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JUNO Physics

➢ In the Standard Model, neutrinos are assumed to be 

massless. 

➢ Neutrino oscillation experiments have proven that 

neutrinos do have mass.

➢ This discovery goes beyond the Standard Model as the 

Standard Model can not account for neutrino masses.

➢ The specific ordering of neutrino masses (which type is 

lightest or heaviest) remains unknown.

➢ Solving this mystery  is crucial for a deeper 

understanding of neutrino physics and cosmology

There are still two possibilities for neutrino mass order
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JUNO Detector

➢ Jiangmen Underground Neutrino 

Observatory (JUNO) :

• Measure the neutrino mass order (NMO) 

• Measure neutrino oscillation parameters 

to sub-percent level

~78%coverage
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JUNO Physics

• Atmospheric neutrinos 

provide independent 

sensitivity to NMO via 

matter effects. 

• JUNO’s NMO sensitivity 

mostly comes from reactor 

neutrinos

• Combing reactor 

and atmospheric 

neutrino oscillations 

can enhance JUNO’s 

overall sensitivity

➢ Detect neutrinos from:

 reactor, solar, atmosphere, supernova, geo. 
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Why PID?

6

slope

➢Measurements of atmospheric neutrinos 

require identification:

• Signal and Background：𝜈𝜇/ ҧ𝜈𝜇CC, 𝜈𝑒/ ҧ𝜈𝑒CC, NC

tips：CC:charged current NC: neutral current

Differences between NO and IO in atmospheric
 neutrino oscillation spectrums

• Flavor identification is critical, including 𝜈 vs 𝜈. 
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JUNO Detector & PID?

➢ Liquid scintillator (LS) detectors play an important  role in 

neutrino physics:

• Offer low threshold and high-precision energy measurements

• Ideal  for low-energy topics such as reactor/solar neutrinos

Can we do flavor identification  

for JUNO?

➢ However:

• LS detectors do not offer track information. 

• Cherenkov light is only a few percent of scintillation light in JUNO

Advantages of JUNO for atmospheric neutrinos: 

1.PMT coverage(78%);

2. excellent neutron tagging;

3. hadronic component visible in LS; 

4. can measure distinctive isotopes
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Event Topology in PMT Waveforms

➢ In the LS detector, the light received by a PMT is the superposition of the scintillation 

light from points along the track.

➢ The time-dependent nPEs(t) is influenced by the incident particle's direction, interaction 

vertex, energy, and type (dE/dx).

➢ The characteristics of nPEs(t) reflect the event topology in the detector.
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Event Topology in PMT Waveforms

• Distribution of the slope of 1GeV muon /electron on the pmt sphere of JUNO

slope

Slope
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A Multipurpose Machine Learning Solution

slope

FHT

Slope

PMT hit vs time

• FHT: First Hit Time 

• Slope: Describes the average 

slope in the first 4ns.

• Peak charge and peak time: 

the charge and time of the peak 

of the waveform

• Charge: The total number of 

PEs 

• Due to the large PMT number 

distributed on the sphere, directly 

feeding models with all waveforms 

is hard

• Features are extracted from each 

PMT to mathematically describe 

the waveform, which reflects event 

topology in the detector

Direction

Energy

Flavor

Track

Vertex

Models are trained with a large number 

of PMT feature pictures and learn to 

find direction/energy/ flavor/vertex etc. 

from the feature patterns
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➢DeepSphere

• DeepSphere: a popular tool processing spherical data originally 

developed for cosmology studies.

• Maintain rotation covariance;

• Avoid distortions caused by projection to a planar surface. 

• 4 sets of convolution blocks, followed by one Chebyshev 

convolution layer, a fully connected layer and lastly a 

prediction block. 
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Machine Learning Models

➢PointNet++

• Directly taking 3D point clouds as input → 
JUNO signal more resembles point clouds.

• (N.B. PointNet++ input format: for each event, 
N(PMT)*[x, y, z, features, ..]  )

• Nside = 32

• Pixels=12 × Nside
2 = 12288

• If more than one PMTs are grouped into one pixel, 
information is merged:

• First hit time: the earliest;Totoal charge: the sum;Slope 
and others: the average.
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3-Label Classfication

Efficiency/purity as functions of visible energy

efficiency

Work in Progress

Work in Progress

Work in Progress
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5-Label Classfication

Atm 𝝂 𝒂𝒏𝒅 ഥ𝝂 are hard to identify

𝝂𝝁 𝐨𝐫 ഥ𝝂𝝁?

𝝂𝒆 𝐨𝐫 ഥ𝝂𝒆?
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Neutron vs Neutrino

➢ Using only the primary trigger is difficult to discriminate 𝜈/ഥ𝜈

➢ The Atmospheric 𝜈 and ഥ𝜈 events produce different numbers of neutrons 

➢ Neutron capture emits a fixed-energy photon

➢ Neutrons create Atm 𝜈/ഥ𝜈 events’ secondary triggers

➢ It is possible to statistically separate 𝜈 and 𝜈 with neutron informations.

Number of neutrons in different type

Primary 

Trigger

Secondary 

Trigger 1

Secondary

 Trigger 2
……

𝜈𝜇

𝜇+

𝑛
𝛾

𝑝
2.2MeV
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Flavor Identification Strategies

Primary 

Trigger

Secondary 

Triggers
…
…

Neutrino 

Interaction

Feature Extraction

Neutron Candidate 

Trigger Selection

Event

Direction, 

Vertex… Event ID:

𝜈𝜇/𝜈𝜇/𝜈𝑒/𝜈𝑒/𝑁𝐶

Secondary 

Triggers

PMT Features 

(FHT, nPE…)

PMT Features 

(FHT, nPE…)

PMT Features 

(FHT, nPE…)

Neutron 

Capture 

position

Neutron 

Capture 

vertex
…
…

…
…

Event 

Level 

Features

Machine 

Learning 

Model

• Strategies1: Combine the PMT-level features with event-level features (neutron-multiplicity, 

relative positions of neutrons to event vertex/directions, etc. ).

Event

Direction, 

Vertex…

…
…

Event

Direction, 

Vertex…

…
…
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Flavor Identification Strategies

Primary 

Trigger

Secondary 

Triggers

Neutrino 

Interaction
PMT Features 

(FHT, nPE…)

Machine 

Learning 

Model

Event ID:

𝜈𝜇/𝜈𝜇/𝜈𝑒/𝜈𝑒/𝑁𝐶

Secondary 

Triggers

PMT Features 

(FHT, nPE…)

Feature Extraction

…
…

Neutron Candidate 

Trigger Selection

Merging Neutron 

Candidate Triggers
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• Strategies2: Directly input PMT features from 

multiple triggers into ML.
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Results
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• Input features from both the prompt trigger and delayed triggers into ML.

• 𝜈 and ҧ𝜈 can be statistically separated with the help from neutron-capture informations.
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Results

𝜈𝜇-like 𝜈𝜇-like

𝜈𝑒-like 𝜈𝑒-like

Work in Progress

Work in Progress

Work in Progress

Work in Progress

Upward-going events, 𝐸𝜈 > 0.5GeV

18



Fanrui Zeng,  SDU

✓A machine learning approach for the identification of atmosphere neutrino events 

in JUNO was presented.

✓Flavors of atmospheric neutrinos are identified with good efficiency and purity.

• Especially neutrinos and anti-neutrinos can be identified.

✓This method is applicable to other large homogeneous LS detectors as well, 

making them suitable candidates for future atmospheric neutrino oscillation 

measurements.

✓We aim to perform the first atmospheric neutrino oscillation measurement in an LS 

detector in the world and increase JUNO's total sensitivity to NMO.
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Summary

Thanks!
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BACKUPS
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➢What we need from reconstruction for atmospheric neutrino oscillation analysis:

➢Flavor (𝜈𝜇/ ҧ𝜈𝜇 vs 𝜈𝑒/ ҧ𝜈𝑒vs NC);

➢Energy;

➢Directionality (oscillation baseline length):

➢As this method is multi-purposed, these atmospheric neutrino reconstruction topics also be studied.
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Extension
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