

Characterization of the FOOT neutron detectors for nuclear fragmentation measurements at the n_TOF facility

S. Colombi, C. D'Orazio, N. Malekinezhad, A. Manna, M. Marafini, C. Massimi, A. Musumarra, N. Patronis, M.G. Pellegriti, R. Spighi, M. Villa, R. Zarrella

16th Topical Seminar on Innovative Particle Radiation Detectors – Siena, 25–29/09/2023

FOOT (FragmentatiOn Of Target) goals

Hadrontherapy

Target and Projectile fragmentation

• p, C, O beams @ 200-400 MeV/u

Radiobiology request: to have a more precise Treatment Planning System (**TPS**)

Radioprotection in space

Detailed knowledge of fragmentation processes to **optimize the spacecraft shielding** (long term mission)

• p, He, Li, C, O beams @ 700-800 MeV/u

 $d\sigma/dE$ and $d\sigma/d\Omega$ of fragment production cross sections with 5% precision in direct and inverse kinematics

FOOT setup

- **"Heavy" fragments** 3 ≤ Z ≤ 8
- First acquisition with full setup in October!

25-29/09/2023

R. Zarrella

IPRD23

n_TOF @ CERN

Pulsed proton beam 20 GeV/c p from PS

Pb spallation target

Three experimental areas

Time-Of-Flight technique

n_TOF @ CERN

n_TOF @ CERN – Time-Of-Flight technique

FOOT neutron detectors

Phoswich: BGO crystals + EJ232

- Particle identification
- Possible Calorimeter upgrade

+ VETO (EJ-204) readout w/ PMT

FOOT neutron detectors

Nike - NE213/BC-501A \rightarrow liquid scintillator:

- Good time resolution (~3ns RT)
- n/γ discrimination
- Decay Time components 3.16, 32.3 & 270 ns

Detector characterization

- Am-Be/⁸⁸Y source for BC501-A particle identification (n- γ) studies
- Area fast vs Area slow of signals for identification

Detector characterization

- Am-Be/⁸⁸Y source for BC501-A particle identification (n- γ) studies
- Area fast vs Area slow of signals for identification

Detector characterization in NEL of EAR1

Detection efficiency for high energy neutrons (> 1 MeV)

 \rightarrow exploit np elastic scattering!

25-29/09/2023

BC-501A coincidence analysis

25-29/09/2023

Coincidence analysis routine → divide signals from charged and neutral particles

- Time coincidence window ± 10 ns
- Energy loss branches from charged particles clearly visible in the veto
- Anticoincidence events currently being carefully studied

BGO coincidence analysis

- Time coincidence window ± 12 ns
- Protons and deuterons branches visible
- No fast component in anticoincidences
- n detection efficiency to be evaluated

$$\varepsilon = \frac{n_{\rm n}}{n_{\rm p}}$$

Independent of neutron flux

25-29/09/2023

R. Zarrella

IPRD23

Conclusions

Possible FOOT neutron detectors studied in the NEL of n_TOF EAR1

✓ Functioning veto/detector coincidence selection routine

BC-501A:

- ✓ Particle discrimination with radioactive sources
- ^{*} Further studies ongoing for n detection efficiency evaluation

BGO:

- \checkmark Good reliability of the phoswich system
- \checkmark n detection efficiency to be evaluated using proton and neutron flux

Backup slides

Signals: BC-501A system

16

Neutron

00

Signals: BGO system

25-29/09/2023

R. Zarrella

n_TOF @ CERN - TOF - Energy conversion

BGO area fast/slow analysis

3.5

3.5

3

3

log₁₀TOF

4 log₁₀TOF

