
HEP-CCE

Results from the High Energy Physics

Center for Computational Excellence

and Future Plans

HSF HCAF
June 14, 2023

Charles Leggett and Peter van Gemmeren for HEP-CCE

HEP-CCEWhat is HEP-CCE?
Three-year (2020-2023) pilot project

● Develop practical solutions to port hundreds of kernels
to multiple platforms

● Collaborate with HPC & networking communities on
data-intensive use cases

1. PPS: Portable parallelization strategies
● exploit massive concurrency
● portability requirements

2. IOS: HEP I/O and HPC storage issues
● new data models (memcpy-able, SOA,...)
● fine-grained I/O, workflow instrumentation

3. EG: Optimizing event generators
4. CW: Complex workflows on HPCs

Open collaboration
https://indico.fnal.gov/category/1053/

https://www.anl.gov/hep-cce

Four US labs, six experiments, ~12 FTE over ~35 collaborators.
PI: Salman Habib (ANL), Co-PI: Paolo Calafiura (LBNL)

2

https://indico.fnal.gov/category/1053/
https://www.anl.gov/hep-cce

HEP-CCE

CUDA Kokkos SYCL HIP OpenMP alpaka std::par

NVIDIA
GPU

codeplay hipcc nvc++

AMD GPU hipSYCL hipcc

Intel GPU oneAPI oneAPI:dpl

x86 CPU oneAPI gcc

FPGA

3

Portable Parallelization Strategies (PPS)

circa 2019

HEP-CCE

CUDA Kokkos SYCL HIP OpenMP alpaka std::par

NVIDIA
GPU hipcc

nvc++
LLVM, Cray

GCC, XL
nvc++

AMD GPU openSYCL
intel/llvm hipcc

AOMP
LLVM
Cray

Intel GPU oneAPI
intel/llvm

CHIP-SPV:
early prototype

Intel OneAPI
compiler prototype oneapi::dpl

x86 CPU
oneAPI

intel/llvm
openSYCL

via HIP-CPU
Runtime

nvc++
LLVM, CCE,

GCC, XL

FPGA via Xilinx
Runtime

prototype
compilers

(OpenArc, Intel,
etc.)

protytype via
 SYCL

4

Portable Parallelization Strategies (PPS)

circa today

HEP-CCEPortable Parallelization Strategies
Ported representative testbeds from ATLAS, CMS and DUNE to each portability
layer.

Evaluated each porting experience according to a number of different objective
and subjective metrics.

5

Kokkos SYCL OpenMP Alpaka std::par

Patatrack Done Done* WIP Done* Done
compiler bugs

Wirecell Done Done Done no Done

FastCaloSim Done Done Done Done Done

P2R done Done OpenACC Done Done

HEP-CCEMetrics

● Ease of Learning
● Code conversion

○ From CPU to GPU and between
different APIs

● Extent of modifications to existing code
○ Control of main,

threading/execution model
● Extent of modifications to the Data

Model
● Extent of modifications to the build

system
● Hardware Mapping

○ Current and promised future
support of hardware

6

● Feature Availability
● Interoperability

○ Interaction with external libraries,
thread pools, C++ standards

● Address needs of large and small
workflows

● Long term sustainability and code
stability
○ Backward/forward compatibility of

API and e.g. CUDA
● Compilation time
● Run time/Performance
● Ease of Debugging
● Aesthetics

HEP-CCEHEP Testbeds
FastCaloSim
● ATLAS parametrized LAr calorimeter simulation
● 3 simple kernels (large workspace reset, main simulation, stream compaction)
● 1-D and 2-D jagged arrays
● small data transfer d->h at end of each event

Patatrack
● CMS pixel detector reconstruction
● 40 kernels of varying complexity and lengths (many are short)

○ good test for latency, concurrency, asynchronous execution, memory pools

Wirecell Toolkit
● LArTPC signal simulation
● 3 kernels: rasterization, scatter-add, FFT convolution

p2r
● CMS "propagate-to-r" track reconstruction in a single kernel

7

HEP-CCEKokkos
● Higher level of abstraction than CUDA
● Requires explicit initialization and finalization of runtime
● Separate compilation of library for different backends and features

○ implications for code distribution
● Can mix and match native and Kokkos kernels in same application

● Good performance for simple and long running kernels
○ hides overheads from initialization of data structures and kernel launches

● No native support for jagged arrays
● Concurrent kernels only with CUDA backend and CUDA specific features

○ concurrent calls to serial backend safe, but not efficient
● No common API to vendor optimized FFT, RNG (though some built-in)
● Poor interoperability with external concurrency mechanisms and thread pools

(eg TBB)

● Very good developer support

8

HEP-CCEAlpaka
● Verbose API, sparse documentation, steep learning curve

○ responsive and helpful developers
● very small user community
● Need either to wrap kernels in callable objects or to use lambdas, heavy use

of typedefs
○ compiler error messages hard to decipher

● For memory transfers between host and device one can use either alpaka
buffers (takes ownership of the allocation) or alpaka views (to copy already
allocated memory)
○ Our attempts to use alpaka views inside FastCaloSim led to random crashes
○ Patatrack didn't have these issues

● Extensive configurability with CMake
● Can mix in native kernels and libraries in same application
● Performance comparable to native

9

HEP-CCESYCL
● Requires different compilers for different backends

○ oneAPI (Intel), llvm/sycl (Intel,NVIDIA,AMD), openSYCL (Intel,NVIDIA,AMD)
● Simplified code design as associates data dependencies with kernels for

automatic data migration
○ can get better performance with explicit transfers

● No current support for concurrent kernels with any backend
○ though in theory supported by the standard

● Good interoperability with external concurrency layers like TBB, OMP, MPI

● Mostly seamless integration with build systems

● Near native performance (cf CUDA / HIP)

● Strongly supported by Intel

10

HEP-CCEOpenMP Target Offload
● Widest difference of opinion in people's porting experience

○ some found it very easy to change serial code
○ some experienced large challenges

● Significant variation between performance characteristics of different
compilers
○ compiler options
○ tuning of threads/teams

● Specialized operations unsupported (scan, memset) or much less performant
(atomics) than CUDA

● Documentation is sparse, especially for more advanced features
● Debugging and profiling very challenging due to extra OpenMP code

infrastructure and architecture-specific plugins loaded at initialization

11

HEP-CCEstd::par / nvc++
● Pure C++ - no learning curve (beyond using STL algorithms)

○ slightly convoluted indexed container access with C++17
● Not equivalent to CUDA/SYCL/Kokkos

○ no low level controls
○ not intended to be a CUDA replacement - rather a stepping stone to parallelism

● Support for NVIDIA GPUs (nvc++), Intel GPUs (oneAPI::dpl), and multicore
CPUs (nvc++, g++)

● nvc++ is still immature
○ bugs (can't compile ROOT yet)
○ need workarounds to compile parts of projects w/ g++, parts with nvc++
○ any offloaded data must be allocated by code compiled with nvc++
○ compilation much slower than g++
○ unusual memory transfer speeds from AMD CPUs

● Very good performance for longer kernels that translate well into Thrust

● Path towards C++ standards based implementation of GPU offloading
○ C++26 std::exec (schedulers, senders, receivers), etc

12

HEP-CCEPortable Parallelization Strategies: Recommendations
Software and hardware are still rapidly changing
● Lots of interactions with API developers in hackathons and to fix bugs
● Results remain preliminary

API recommendations are very application dependent
● All perform approximately equally for simple kernels
● Complex algorithms and chained kernels bring out weaknesses of all APIs

○ interaction with external libraries adds extra complexities
○ even compilation can be an issue

Learning curve / language complexity of APIs not all the same
● std::par → OMP → Kokkos / SYCL → alpaka → OMP
● subjective and dependent on code complexity and previous experience

Porting from Serial CPU code → GPU concepts is the biggest hurdle
● starting with optimized code is extra challenging

Very hard to extrapolate to next five years or beyond
● Vendors are pushing in different directions (but towards standards)
● Increasing proximity of CPU / GPU / memory will have significant impact

13

HEP-CCE

Event Generators

14

HEP-CCEPepper: A New Leading-Order Matrix Element Integrator

New LO generator developed from the ground up for
parallel architectures [alg-paper]
● Strong performance for CUDA over a wide range of

processes

HEP-CCE facilitating portability via Kokkos port of
the algorithm with excellent results on multiple
modern hardware

15

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.014024

HEP-CCEMadGraph: Portable MadEvent

● Working with a team of developers from CERN and UCLouvain on a GPU version of the
LO MadEvent generator with Matrix Element (ME) calculations ported to Kokkos/SYCL

● HEP-CCE developed Kokkos version and took over the Sycl version
● Kokkos and SYCL have enabled running on a broad variety of architectures including

multicore CPUs, AMD and NVIDIA GPUs, and new Intel GPUs on Sunspot (Aurora)
including oversubscription models, with good performance characteristics (now)

16

MadEvent with Sycl Plugin
running on Polaris & Sunspot

HEP-CCENext Steps for HEP-CCE in EvGen
● Generally would like to move on to NLO event generation on GPUs
● There are several challenges with this:

○ some technical:
■ often NLO libraries require quad precision (not supported on GPUs, in fact AI pushing

16- and 8-bit precision)
■ NLO algorithms are very divergent (not GPU friendly)

○ some political:
■ loop libraries are developed by non-DOE, non-US collaborations
■ Newly awarded SciDAC includes porting the only (?) NLO code, MCFM, where the

developer is US-based (and DOE-based).

● Some options for moving forward:
○ Continue work with MadGraph (CERN+UCLouvain) group who are discussing

porting one (Ninja) of the four loops libraries MadGraph is compatible with.
○ Complementary to the MCFM port would be making a GPU version of Pythia for

showering, benefits are Pythia devs are US+DOE based.

17

HEP-CCE

Complex Workflows

18

HEP-CCE

● HEP has many workflow technologies, serving specific
use-cases, that are monolithic, and difficult to extend

● Performance on leadership platforms is complex even
for simple workflows; HPC workflows will become more
important, but increasingly harder

● Opportunity to harmonize use of experiment-agnostic
components, integrable solutions for extensibility and
modularity on leadership platforms.

● HEP-CCE workflows group (including workflows and
experiments) identified common challenges and
prototyped cross-workflow approaches
○ Interoperability between workflow systems
○ Common task graph representation
○ Streamlined remote execution
○ Diverse monitoring information

19

Graph showing dependencies between task types for
Rubin image processing. red operate on CCD-visits, blue
tasks on patches, and purple on both.

HEP Experiments require HPC workflows

Rubin LSST image processing
workflow

HEP-CCE

Plans for CCE-2

20

The following are tentative ideas

We are seeking community input for
directions to go and challenges to explore

HEP-CCEApplying Lessons Learned by PPS
Work with experiments to develop tailored recommendations
● experiment size, resources and timescale
● existing code and libraries
● data and data structures

Develop experiment-agnostic algorithm examples
● cookbooks - if "scenario == this"; then do "that"
● training examples

Develop pre-packaged mini-apps for ASCR facility testing and next gen planning
● could integrate into HEP benchmarks like SPECHPC or HEPScore
● ability to influence design and parameters of next gen facilities

Continue monitoring evolving hardware and software
● landscape is still changing rapidly - evolutionary or revolutionary?
● use testbeds/mini-apps to track changes

21

HEP-CCEFrom Portable Applications to Portable Workflows
Increasing use of HPCs and HTCs in our computing workflows
● very challenging to integrate
● each platform is almost a one-off

Need to develop tools, services and policies to homogenize and simplify this
process
● identity management
● software delivery and container management
● computing and storage resource brokering with focus on resource availability

and overall throughput
● scalable, distributed execution engines (Dask, HPX, etc)

○ FaaS (funcX / parsl), Inference as a service (Sonic / Triton)
● data cataloging, delivery and access (xrootd, Globus, rucio)
● edge services

○ pilot submission (Harvester), remote logging and reporting, database access

22

HEP-CCEMachine Language Training for HEP
Current training times for ML models like anomaly detection, pattern rec, detector
simulation require enormous resources
● multiple days to train
● large datasets, huge memory requirements

Future models are orders of magnitude more resource intensive
● PB training data, TB of memory, thousands of hours to train

Similarly to CCE/PPS, identify and develop suitable scalable training solutions for
HEP applications
● evaluate performance for HEP applications of distributed data-parallel ML

training components
○ PyTorch DistributeDataParallel
○ Tensorflow MultiWorkerMirroredStrategy

● optimizing tools
○ Horovod, Raytune,
○ HEP-developed iDDS

23

HEP-CCE

à continuer...

24

This work was supported by the U.S. Department of Energy, Office of Science, Office of High
Energy Physics, High Energy Physics Center for Computational Excellence (HEP-CCE). This
research used resources at Argonne Leadership Computing Facility, NERSC and BNL Scientific
Data and Computing Center.

