

A prototype electromagnetic calorimeter for the MUonE experiment: status and first performance results

EUGENIA SPEDICATO FOR **MUONE** *UNIVERSITY OF BOLOGNA, INFN*

Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2023

Anomalous magnetic moment of the muon

- 1. Reduce the experimental error \longrightarrow <u>Fermilab</u> g-2 goal (0.54 ppm (BNL) \rightarrow 0.20 ppm \xrightarrow{goal} 0.14 ppm)
- 2. Improve theoretical precision ——— Dominant contribution: LO hadronic vacuum polarization term $< a_{\mu}^{HLO} \rightarrow 0.6\%$

Anomalous magnetic moment of the muon

MUonE proposal

$\mu - e$ elastic scattering

μ

Experimental apparatus

Letter of Intent: The MUonE Project, <u>SPSC-I-252</u>

Electromagnetic calorimeter

Reduced format for Test Run aimed at the validation of the experimental proposal

- 25 cells in $PbWO_4$ (22 X_0) (from CMS endcaps calorimeter)
- Surface ~ $14 \times 14 \ cm^2$
- Readout: APDs read out by two FEBs connected to a FC7 board
 Larger size w.r.t. CMS ones: ----> Affects observed signal size
 10×10 mm² and energy resolution

expected 9 pe/MeV **Rms noise:** 4 *ADC counts* (single crystal) According to hardware specifics:

System noise: dominated by MGPA (CMS one)

- 1. Determining the ability to identify beam <u>muons</u> (160 GeV \rightarrow 700 MeV signal)
- 2. Expected energy resolution:

 $\sim 5-7\%$ at 700 MeV

MGPA specifics: <u>M.Raymond et al., 10.1109/TNS.2005.850979 (2005)</u>

Laser pulse system (at 450 nm) for APD calibration

What is the purpose of the ECAL in MUonE?

Use it as a <u>control system</u> for the tracker \rightarrow assess systematic effects:

- Possibility to control tracker's signal selection at least in the last stations and small scattering angles events;
- Helping in describing and recognizing **background and radiative events;**
- Resolving the PID ambiguity in the region of similar angles (2 3 mrad): tracker is not enough when electron and muon have similar scattering angle \rightarrow check ECAL E_{dep} and

associate ECAL cluster to track

Selection of simulated elastic events with ECAL: GFLASH Fast Simulation

- Fast simulation of the *entire homogeneous ECAL* based on GFLASH parametrization used by CMS (Grindhammer et al., <u>arXiv:hep-ex/0001020</u>);
- Used to study its response and its capability of selecting signal events.

Simulated event of a 10 GeV electron impinging on the central cell of the ECAL

Selection of simulated elastic events with ECAL

NLO $\mu - e$ scattering events without any selection: presence of radiative and background events NLO $\mu - e$ scattering events with ECAL selection (based on E_{dep}^{3x3} , $\sigma(E)$, centroid coordinates): Clear elastic signal

Cross-check in the last stations the tracker-based selection with the calorimetric selection

Angular distributions of the electron and muon MESMER MC + MUonE Fast Simulation

With calorimetric selection, the LO elastic cross

section of the electron is well recovered 11

Muon cross section is robust against radiative effects

ECAL tests beam 2023

Calibration tests have been performed with the current prototype:

- 1. CERN H2 electron line: energy range $\rightarrow 20 150 \text{ GeV}$
- 2. CERN T9 electron line: energy range $\rightarrow 1 10 \text{ GeV}$

Main purpose:

• Set APD voltages to *better equalize* the signal within 10% in all the APDs. Calibration done with laser signal.

Some preliminary results..

CERN H2

CERN T9

Calibrated energy distribution of the signal, for all Calibrated energy distribution of the crystals with $\forall E_{dep}$ signal for crystal 5 with $E_{dep} > 70\% E_{tot}$ Crystal 1 Crystal 5 FEB channel 5; 1 GeV electron #Events 2000 250 Preliminary 200 $\overline{\sigma}(E_{tot}) = 4.43\%$ Crystal 6 Crystal 9 Crystal 1 Crystal I Crystal 10 E_{tot} 1 GeV peak: 150 ~ 184 *ADC* 100 Crystal 11 Crystal_12 Crystal 13 Crystal 14 Crystal 15 50 132 288 340 184 236 E_{tot} [ADC] FEB channel 5; 150 GeV electron #Events Crystal_17 1800 Preliminary 1600 $\overline{\bar{\sigma}(E_{tot})} = 2.58\%$ 150 GeV peak: 1400 E_{tot} ~ 27600 *ADC* 1200 Crystal 21 Crystal 23 Crystal 2 Crystal 24 Crystal 21 1000 800 600 400 200 X axis: energy deposit per crystal (0 - 32000 ADCs) for a 150 GeV *e* beam

X axis: energy deposit per crystal (0 - 32000 ADCs) for a Y axis: number of events

²⁸⁰⁰⁰ ³⁰⁰⁰⁰ 13 *E*_{tot}[ADC]

26000

20000

22000

24000

Pilot Run August-September 2023

- M2 beam line at cern (muons 160 GeV);
- First time with **2 full-equipped stations** (12 modules);
- ECAL set after the second station.

Main Purposes:

- 1. Scale the DAQ from **1 to 2** tracking stations;
- 2. Integrate and synchronize tracker and ECAL DAQ;
- 3. Test the **software and hardware alignment** procedure;
- 4. Collect enough statistics to provide the **measurement** of the leptonic running of α .
 - We managed to read out the calorimeter at 40 MHz, tuning the rate to fit in the available 10 GbE data link.

Results will be used to write the **technical proposal**. Submission to the SPSC planned in 2024!

Conclusions

- MUonE proposes an innovative and independent method for the evaluation of the hadronic vacuum polarization term at LO a_{μ}^{HLO} which is alternative with the previous ones. Great possibility to shade some *light* on this intriguing **puzzle**!
- We are analysing the new Test Run data to determine the performance of the ECAL and understand its role for future tests and final experiment;
- Test beams and data analysis are carried out together with the CMS Tracker group. Results will be published in a *joint paper*; CMS/

- Next important step is write the technical proposal in 2024, with the full experiment setup and goals;
- An intermediate step before the final configuration \rightarrow 10 tracking stations before LS3 (2026).

Thank you for the attention!

BACKUP

2018 MUONE TEST BEAM

G. Abbiendi et al., arXiv:2102.11111

17