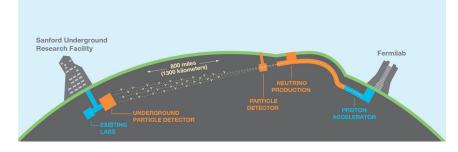
The ProtoDUNE Photon Detection System: technology validation and performance

Claudia Brizzolari (on behalf of the DUNE collaboration)

IPRD 2023 16th Topical Seminar on Innovative Particle and Radiation Detectors


25-29 September 2023 Siena, Italy

27/09/2023

The DUNE experiment

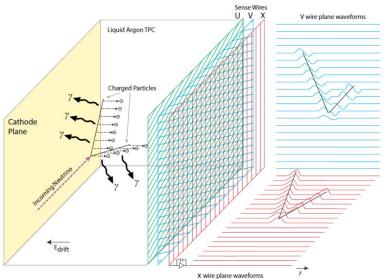
Technology:

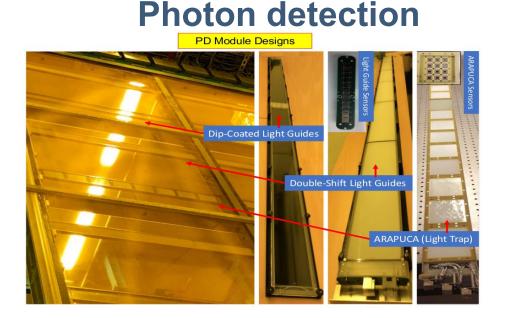
- Wide band v (and anti-v) beam w/ long baseline
 1.2 MW proton beam, upgradable to
 2.4 MW
- Near detector complex for beam characterization
 Movable (NDLAr, TMS) + on-axis (SAND) detectors
- Huge far detector w/ superior PID capability
 3 x 17 kton total mass LArTPCs, 1.5 km underground, + 1 Module of Opportunity

Physics Programme:

FD2

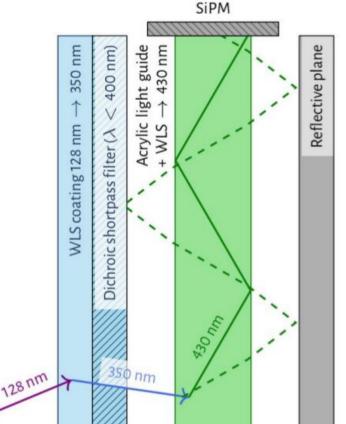
• v mass ordering, CP-violating phase δ_{CP}


FD1


- Measurement of PMNS parameters octant of θ_{23} , Δm_{13}^2 , precision measurement of δ_{CP}
- Physics with natural v sources 1^{st} obs. of HEP, galactic SN bursts, meas. of θ_{12}
- BSM physics neutrino anomalies @ LBNF, proton decay, dark matter

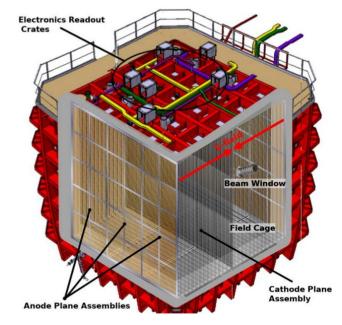
Far Detector technology

Charge detection



- A charged particle in **LAr** produces two signals proportional to the energy deposit
 - Drifted electrons, allowing for precise imaging
 - VUV scintillation photons (λ = 128 nm), providing precise event timing (and reconstruction on the drift axis)
- Two independent readout systems: anodic charge readout and **photon** detection system

Photon detection system: X-ARAPUCA (XA)

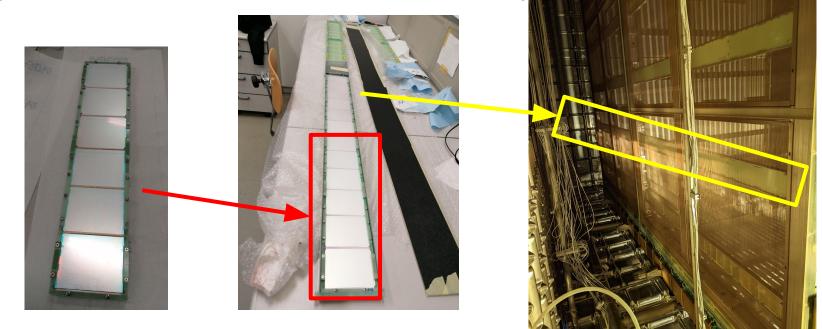

- LAr VUV scintillation light abundant (25k photons/MeV @ 500 V/cm) → combined with TPC signal improves calorimetry, especially at low E
- fast component τ = 7 ns → provides trigger for non-beam events
- improves vertex reconstruction (from ~1 cm to ~ 1 mm)

Light detection: reflective box equipped with an entrance window, two photon downshifting stages, one dichroic filter and one light guide coupled to SiPMs.

ProtoDUNE-Horizontal Drift Run I at CERN

- Ran from 2018 to 2020, collecting data from cosmic rays and beam @ the CERN neutrino Platform
- 10 bar-shaped photon detectors (207.4 x 8.2 cm² optical area each) embedded in the anode planes

ARAPUCA: efficiencies in ProtoDUNE Run I


Efficiency of the cell from the detected-to-incident ratio. Muon beam Electron beam DUNE:ProtoDUNE-SP ARAPUCA DUNE:ProtoDUNE-SP ARAPUCA 3.0 3.0 Muons Electrons 2.5 2.5 ---- 2.0 GeV/c ---- 2.0 GeV/c 8 8 ----- 3.0 GeV/c ----- 3.0 GeV/c 8 8 8 Efficiency [%] Effliciency [%] ---- 6.0 GeV/c --- 6.0 GeV/c 0 ---- 7.0 GeV/c ---- 7.0 GeV/c 1.0 1.0 0.5 0.5 0.0 0.0 12 12 2 10 2 6 8 6 8 10 Cell # Cell #

Results published in *B. Abi et al, First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform, 2020, JINST, vol. 15, issue 12, P12004* Cells with double size but equal number of photosensors

27/09/2023

ProtoDUNE-HD Run II at CERN

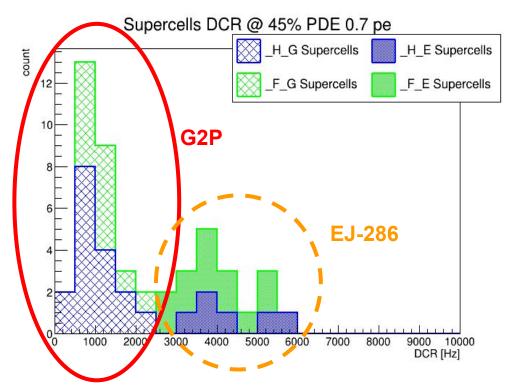
- 4 FD1-XA for Module, 10 modules for APA, 4 APA
- Installation completed in September 2022, cooldown delayed to Spring 2024 due to LAr shortage
- New X-ARAPUCA design: 48 ganged SiPMs correspond to 1 FD1-XA (channel readout, active window 46.2 x 10 cm²)

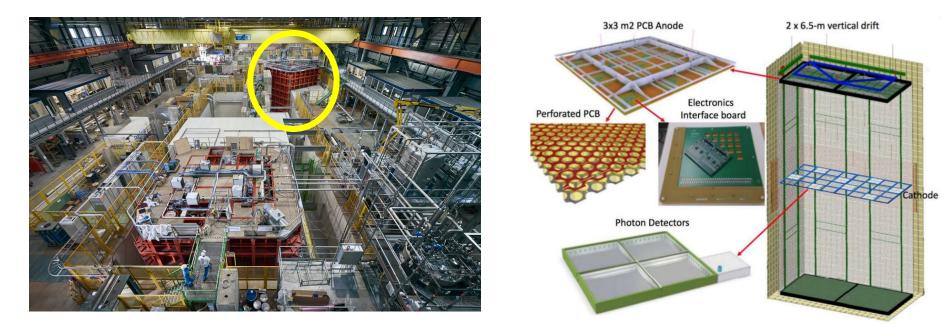
ProtoDUNE-HD Run II at CERN

FD1-XA in ProtoDUNE equipped with one of 4 different configurations:

- Two different WLS guides:
 - Glass To Power (G2P), PMMA based
 - Eljen (EJ-286), PVT based
- Two different SiPMs:
 - HAMAMATSU HPK DUNE-75um-High Quenching Resistance
 - **FBK Triple Trench**

All configurations w/ OPTO-Campinas (Brazil) dichroic filters, substrate B270, size 7.7 x 10 cm².

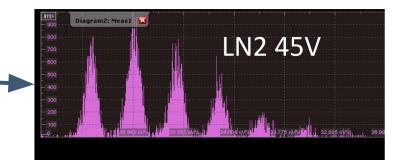

Achieved ganging of 48 SiPM with S/N>4 for both types.

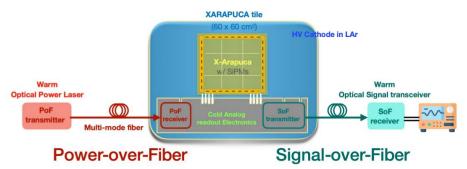

FD1-XA PDE and DCR performances

- FD1-XA PDE tested in Milano-Bicocca and CIEMAT
- For all configurations PDE ~2%
- G2P bar outperformed the EJ one both w.r.t. the PDE and the DCR (PVT is a scintillator, PMMA is not)

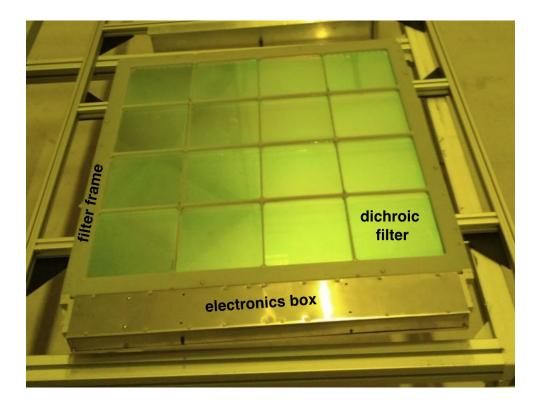
Subset of FD1-XA for ProtoDUNE tested @ MiB in shallow lab, DCR measurement

ProtoDUNE-Vertical Drift




- Second ProtoDUNE @ CERN and FD2 exploit the Vertical Drift technology
- PDS in the cathode (300 kV!) + outside the field cage ("Membrane"), light uniformity improved w/ Xe doping

ProtoDUNE-VD PDS


- Ganging of 80 SiPM with S/N~8 @ MiB for Membrane module, preliminary measurement with HD amplifier
- To power and read SiPMs in a 300 kV electric field: Power over Fiber (PoF)
 - based on GaAs laser and commercial system, power through optical fibers converted to DC at cold
 - Signal Over Fiber: analog signal transmission using IR laser light
- ProtoDUNE-VD now installed at CERN w/ novel PoF X- ARAPUCA
 - PDE of VD PDS membrane modules recently validated w/ a dedicated measurement (~2% preliminary), to be performed on PoF modules

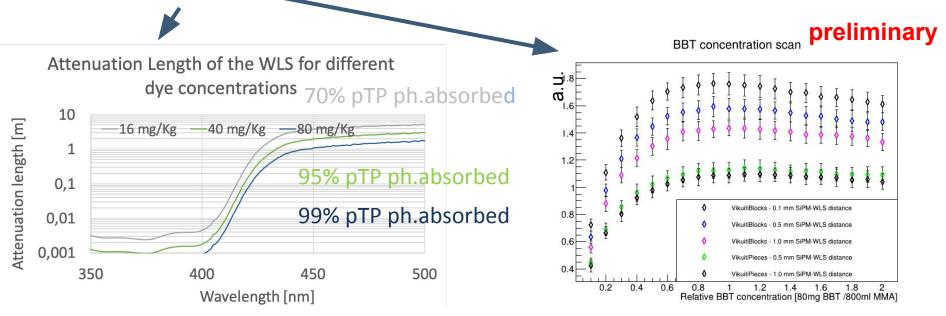
Vertical Drift FD2-XA

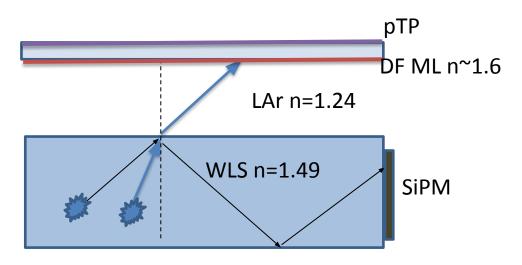

Same technology but different SiPM coverage and dimensions, WLS plate dimensions 60.7 x 60.7 x 0.4 cm³:

- maximize photon detection
 - SiPM-WLS coupling
 - optimize Optical Path and plate thickness vs attenuation length i.e. dye concentration
 - new dichroic filters
- maximize active area
 - larger dichroic filters

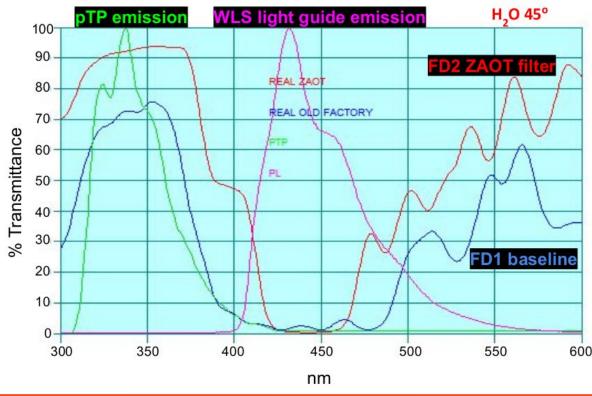
SiPM to WLS coupling

- To minimize gap between SiPM and WLS in LAr → SiPMs on flex circuits + spring loaded mount to compensate WLS shrinking (~1% i.e. 6 mm)
- Also tested SiPM fitting in dimple cuts (flat or cylindrical)
 machined at the edges of WLS



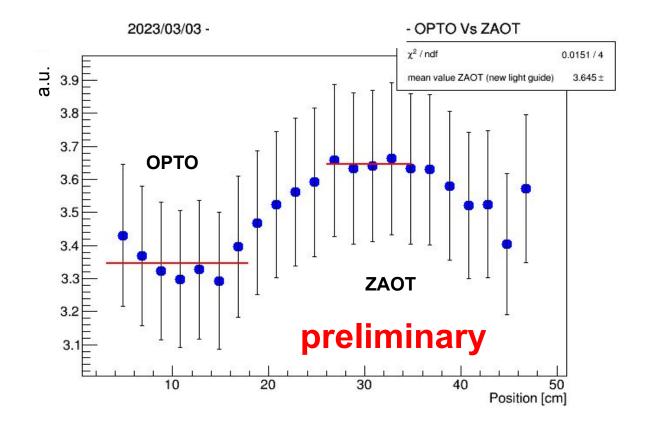

WLS: attenuation length (λ_{att})

- For PMMA based WLS in LAr, the critical angle for light trapping at the surfaces is 56° = θ_c . For $\theta > \theta_c$ light is trapped and guided by TIR to SiPMs
- Due to multiple reflections the optical path inside large size WLS may reach a couple of meters → dye concentration tailored to FD2 size and optical path → optimization driven by <u>simulations</u>


Dichroic filters

- Dichroics Filter (DF) are made of thin film multilayer coatings on a glass/fused silica substrate. They act as Fabry-Perot interferometer to selectively transmit/reflect light.
- For Large volume LAr detectors → Large area DF (minimize optical window dead areas) → challenge: pTP coating uniformity
- The glass window is coated with a primary WLS (pTP) to downshift the 128 nm light to ~350 nm

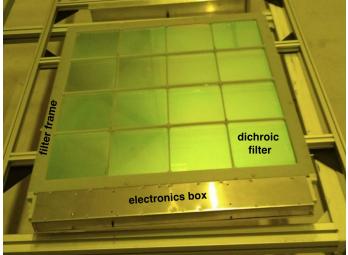
Dichroic filters


- Filters have been optimized to operate in LAr (@45°)
- Higher transmittance in the pTP emission range
- Higher reflectivity in the light guide WLS chromophore emission range
- But narrower reflectivity window

- ZAOT (MiB industrial partner -Italy) substrate Borofloat 33 Optical Glass
- PhotonExport (Spain) Substrate Fused Silica

Assessment of DF performance in LAr

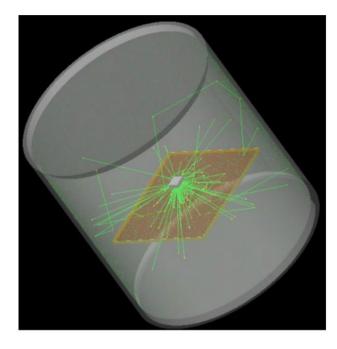
- Measurements of the PDE in LAr of one FD1-XA equipped with three OPTO, three ZAOT
- Effect foreseen by GEANT based Simulations

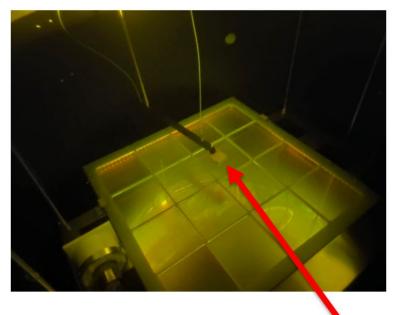


FD2-XA configurations

- PDE measurements of the large area X-Arapuca are being performed at different sites:
 - INFN Naples
 - CIEMAT (Madrid)

	WLS dimples	DF size (mm ²)	DF	SiPM	PoF	SoF	shared elec. box
M1		100x200	ZAOT	HPK			x
M2	3	100x200	ZAOT	HPK	S 30		x
M3	X	100x200	ZAOT	HPK			x
M4	X	100x200	ZAOT	HPK			X
M5	x	150x150	PE	FBK		X	
M6	x	150x150	PE	HPK			2
M7	X	150x150	PE	HPK	S 94		24
M8	x	150x150	PE	FBK			0 4
C1		100x200	ZAOT	HPK	X	X	
C2		100x200	ZAOT	HPK	X	X	
C3		150x150	PE	FBK	X	X	
C4	x	150x150	PE	HPK	X	X	
C5	x	150x150	ZAOT	HPK	X	X	
C6	х	150x150	ZAOT	HPK	X	х	
C7	X	150x150	ZAOT	FBK	X	X	
C 8	x	150x150	ZAOT	HPK	X	X	




FD2-XA tests @ Naples

Tests for Membrane modules (PDE ~2% preliminary)

Configuration:

- 150 x 150 mm² ZAOT dichroic filters
- FBK SiPMs
- G2P WLS w/ dimples

See F. Di Capua's talk at TIPP 2023, "Photon Detection System in the far detector module of the DUNE experiment" α source (²⁴¹Am)

Conclusions

- Installation of ProtoDUNE-HD completed in September 2022, cooldown delayed to Spring 2024 due to LAr shortage
- Tests for the PDE of the baseline configuration of FD1-XA performed in two sites: MiB and CIEMAT, results within specs, ~2%
- Installation of ProtoDUNE-VD in progress
- Test for the PDE of FD2-XA in progress in two different sites: Naples and CIEMAT, preliminary result ~2%
- Ongoing efforts to further improve the PDE for both FD1-XA and FD2-XA