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Primary scintillation light and dopants
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POLYSTYRENE
A E

PRIMARY DOPANT

Forster

SECONDARY DOPANT

photon

250 320 350 420 nm

Primary and secondary
dopants absorb and re-emit
the light at longer
wavelengths until useable.
Primary PT, PPO
Secondary bis-MSB, POPOP



Fermilab Scintillator Extruder System
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System ~50m long.
Can make ~75kg scintillator per hour, limited by cooling.
100 tons/year. One of largest scintillator producers in the world



Extrusion Profiles for various experiments

Hole(s) for fibers and white (TiO,) cladding
coextruded. Each new shape usually needs new die.
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Factory Floor. Largest part so far: 4x4cmxL
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Injection Molding at Fermilab. Example Hexagon tile

3 injection molding machines, 20 ton, 100 ton, 165 ton presses
Can make parts from 0.1 gram to 200 grams

-~

=] 100 ton Injection Molding Machine Lab 5 _ .
—— — = — HEX mold in place

9/28/2023 Jim Freeman FNAL IPRD23 8



Fermilab Scintillator Extrusion and Injection Molding past/planned projects

* FNAL experiments: * Smaller Projects

* MINOS (supervision & QC) « MURAVES — INFN Napoli

* MINERVA » CANFRANC — Spain

* Mu2e CRV * SNOLAB -- Canada

e TMS — DUNE * INFN: Bologna, Brescia, Gran Sasso, Padova

e Mu2ell * Inst. Phys. Globe, France -- Volcano tomography Guadeloupe Soufriere

* NYU — Abu Dhabi

* Large projects: * Tel Aviv University — Erez City of David tomography
e K2K (Supervision & QC) e UIS - Colombia
e T2K: POD, ECal, INGRID * Univ. Liverpool
e DoubleCHOOZ * LDMX Veto Prototype — Lund University
« Pierre Auger: CNEA, KIT * INO — mini ICAL Cosmic Veto
« ICECUBE " MBS
* Naval Research Facility
* IDEON — Canada « MATHUSLA — U. Toronto
* LDMX e LHCB
* MATHUSLA * INFN Catania

e DOE complex:
P * Injection Molding (New capability as of this year)

" ANL: STAR * CMS HGCAL
* JLAB: CLAS, CDet « ePIC LFHCal — ORNL, BNL
* LANL e Shashlik — HIKE calorimeter
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Archeology



ScanPyramid

Extrusion Profile
1cmxlcmx120cm
co-extruded hole
and cladding

ScanPyramid Consortium uses 3 muon hodoscope technologies: scintillator (from FNAL),
micromegas, emulsion. 2 layers, 1.2x1.2m
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City of David, Jerusaleum

Archeology Muon Tomography

Group led by Erez

Etzion in early phase

of density mapping

9/28/2023

City of David
(adjacent to Temple
Mount) using muon
detectors installed in
water spring caverns
under the site. Site
dates from 4500 BC.
Difficulties: access,
high humidity.

Muon detector for

underground tomography
2205.03722 [physics.ins-det]
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https://urldefense.proofpoint.com/v2/url?u=https-3A__inspirehep.net_literature_2078986&d=DwMF-g&c=gRgGjJ3BkIsb5y6s49QqsA&r=lLZt952mhC6_NNw3BjOPpvZVMY-tmkHc1l_kPFv-Oy8&m=pN8PcwN6q1p7ecmaG86gctlglh02rCs5whuc6XFWyCH7ZoxeSvclpc1r4wr6cMjY&s=TqJWZD2OZA5OaXXwCBgELiZMaGLYQwFdK5RozPRFUC4&e=
https://arxiv.org/abs/2205.03722

Astroparticle



Pierre Auger Cosmic Ray Observatory
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A prototype of an upgraded Auger Surface Detector

side view of an
extruded scintillator
bar with 2 holes

WLS fibers and
fiber routers

A A A A A A A A

Both the scintillator planes, the new electronics and the radio antennas wil be deployed over
the full 3000 km? area of the Pierre Auger Surface Detector, with minimal impact on the
data taking and of the existing detectors.

Scintillator bars 160x5x1 cm

48 scintillator bars, Al srdiaine
total area 3.8 m? Several WCD stations equipped with SSD and RD. Also UMD are shown.

Pierre Auger Observatory: 3000 km? detector in Malargue, Argentina. Goal to measure highest energy
cosmic rays. Cosmics are detected through multiple methods to give rich information about the event.
Scintillation, Cerenkov, radio, and fluorescence detection telescopes. FNAL produced ~80,000 bars, 100 tons

of extrusion for the SSD Surface Scintillator Detector. SSD used to provide muon aspect of cosmic shower.
(figures from Nataliia Borodai, TIPP 2021 May 24-28, 2021)
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lceCube

Ice Cube adding scintillator
array on surface to study PeV
cosmic rays and provide for
partial veto of downward
cosmics. Scintillator is cheap
and can survive the harsh
conditions.

Figure 1. Installation of the first prototype scintillation detectors
at the South Pole in January 2018.
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Figure 1: Map of the scintillator array as designed
for the IceTop upgrade. in IceCube coordinates. Each

number denotes the location of an existing IceTop sta-
tion.
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Each panel has 16 extrusions, 2m x 1cm x
5cm, readout Y-11 fiber and SIPM

7 panels per hub. 37 hubs in array
roughly 1km x 1km

https://pos.sissa.it/301/401/pdf
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Geology



IDEON geological exploration for mining. Example McArthur River Uranium Deposit, Canada

\ //Estimated sensitive
\\ / solid angle. 1km
\ /  diameter at surface
\ //
-
Array of triangles read out with WLS, \

designed to fit into Bore Hole. FNAL 3 Detectors ~600m underground.
provided 30,000 extrusions. Solid dark is ore deposit as understood

by core samples. Colored is density slice
from IDEON muon data, in agreement.
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MURAVES - Vesuvius

arXiv:2202.12000v1
M. D’errico et al.

Figure 2: Top: The 32 scintillator bars and WLS fibers assembled in a half of a
planar array. Bottom: triangular section of the scintillator bars.

— 3 Stations of x-y planes of scintillator,

Pb hardener, final station

9/28/2023 Jim Freeman FNAL IPRD23 18


https://arxiv.org/abs/2202.12000v1

Agriculture/Biology



(a)

Development of a Plastic Scintillation-based Detector
. . s - 2
for Real-Time Radioisotope Imaging of **P Uptake
in Plant Root Systems
B. Kross®, S.J. Lee”, A. Llodra”, J. McKisson®, J.E. McKisson®,
A. Pla-Dalmau®, A.G. Weisenberger®, W. Xi", C. Zorn™*
“Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606

"lllinois Institute of Technology, Chicago, Illinois 60616
“Fermi National Accelerator Laboratory, Batavia, Illinois 60510

(b)

Figure 1: (a) Sketch of the basic element of the detector showing a crossed array of wavelength shifting (WLS) fibers that carry
the converted light from the array of plastic scintillating beads formed at the intersections of the fibers. (b) Photograph of
present prototype under initial characterization tests. Note the blue glow from the scintillating beads and converted green light
from the WLS fibers. The beads will provide a large localized source of light from a nearby beta source that is converted to
green light in the WLS fiber. At the same time, the WLS fibers provide a very low background signal from any radiation source,
allowing the scintillation beads to act as the position locators of the beta source.
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Recent years have seen the development of radioisotope
tracking or imaging systems based on detection of light
from scintillators for agricultural studies [1,2]. The goal is
to track the phosphorus movement between the roots of
a plant and the beneficial fungi that are known to grow
near the roots and have a beneficial role with the plant.

Top and bottom
hemispheres glued to
orthogonal fibers.
4mm diameter sphere.
Glue seals optical
interface from dirt,
water
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CMS — SIPM-on-tile for HL-LHC endcap calorimeter upgrade

CMS p-p collisions at 7 TeV per beam
1 MeV-neutron equivalent fluence in Silicon at 3000 ! .

|||||

SIPM-on-tile: Green PCB Red SIPM Blue Scintillator
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Calorimeter Endcap ‘ Calorimeter Endcap

Electromagnetic (CE-E) Hadronic (CE-H)

ﬂ=30 w1

v
- ~2m >
HL-LHC upgrade. A 5-D calorimeter designed L
: . j - Yo Tiles injection-
for particle-flow pattern recognition.
molded at FNAL

Silicon for ECAL and high radiation prgions
of HCA9L.28$/cin;ciIIator for the rest. 240K
channe(s ozfoélPM—on—tiIe.

Tileboard with SIPMs, wrapped tiles
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MATHUSLA

MATHUSLA is a very large experiment being
proposed to be built on the surface of LHC point 5
by the CMS experiment. It will search for.I(.)ng—Ilved 100 9mMx9mx30m
particles produced by proton-proton collisions at
the CMS interaction point. The experimental
volume is quite large (100mX100mX30m), to allow

for the LLPs to decay in the volume. *rlf.'l
Extruded scintillator layers are installed to allow for
tracking of the decay products. 1000 tons of

32 bar module

modules. 10 planes of
scintillator

scintillator required. Sm
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HIKE, High Intensity Kaon Experiments at the CERN SPS

e O O O O @]
Main Electron Calorimeter 0 ®
based on Shashlik concept. S
1M tiles. Stack of Pb foils 5 & o5 o o o
and scintillators O

Q @] ] 8] O 0
https://arxiv.org/abs/2211.16586

Q 9] o] Q O Q

O 0
) 8] O Q O Q
avers: avers: 48 layers: Pb
il i PR s x, 5.5x5.5x0.3cm

FNAL preparing to
prototype molding the
tiles

Rest material ~5-6X,

charged . em shower mip deep hadronic &
particles ‘ g - o Mmax discrimination *guanhrough
<a-
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“VOXEL” — Volume pixels for scintillator trackers. Proposed 10M voxels for Dune
Near Detector |

3 orthogonal holes for WLS fibers

Stack 7 high

Voxels in frame Voxel prototype with 1 layer of un-

Small scale prototype: 6x6 .
Jim Freeman FNAL  IPRD2CcOated voxels and fibers 25

array E/ez?‘/FéJ%/?ér, 7 layers high



R&D



New Wavelength Shifting
Fibers

Look at new WLS fibers from Saint Gobain and Kuraray:
BCF9929A, YS-1, YS-2, YS-4, YS-6

Excite with laser. Count arrival time of single photoelectrons
with SIPM. Measure fiber decay time

Time Distribution BCF92

14000 :
Fit function: Ne </~
12000 B Histogram entries
N=12722.0 106.9; —1.89310.025
10000| Evenls Analyse: 67351

2
g
—
0 2 10 15 20
Time Difference between Signal and Trigger
Figure 9. Decay ume measured for San Gobain BCF92 fiber.
9/28/2023
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Setup Fiber Decay Time Constant (ns) Comment
405nm Laser 0.31 Apparent laser decay time
Y-11 7.193 (0.16)
I BCF-91A 7.036 (0.083)
BCFY2 1.893 (0.025) Fiber Decay Time
BCF9929A 1.882 (0.032)
YS-1 2.89 (0.03)
YS-2 3.53(0.05)
YS-4 1.577 (0.011)
YS-6 1.298 (0.011)
Table 4. Mecasured light yields for WLS fibers.
Fiber Diameter (mm) | Avg. Light Yield (sum of both ends)
YS-1 Ml 1.0 32.2
YS-2 MJ 1.0 61.0
YS-4 MJ 1.0 50.6
YS-6 MJ 1.0 21.2
Y-11 MJ 1.0 64.9

BCF9929A light yield somewhat less than YS-4

Attenuation
lengths of 5m
long fibers,
measured in
region 1to 2.5m

IPRD23
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Improve timing for extrusion/WLS fiber system

Improving timing along length of extrusion gives better coordinate measurement in that direction. (Other direction
coordinate determined by which bar is hit.) Measure time difference between ends to find hit location.

Cosmic runs that create different light yields. Timing resolution function of sqrt(t/N
System with most light and fastest WLS has best timing resolution. |

pe)

BCF fit: 22

0.00

i I——— 1.75 | + BCP92/BCE99294
001 ] Y5-4M] fit: 22
- 1.50 1 . . YS-AM]
oo Event 42 5 - \I.]] it _'E-
Pedestal Area = 1.44 . . . . = 1.25 & Y11
s < 470 Cosmics timing: g X
Cut on single g 100 AN
x - -
-0.05 e . :"-"' *
| photoelectron 2075, e
=0.06 — SiPM signal .E_
— Srmoolh‘ed Slli‘M Signal ) = 0.5(] 1 - .
0 100 200 tl“i:)({)"SI 400 500 600 {L 2 =.
0 BCF9929A 2 Omm_4x1x50_SQcm
— 1=-54.12(0.02); 0=1.426(0.020) |
e 000 10 20 30 40 50
| 73 i min PE
Figure 22. The timing resolution vs. the minimum light yield for BCF92 or BCF9929A, Y-11, and YS4-MJ
ey fibers. Each point is a separate cosmic ray measurement.
Position
reSOI Utlon Table 2. Light Yield and Timing For Dillerent Excitation points, 1.5mm diameter, 5.0m or 5.6m fiber, 1x4 cm
(T4_T3 )/2 extrusion profile.
Fiber Type | position along fiber | Avg. LY (SiPM 1) | Avg. LY (S1PM 2) | Timing res. (ns)
l BCF9929A 250/ 500 22.2 22.5 0.70
o 10 B BCFY929A 50 /500 37.9 13.7 0.81
YS5-4 50/ 560 31.1 14.8 (.79
9/28/2023 Jim Freeman FNAL |IPRD2 YS-4 260 / 560 204 31.7 0.54




Improve reflectivity of cladding around extrusion
to improve light yield.

Geant sim to see what is effect of different reflectivity cladding on extrusion
Yucun Xie, UMD. Looking at new materials better than TiO2 for coating the scintillator.

9/28/2023
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Cladding. Light yield vs
reflectivity. Clear that

200

150

improved reflectivity of 100

cladding can have big
effect on LY

50

1

/
5*1*20 cm /T
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A= 100cm ]
B ) — |
_ Extrusion Geant simulation |

90 95 100

Cladding reflectivity %
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Wrapper.

Measurement of LY for different
wrappers around extrusion. Can make
big improvement.

Table 5. Light yield relative to TiO; co-extruded cladding

Wrapper Relative Light Yield
Ti0; coextruded cladding 1.0
Tyvek 1.08
ESR .46
Black wrapper 0.24
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Neutron scintillator: Use injection molding process to
study making cheap neutron-sensitive scint. Study using
polycarbonate base for improved radiation hardness.

* FNAL, LLNL, Erciyes University (Kayseri, Turkey), Beykent University (Istanbul)
* https://www.sciencedirect.com/science/article/pii/S0168900211021395

* n-scint uses slow response to neutrons to separate gamma-neutron by pulse shape

Plot: Qtail/Qtotal — fraction of pulse in tail of pulse

*High concentrations (>20%) of fluorescent dyes increases fraction of delayed light
0.5
| 30% PPO

504} . 15% PPO neutrons
0,

6 03l 1% PPO ! I

S 0.2} - m -

0“»——-” Y red
0 2 ’-.‘.

11111111111

0 100 200 300 400 500 0O 100 200 300 400 500 0 100 200 300 400 500 600
Energy [keVee]

N. Zaitseva et. al., Nucl. Instrum. Meth. A., 668 (2012) 88.
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https://www.sciencedirect.com/science/article/pii/S0168900211021395

New type of scintillator using long Stokes Shift qguantum dots

Polystyrene/PT base. Use in Dual readout calorimetry. Use long stokes shift to move scint light to
long wavelength. Use QD decay time to help with C/S separation. Collaboration with CapeSym, Inc.

FNAL sample#2 PS/PT/QD

Intensity (a.u.)
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Figure 2 | Fluorescence decay behavior. Fluorescence decay behavior of
typical organic fluorophores (mono-exponential, lifetimes of 1.5 ns (Cy5)
and 3.6 ns (Nile Red)) in comparison to a typical QD (CdSe/ZnS, multi-
exponential, mean lifetime (7, ) of 10.3 ns).

https://pubs.acs.org/doi/10.1021/acsami.7b19144

Stokes-Shift-Engineered Indium Phosphide
Quantum Dots for Efficient Luminescent Solar
Concentrators 31
*Sadra Sadeghi


https://pubs.acs.org/doi/10.1021/acsami.7b19144

EGP Explore Great Pyramid The EGP Collaboration

Alan D. Bross'®, E.Craig Dukes?, Sophie Dukes®, Ralf Ehrlich?, Mohamed Gobashy*, Ishbel
Jamieson®, Patrick J La Riviére®, Mira Liu®, Gregory Marouard’, Nadine Moeller’, Anna
Pla-Dalmau’, Paul Rubinov', Omar Shohoud® and Tabitha Welch®

! Fermi National Accelerator Laboratory, PO. Box 500, Batavia, IL, USA
2 Physics Department, University of Virginia, Charlottesville, VA, USA
3 Virginia Tech University, Blacksburg, VA, USA
*Geophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
° Department of Physics, University of Oxford, Oxford, UK
% Department of Radiology, University of Chicago, Chicago, IL USA
artment of Near Eastern Languages & Civilizations Yale University, New Haven, CT USA

®Department of Physics, University of Chicago, Chicago, IL USA

data in yz plane at x=7m

Shipping Container HVAC unit

2{m]

Vertical modules

1

Left bank
Rear array

Right bank
Front array

2x2 array of shipping containers
with 4 planes of triangular
scintillator extrusions in each
container. Each plane “3mx12m
~10 tons for total experiment.

Left: GEANT model of Great Pyramid. Right: simulated results of 3 year run.
4 container array moved to adjacent white region every 2 months.
36 regions = 18 * 2 = 36 month run. Anticipate 100X increased sensitivity to ScanPyramid
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Ssummary

* Organic plastic scintillator very versatile and robust.
* It can be used in many applications.

* Fermilab has lots of resources and experience making scintillator for
wide diversity of applications.

* We have interesting R&D and future programs plans.
* We are ALWAYS looking for new collaborators to work with.
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