The SHADOWS experiment at the CERN SPS

V. Cicero on behalf of the SHADOWS Collaboration 28/09/2023 16th Topical Seminar on Innovative Particle and Radiation Detectors

SHADOWS

AL

- The European Particle Physics Strategy's update highlights the importance of studying the Physics of Feebly-Interacting Particles in the next decade.
- SHADOWS is a newly proposed beam dump experiment to search for FIPs in the range from MeV to few GeV, emerging from charm and beauty decays
- Collaboration steadily growing (82 collaborators, 16 institutions)
- Technical proposal submitted to SPS Committee.
- If project approval by end of 2023, SHADOWS can start data taking in 2030

27/09/2023

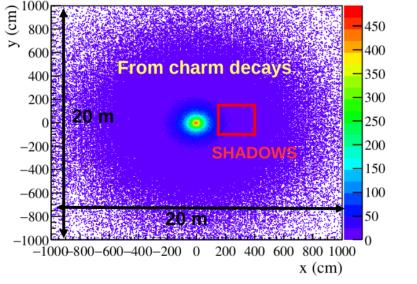
Technical Proposal, 18 August 2023

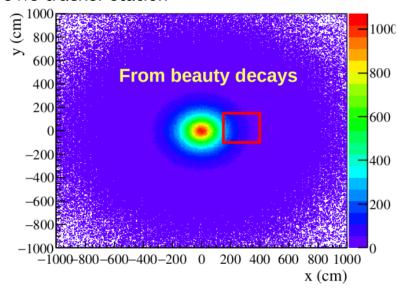
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

SHADOWS

<u>Search for Hidden And Dark Objects With the SPS</u>

Technical Proposal


M. Alviggi⁽¹⁾, S. Bachmann⁽²⁾, W. Baldini⁽³⁾, A. Balla⁽⁴⁾, M. Barth⁽²⁾,
M. Biglietti⁽⁵⁾, V. Büscher⁽⁶⁾, A. Calcaterra⁽⁴⁾, V. Cafaro⁽⁷⁾, M. Cavallina⁽³⁾,
A. Ceccucci⁽⁸⁾, D. Chouhan⁽⁶⁾, V. Cicero⁽⁷⁾, P. Ciambrone⁽⁴⁾, H. Danielsson⁽⁸⁾,
M. Della Pietra⁽¹⁾, C. Delogu⁽⁶⁾, A. De Roeck⁽⁸⁾, L. Dittmann⁽²⁾, F. Duval⁽⁸⁾,
G. Felici⁽⁴⁾, T. Ferber⁽⁹⁾, L. Foggetta⁽⁴⁾, E. Gamberini⁽⁸⁾, M. Gatta⁽⁴⁾,
A. Gerbershagen⁽¹⁰⁾, V. Giordano⁽⁷⁾, S. Hansmann-Menzemer⁽²⁾, P. Lengo⁽¹¹⁾,
M. Iodice⁽¹¹⁾, K. Jakobs⁽¹²⁾, J. Kieseler⁽⁹⁾, M. Klute⁽⁹⁾, K. Köneke⁽¹²⁾, M. Koval⁽¹³⁾,
G. Lanfranchi⁽⁴⁾, A. Laudrain⁽⁶⁾, I. Lax⁽⁸⁷, T. M. Leeflang⁽²⁾, G. Lehmann Miotto⁽⁸⁾, B. Leverington⁽²⁾, P. Lichard⁽⁸⁾, K. Massri⁽⁸⁾, A. Montanari⁽⁷⁾,
T. Napolitano⁽⁴⁾, A. Paoloni⁽⁴⁾, G. Papalino⁽⁴⁾, U. Parzefall⁽¹²⁾, B. Ponzio⁽⁴⁾,
B. Regnery⁽⁹⁾, S. Ritter⁽⁶⁾, S. Rosati⁽¹⁵⁾, T. Rovelli^(16,7), S. Roy⁽²⁾, A. Saputi⁽³⁾,
B. Schmidt⁽⁸⁾, M. Schott⁽⁶⁾, D. Schub⁽²⁾, H.C. Schultz-Coulon⁽²⁾, G. Sekhniaidze⁽¹⁾,
R. Stamen⁽²⁾, G. Torromeo⁽⁷⁾, N. Tosi⁽⁷⁾, N. Trevisani⁽⁶⁾, U. Uwer⁽²⁾, A. Vannozzi⁽⁴⁾,
C. Wang⁽⁶⁾, R. Wanke⁽⁶⁾, C. Weiser⁽¹²⁾, C. Welschoff⁽²⁾, P. Wertelaers⁽⁸⁾


SHADOWS

- The SHADOWS experiment is designed to be located in TCC8/ECN3 at CERN North Area
- K12 beam 400 GeV primary beam line, where K12 beam for NA62 is produced Saleve side Target station • SHADOWS will be located OFF-AXIS next to NA62/HIKE (High Intensity Kaon Experiment) Magnetized Iron Blocks Can operate concurrently with HIKE when the beam line runs in dump mode SHADOWS Jura side Proposed beam intensity upgrade (x7) to $2x10^{13}$ pot (1.2x10¹⁹ pot in a year). Downtream shields TCC8 **Conceptual layout:** Spectrometer of ~ 2.5 x 2.5 m² transverse area ~20 m long decay volume To ECN3
 - ~1 m off-axis from beam line
 - starting ~10 m downstream of the K12-dump

WHY OFF-AXIS?

 $HNL \to \mu \pi$ illumination @ first SHADOWS tracker station

All

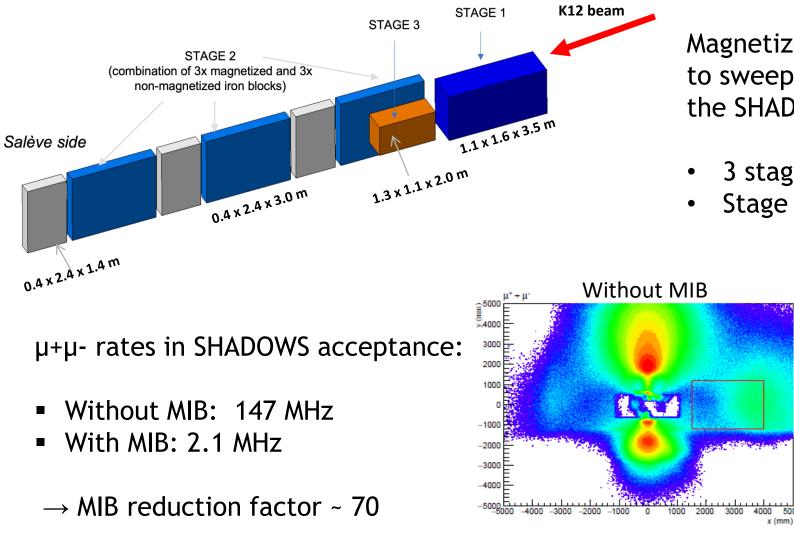
entries/ 3.5 GeV

 10^{3}

10²

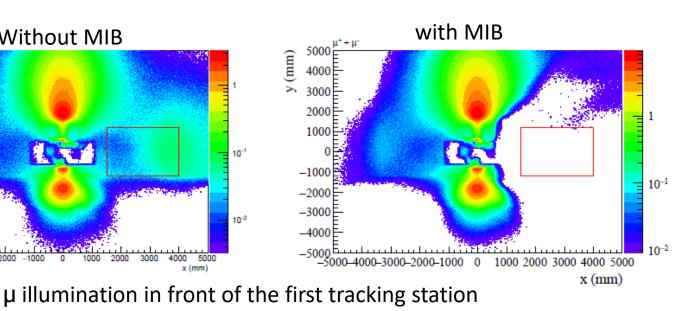
10

- at SPS ∫ s ~ 28 GeV heavy hadrons produced with small boost
- FIPs emerging from charm and beauty decays are produced at large polar angle


⁻^µ_p ⁻^µ

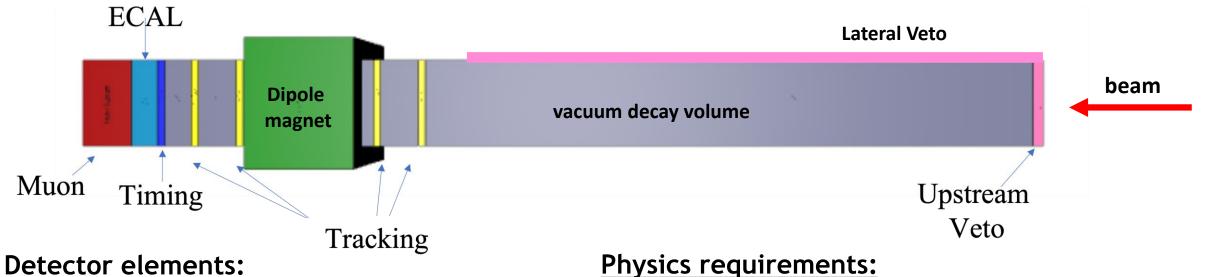
- Beam background (μ, ν) is concentrated in the forward region
- Inside SHADOWS acceptance, muons have low-p (up to 30 GeV) and can be mostly swept away.

27/09/2023


-n -π* -κ* -γ -Λ

MAGNETIZED IRON BLOCK SYSTEM

Magnetized Iron Block (MIB) system necessary to sweep the beam-induced muon flux out of the SHADOWS acceptance.


- 3 stages of active and passive mitigation
- Stage current = 100 A

27/09/2023

SUAD

DETECTOR CONCEPT and REQUIREMENTS

- 19 m long in-vacuum decay vessel
- Upstream and lateral vetoes
- Tracking system with dipole magnet
- Timing layer

SHAD

- Electromagnetic calorimeter
- Muon filter and 4 muon stations

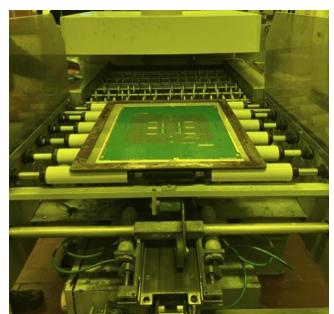
Physics requirements:

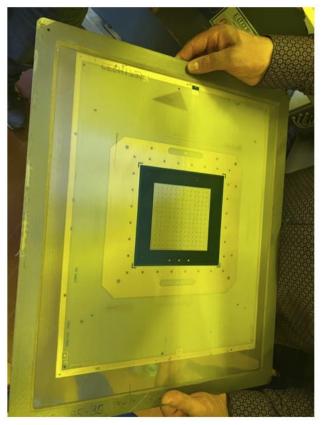
- reconstruct and identify most of the visible final states of FIPs decays.
- reject background coming mostly from combinatorial muons that can mimick FIP decays vertexes
 - timing resolution $\sigma_{t} \sim 100 \text{ ps}$
 - Veto efficiency > 99.0 %
 - Vertex resolution : ~ 1 cm inside decay vessel

UPSTREAM and LATERAL VETO

Goal:


veto muons that enter the decay vessel escaping the MIB system


Technology: Double layer of micromegas detectors


- efficiency > 99.8%
- space resolution: o(1) mm
- time resolution: o(10) ns
- rate capability: up to 10 MHz /cm²

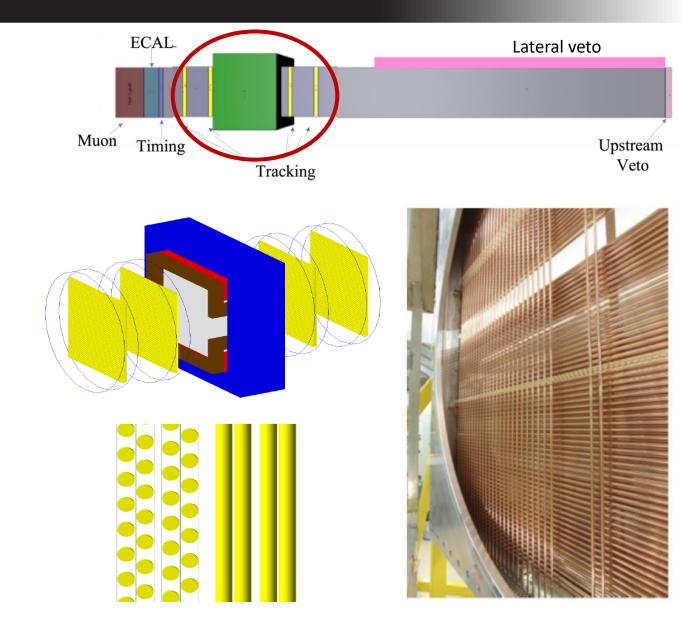
First small prototype funded by INFN in 2023 A large size prototype will be prepared in 2024

talk by M.T. Camerlingo: <u>High Granularity Resistive</u> <u>Micromegas for Tracking Detectors in Future Experiments</u>

V. Cicero for SHADOWS Collaboration

TRACKING STATIONS

Goal:


Reconstruct signals and reject background with at least 2 tracks

Requirements:

- Vertex resolution o(1) cm over 20 m
- IP resolution o(1) cm from 35 m distance
- Mass resolution: 1-2% mass

Baseline technology:

- Straw Tubes in vacuum (NA62-like)
 - Four stations, 2 views each, 4 layers per view
- Scintillating fibres technology under consideration

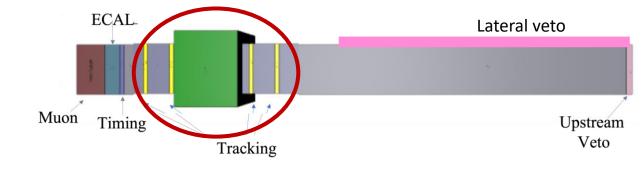
SUADOWS

27/09/2023

V. Cicero for SHADOWS Collaboration

DIPOLE MAGNET

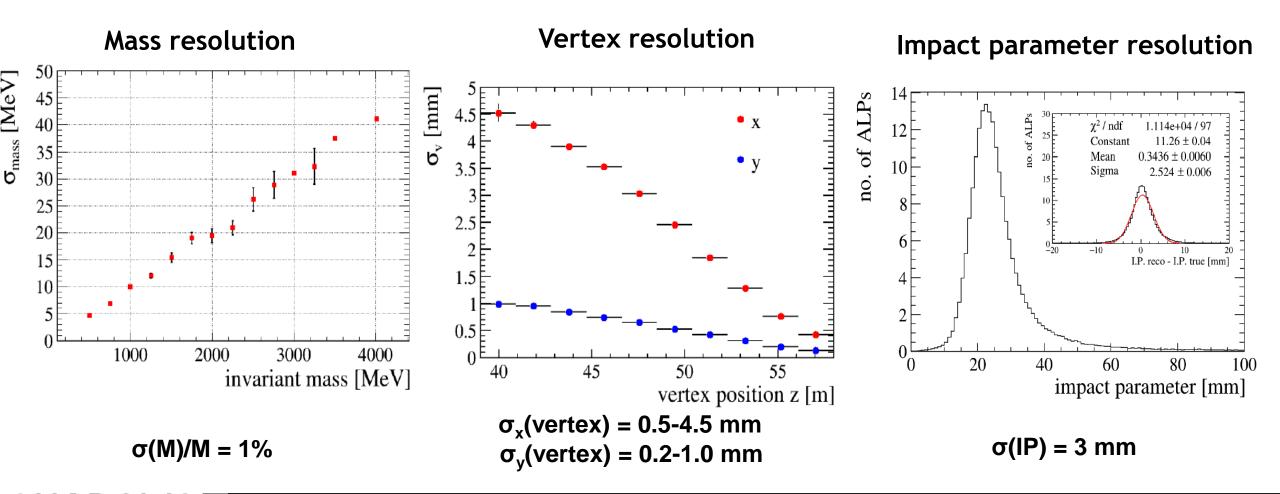
Requirements:


- field integral ~1 Tm
- low power consumption
- 2.7 x 2.7 m aperture

Baseline technology:

warm magnet :

SUAD


- dissipated power: 287 kW
- copper-based coil, iron-based yoke
- superconducting magnet under study

TRACKING PERFORMANCE

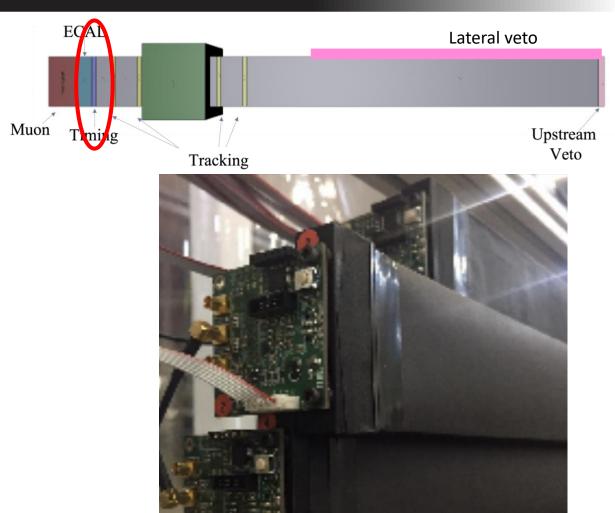
Reconstruction performance evaluated with Monte Carlo simulations of ALP particles with E = 600 MeV decaying into two muons

SUAD

TIMING LAYER

Goals:

reject muon combinatorial background requiring fast time coincidence

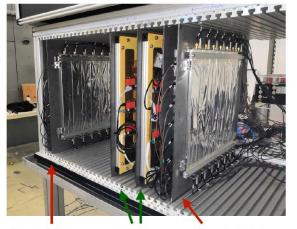

Requirements:

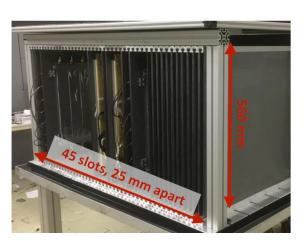
Time resolution of o(100) ps

Baseline technology:

plastic scintillating bars with direct SiPM readout

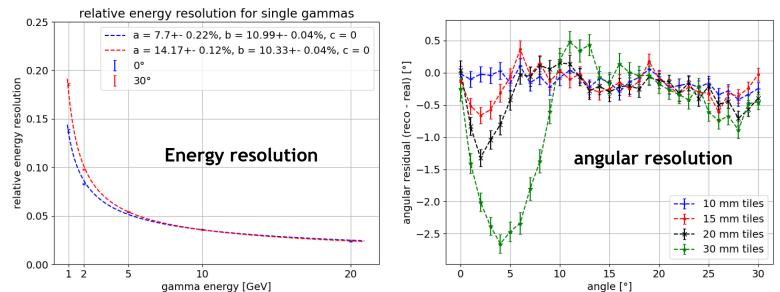
- about 1 cm thickness, 6 cm width, 1.26 m length
- covering half of the 2.5 x 2.5 m² acceptance.
- Proved to reach < 100 ps time resolution.</p>


ECAL


Requirements:

- Moderate energy resolution: 10-15% / $\sqrt{E(GeV)}$
- Particle ID via E/p measurement
- Pointing capability for fully neutral final state (eg: $ALP \rightarrow gg$)
- Time resolution : o(1) ns.

Baseline technology: StripCAL


- 2.5 m long, 1cm wide, 1 cm thick strips in x,y directions with WLS fibres + SiPMs read-out
- alternating with iron layers, 9 mm thick.
- 20 X₀ total depth to avoid shower leakage

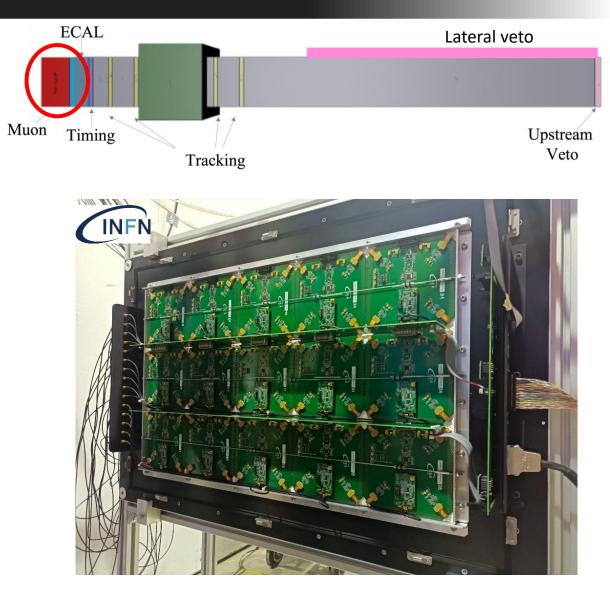
2 scintillator 2 Microlayers (x & y) Megas

2 scintillator layers (x & y)

OWS

27/09/2023

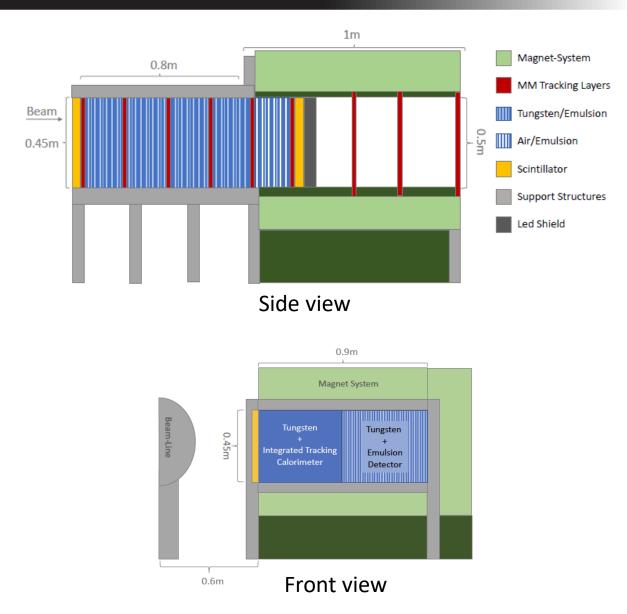
MUON SYSTEM


Goal:

 identify muons and reduce muon combinatorial background via timing measurement.

Technology:

- 3 stations of scintillating tiles with direct
 SiPM readout interleaved by iron filters.
- 15 x 15 cm tiles
- Measured 250 ps resolution per station.


Two full-size modules already built in 2023.

NaNu DETECTOR

NaNu (North Area Neutrino Detector) placed 50 m from the beam dump, immediately downstream of SHADOWS detector.

- Two main detector components of 45 x 45 x 100 cm³
- Emulsion detector:
 - Emulsion films of silver bromide crystals, 70 µm layers
 - Interleaved with 1 mm tungsten plates, 560 total
 - 50 to 100 nm spatial resolution
- Micro-Megas based tracking detector to complement emulsions with timing information
- Active detector: tungsten plates interleaved with plastic scintillators with SiPM read-out
- Dipole magnet with 1.4 T field (already existing)

NS

SUADO

OUTLOOK

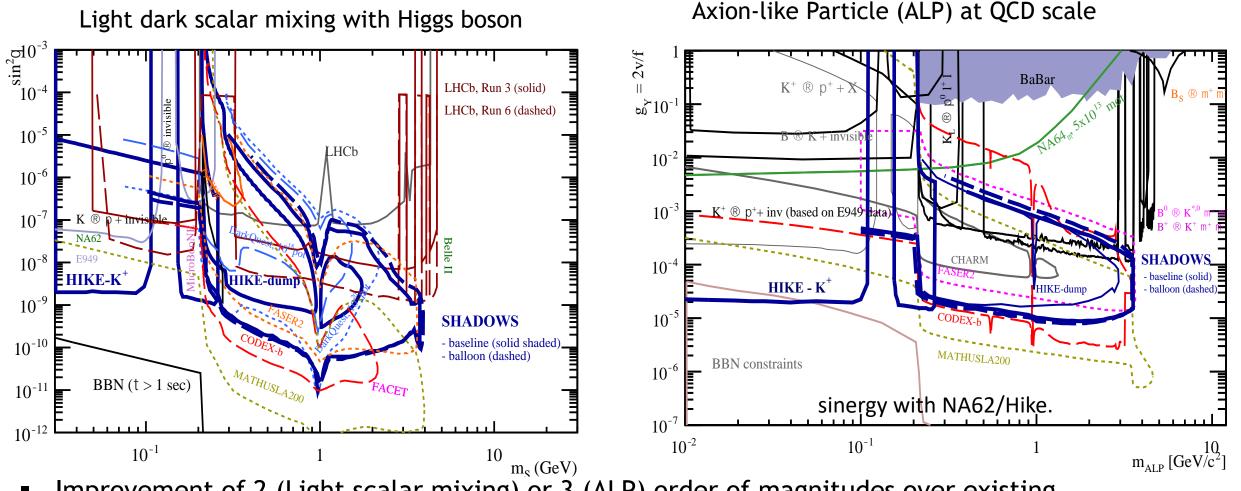
- SHADOWS is a proposed proton beam dump experiment for FIPs physics that can be built in ECN3 and take data concurrently to HIKE
- SHADOWS and HIKE running simultaneously to cover complementary ranges in the FIP parameter space, <u>above</u> and <u>below</u> the kaon mass, will play a major role for FIP physics in the incoming years
- In addition to the FIP programme, a neutrino programme can be pursued with NaNu.
- SHADOWS Technical proposal submitted in August 2023
- Expected decision of SPS Committee for approval: December 2023

BACKUP SLIDES

COMBINATORIAL MUON BACKGROUND

Random combination of opposite charge muons entering the decay vessel can mimick a decay vertex in the fiducial volume.

With MIB muon flux reduction system, we have ~ 10 Mevents/spill


Background can be further mitigated using event properties:

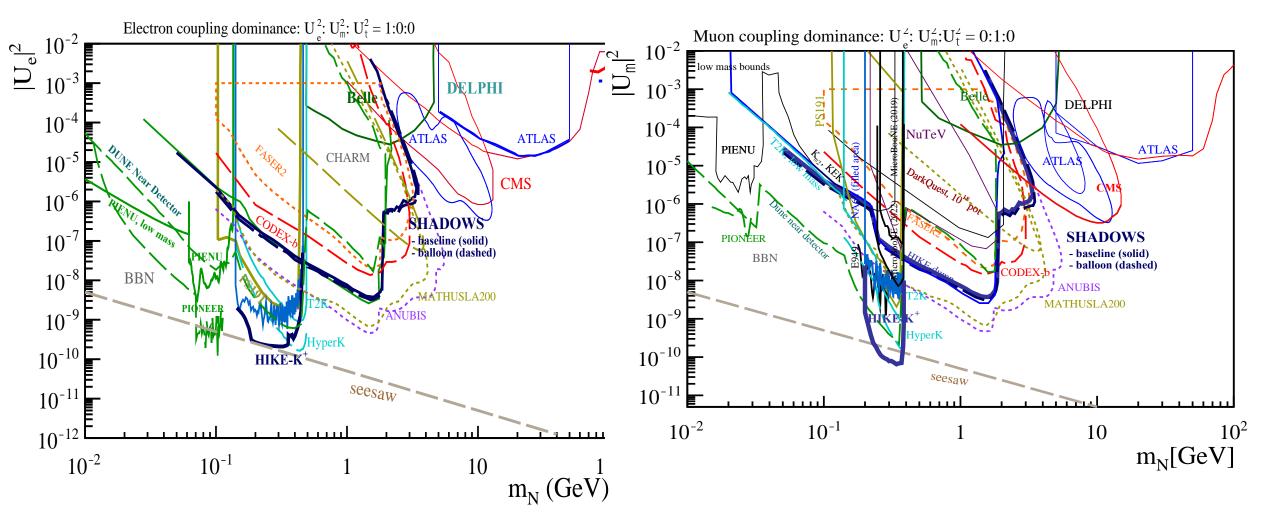
- 1. Timing : \pm 3 σ_t (σ_t ~ 100 ps) \rightarrow rate of accidentals ~ 3000/spill
- 2. Veto efficiency 99.8 %: probability of not vetoing each of the two $P(Veto) = 4x10^{-6}$
- 3. Vertex reconstruction in fiducial volume requirements: $P(Vertex) = 5 \times 10^{-4}$
- 4. Pointing to proton dump : $P(IP < 6cm) = 1 \times 10^{-4}$

 $N(\mu^+\mu^-)$ flux = Timing events x P(Veto) x P (Vertex) x P (Pointing direction) events/Spill Expected background events on experiment lifetime = 0.7 Events

+ Other backgrounds: muon inelastic interactions (0.9 events in SHADOWS lifetime), neutrino interactions (0.01 events).

SENSITIVITY to standard PBC benchmarks

- Improvement of 2 (Light scalar mixing) or 3 (ALP) order of magnitudes over existing experimental bounds.
- Synergy with HIKE experiment

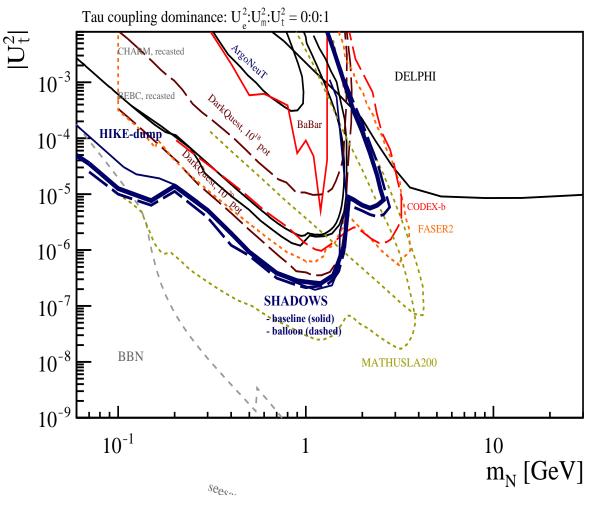

Worldwide landscape from FIPs2022 Proceedings, arXiv:2305.01715, accepted by EPJC

SHADOWS

27/09/2023

SENSITIVITY to standard PBC benchmarks

Heavy Neutral Leptons (single lepton dominance)

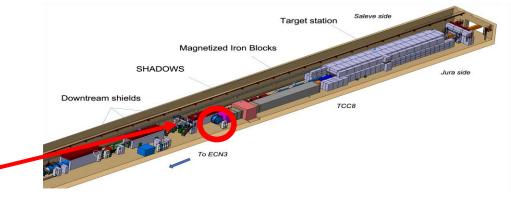

Worldwide landscape from FIPs2022 Proceedings, arXiv:2305.01715, accepted by EPJC

27/09/2023

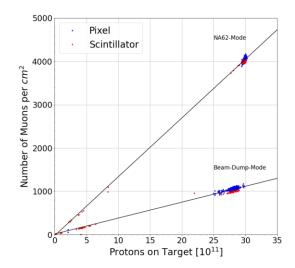
SUADOWS

SENSITIVITY to standard PBC benchmarks

Heavy Neutral Leptons (single lepton dominance)



Worldwide landscape from FIPs2022 Proceedings, arXiv:2305.01715, accepted by EPJC


27/09/2023

SHADOWS

SHADOWS PROTOTYPES AT WORK

Measurements perfomed in June 2023 with NA62 operating in beam-dump mode at nominal beam intensity, for validation of the simulated off-axis muon flux

Results from data: 250-300 counts/cm²/10¹² pot

Results from simulation : $260 \pm 20 \text{ counts/cm} 2/10^{12}$ pot

Two full-size Muon system modules

Micro-megas telescope

> silicon+ scintillating tiles telescope

