

The HybridMC: a fast detailed Monte-Carlo framework for the LHCb electromagnetic calorimeter upgrade

Marco Pizzichemi University of Milano-Bicocca and CERN

On behalf of the LHCb ECAL Upgrade II R&D group

16th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD23), 25-29 September 2023, Siena, Italy

Current LHCb ECAL configuration

- Large SHASHLIK array (about 50 m²) with 3312 modules and 6016 channels:
 - 176 modules 4x4 cm² cell size
 - 448 modules 6x6 cm² cell size
 - 2688 modules 12x12 cm² cell size
- Optimized for π⁰, e⁻ and γ identification in the few GeV to 100 GeV region at **2 x 10³² cm⁻² s⁻¹**
- Radiation hard up to 40 kGy
- Energy resolution: σ(E)/E ≈10%/√E ⊕ 1%

Energy resolution with electrons

Requirements for ECAL Upgrade II → PicoCal

Keep current performance while coping with harsher operating conditions

Occupancies, E_{T. cell} > 50 MeV 0.6 Y [cm] 300 -0.5 200 -0.4 100 0.3 -100 0.2 -200 0.1 -300 -200 100 200 300 -300 -1000 X [cm]

Mitigate higher pile-up

Timing O(10ps), preferably directly in the modules Increased **granularity** Longitudinal **segmentation**

Sustain higher radiation dose (up to 1 MGy and $\leq 6 \times 10^{15}$ 1 MeV neq/cm² in the center)

New technologies required

Technologies for the LHCb PicoCal

New technologies, and new module configuration optimized for radiation dose level

Technologies for the LHCb PicoCal

New technologies, and new module configuration optimized for radiation dose level

One ECAL quadrant

Technologies for the LHCb PicoCal

New technologies, and new module configuration optimized for radiation dose level

F. Ferrari "Latest feasibility studies of LAPPD as a timing layer for the LHCb Upgrade-2 ECAL"

One ECAL quadrant

marco.pizzichemi@cern.ch

4

LHCb ECAL upgrade strategy

	2017 2018	2019 2	2020	2021	202	2 2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033			Jan 2022)	
CERN	Run 2 LS2			Run 3			LS3			Run 4				LS4		Run 5 - 6				
r Zł	LHC				13 Te\											aga 0 4]			
Hicp	4×10 ³² cm ⁻² s ⁻¹ 9 fb ⁻¹ Upgrade I				2×10 ³³ cm ⁻² s ⁻¹ 23 fb ⁻¹			LS3 Enhancements			2×10 ³³ cm ⁻² s ⁻¹ 50 fb ⁻¹			Upgrade II		1.5×10 ³⁴ cm ⁻² s ⁻¹ 300 fb ⁻¹				

- **Run 3** in 2022-2025:
 - Run with unmodified ECAL Shashlik modules at 2 x 10³³ cm⁻²s⁻¹

LS3 enhancement in 2026-2028:

- Introduce single-section rad. tolerant SpaCal (2 x 2 and 3 x 3 cm² cells)
 - 32 SpaCal-W and 144 Spacal-Pb modules with plastic fibres
- Rebuild ECAL in rhombic shape to improve performance
- Option to include timing information with single-sided readout
- **LS4 Upgrade II** in 2033/2034:
 - Introduce double-section rad. hard SpaCal (1.5 x 1.5 and 3 x 3 cm² cells)
 - Innermost SpaCal-W modules equipped with crystal fibres
 - Improve timing of Shashlik modules
 - Include timing information and double-sided readout to full ECAL for pile-up mitigation

Motivation for HybridMC

- Detailed simulations are crucial both during the **R&D phase** and the **operation** of the upgraded ECAL
 - Optimizing the geometry of modules
 - Optimizing the geometry of the entire calorimeter
 - Understand performance evolution with time (radiation damage)
 - Assess impact of design choices on physics analysis
- Bright scintillators are needed to fulfill the ECAL upgrade requirements, especially for timing
 - Great quantity of optical photons produced
 - **Full ray-tracing** of optical photons becomes quickly **unfeasible**: CPU time around 1 h/GeV of e^{\pm}/γ
- Nevertheless, optical photons cannot be neglected in our application
 - Crucial to predict timing performance
 - Allow to evaluate impact of complex effects (scintillator surface state, attenuation length, radiation damage...)

A speedup strategy is needed!

The HybridMC concept

Move the transport of optical photons outside of Geant4, reproduce it faster while keeping the necessary level of details

Optical calibration

Optical calibration concept

Procedure to **parametrize** the optical photon output of Shashlik and SpaCal modules

Special full ray-tracing runs

- Optical photons are produced scanning a grid of points, propagated and collected at the exit of the modules
- Histograms of the extracted photons are recorded
- Fundamental features of optical transport are **encoded in the histograms** (extraction efficiency, time distribution)
- Need to be performed **only once per module type** (so CPU time doesn't matter)
- Symmetries of the modules can be exploited to reduce number of points necessary on the grid

marco.pizzichemi@cern.ch

Scan the crystal(s) on a space/energy grid, produce distributions of output photons

Use these histograms as **PDFs** to generate **photon extraction probability** and **time of transport**

MC production

Interaction of particles with Calo

The Geant4 simulation is performed **deactivating** the propagation of optical photons and the production of scintillation photons

- The information necessary to reproduce the optical propagation is saved:
 - The **map of energy deposition** (position, energy)
 - The **list of Cherenkov photons** produced by Geant4 (position, wavelength, emission direction)

Hybrid propagation of optical photons

Reproduce the transport of optical photons in a faster way

The key features of optical transport are **summarized into the PDFs**, hence **preserved** in the final output

Pulse formation and analysis

Produce a **realistic pulse** on each detector in the simulated module/calorimeter

Energy and **time** information extracted for each readout channel

Gain in computation time

Evaluation of CPU speedup

Comparison of total **CPU time** between HybridMC and full ray-tracing, for the same e.m. particle source on **lxplus**

When performing full ECAL simulations, this translates to ~1.8 s/GeV of incoming particles (about $\frac{1}{3}$ kinetic energy is in $e^{\frac{1}{7}}/\gamma$)

In Run5 conditions (~10 TeV total kinetic energy to Calo) the computation time is on average 6h/event

marco.pizzichemi@cern.ch

Validation of HybridMC propagation

Validation of HybridMC approach

Check if the optical calibration approach provides results **compatible with Geant4 full ray-tracing**

Produce a full ray-tracing dataset while **saving also the information to perform the hybrid procedure**, then compare

marco.pizzichemi@cern.ch

Validation: SpaCal W-GAGG

Very good agreement both in number of photons extracted and in time profile

Validation: SpaCal Pb-Polystyrene

Very good agreement both in number of photons extracted and in time profile

Validation: Shashlik

Very good agreement both in number of photons extracted and in time profile

Comparison to experimental data

marco.pizzichemi@cern.ch

Comparison with test beam data: SpaCal

The HybridMC framework **reproduces well** the test beam measurements

For more info on test beam setups and module configurations see presentations by <u>E. Picatoste</u> "Scintillating sampling ECAL technology for the LHCb PicoCal"

Comparison with test beam data: SHASHLIK

The HybridMC framework reproduces well the test beam measurements

For more info on test beam setups and module configurations see presentations by <u>E. Picatoste</u> "Scintillating sampling ECAL technology for the LHCb PicoCal"

Full ECAL simulations

Full PicoCal simulations

Sample study of physics performance: $B^0 \rightarrow K^{*0}\gamma$

The HybridMC framework actively used by the collaboration to study the impact of upgrade choices on physics performance

From LHCb TDR 24 https://cds.cern.ch/record/2866493/files/LHCB-TDR-024.pdf

- Shashlik region: Run3 and Run4 performance compatible
- ▷ **SpaCal** region (35% of the photons from $B^0 \rightarrow K^{*0}\gamma$)
 - Improvements due to smaller cell size in Run4 (LS3 enhancement)
 - Without LS3 enhancement, combinatorial background expected to strongly increase in Run4 because of radiation damage

Conclusions

- Fast detailed MC simulation framework developed for PicoCal Run 4-5: HybridMC
 - Speedup **between 2 and 3 orders of magnitude**: allows to perform detailed simulations in reasonable time
 - Useful for both prototype developments and full PicoCal physics benchmark studies
- Output of HybridMC in **agreement with full ray-tracing** simulations
 - Detailed simulations of full PicoCal configuration computationally affordable
- Excellent **agreement with experimental data** obtained in test beam campaigns
 - Useful to predict performance of proposed solutions of future PicoCal configuration with good level of confidence
- Integration into the LHCb simulation framework ongoing

Thank you for your attention!