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HEP-CCEWhat is HEP-CCE?
Three-year (2020-2023) pilot project

● Develop practical solutions to port hundreds of kernels 
to multiple platforms

● Collaborate with HPC & networking communities  on 
data-intensive use cases

1. PPS: Portable parallelization strategies 
● exploit massive concurrency
● portability requirements

2. IOS: HEP I/O and HPC storage issues
● new data models (memcpy-able, SOA,...)
● fine-grained I/O, workflow instrumentation

3. EG: Optimizing event generators
4. CW: Complex workflows on HPCs

Open collaboration
https://indico.fnal.gov/category/1053/

https://www.anl.gov/hep-cce

Four US labs, six experiments, ~12 FTE over ~35 collaborators. 
PI: Salman Habib (ANL), Co-PI: Paolo Calafiura (LBNL)
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Portable Parallelization Strategies (PPS)

circa 2019



HEP-CCE
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Portable Parallelization Strategies (PPS)

circa today



HEP-CCEPortable Parallelization Strategies
Ported representative testbeds from ATLAS, CMS and DUNE to each portability 
layer.

Evaluated each porting experience according to a number of different objective 
and subjective metrics. 
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Kokkos SYCL OpenMP Alpaka std::par

Patatrack Done Done* WIP Done* Done 
compiler bugs

Wirecell Done Done Done no Done

FastCaloSim Done Done Done Done Done

P2R done Done OpenACC Done Done



HEP-CCEMetrics

● Ease of Learning
● Code conversion

○ From CPU to GPU and between 
different APIs

● Extent of modifications to existing code
○ Control of main, 

threading/execution model
● Extent of modifications to the Data 

Model
● Extent of modifications to the build 

system
● Hardware Mapping

○ Current and promised future 
support of hardware
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● Feature Availability
● Interoperability

○ Interaction with external libraries, 
thread pools, C++ standards

● Address needs of large and small 
workflows

● Long term sustainability and code 
stability
○ Backward/forward compatibility of 

API and e.g. CUDA
● Compilation time
● Run time/Performance
● Ease of Debugging
● Aesthetics



HEP-CCEHEP Testbeds
FastCaloSim
● ATLAS parametrized LAr calorimeter simulation
● 3 simple kernels (large workspace reset, main simulation, stream compaction)
● 1-D and 2-D jagged arrays
● small data transfer d->h at end of each event

Patatrack
● CMS pixel detector reconstruction
● 40 kernels of varying complexity and lengths (many are short)

○ good test for latency, concurrency, asynchronous execution, memory pools

Wirecell Toolkit
● LArTPC signal simulation
● 3 kernels: rasterization, scatter-add, FFT convolution

p2r
● CMS "propagate-to-r" track reconstruction in a single kernel
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HEP-CCEKokkos
● Higher level of abstraction than CUDA
● Requires explicit initialization and finalization of runtime
● Separate compilation of library for different backends and features

○ implications for code distribution
● Can mix and match native and Kokkos kernels in same application

● Good performance for simple and long running kernels
○ hides overheads from initialization of data structures and kernel launches

● No native support for jagged arrays
● Concurrent kernels only with CUDA backend and CUDA specific features

○ concurrent calls to serial backend safe, but not efficient
● No common API to vendor optimized FFT, RNG (though some built-in)
● Poor interoperability with external concurrency mechanisms and thread pools 

(eg TBB)

● Very good developer support
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HEP-CCEAlpaka
● Verbose API, sparse documentation, steep learning curve

○ responsive and helpful developers
● very small user community
● Need either to wrap kernels in callable objects or to use lambdas, heavy use 

of typedefs
○ compiler error messages hard to decipher

● For memory transfers between host and device one can use either alpaka 
buffers (takes ownership of the allocation) or alpaka views (to copy already 
allocated memory)
○ Our attempts to use alpaka views inside FastCaloSim led to random crashes
○ Patatrack didn't have these issues

● Extensive configurability with CMake
● Can mix in native kernels and libraries in same application
● Performance comparable to native
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HEP-CCESYCL
● Requires different compilers for different backends

○ oneAPI (Intel), llvm/sycl (Intel,NVIDIA,AMD), openSYCL (Intel,NVIDIA,AMD)
● Simplified code design as associates data dependencies with kernels for 

automatic data migration
○ can get better performance with explicit transfers

● No current support for concurrent kernels with any backend
○ though in theory supported by the standard

● Good interoperability with external concurrency layers like TBB, OMP, MPI

● Mostly seamless integration with build systems

● Near native performance (cf CUDA / HIP)

● Strongly supported by Intel
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HEP-CCEOpenMP Target Offload
● Widest difference of opinion in people's porting experience

○ some found it very easy to change serial code
○ some experienced large challenges

● Significant variation between performance characteristics of different 
compilers
○ compiler options
○ tuning of threads/teams

● Specialized operations unsupported (scan, memset) or much less performant 
(atomics) than CUDA

● Documentation is sparse, especially for more advanced features
● Debugging and profiling very challenging due to extra OpenMP code 

infrastructure and architecture-specific plugins loaded at initialization 

11



HEP-CCEstd::par / nvc++
● Pure C++ - no learning curve (beyond using STL algorithms)

○ slightly convoluted indexed container access with C++17
● Not equivalent to CUDA/SYCL/Kokkos

○ no low level controls
○ not intended to be a CUDA replacement - rather a stepping stone to parallelism

● Support for NVIDIA GPUs (nvc++), Intel GPUs (oneAPI::dpl), and multicore 
CPUs (nvc++, g++)

● nvc++ is still immature
○ bugs (can't compile ROOT yet)
○ need workarounds to compile parts of projects w/ g++, parts with nvc++
○ any offloaded data must be allocated by code compiled with nvc++
○ compilation much slower than g++
○ unusual memory transfer speeds from AMD CPUs

● Very good performance for longer kernels that translate well into Thrust

● Path towards C++ standards based implementation of GPU offloading
○ C++26 std::exec (schedulers, senders, receivers), etc
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HEP-CCEPortable Parallelization Strategies: Recommendations
Software and hardware are still rapidly changing
● Lots of interactions with API developers in hackathons and to fix bugs
● Results remain preliminary

API recommendations are very application dependent
● All perform approximately equally for simple kernels
● Complex algorithms and chained kernels bring out weaknesses of all APIs

○ interaction with external libraries adds extra complexities
○ even compilation can be an issue

Learning curve / language complexity of APIs not all the same
● std::par → OMP → Kokkos / SYCL → alpaka → OMP
● subjective and dependent on code complexity and previous experience

Porting from Serial CPU code → GPU concepts is the biggest hurdle
● starting with optimized code is extra challenging

Very hard to extrapolate to next five years or beyond
● Vendors are pushing in different directions (but towards standards)
● Increasing proximity of CPU / GPU / memory will have significant impact
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HEP-CCE

Event Generators
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HEP-CCEPepper: A New Leading-Order Matrix Element Integrator

New LO generator developed from the ground up for 
parallel architectures [alg-paper]
● Strong performance for CUDA over a wide range of 

processes

HEP-CCE facilitating portability via Kokkos port of 
the algorithm with excellent results on multiple 
modern hardware
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.014024


HEP-CCEMadGraph: Portable MadEvent

● Working with a team of developers from CERN and UCLouvain on a GPU version of the 
LO MadEvent generator with Matrix Element (ME) calculations ported to Kokkos/SYCL

● HEP-CCE developed Kokkos version and took over the Sycl version
● Kokkos and SYCL have enabled running on a broad variety of architectures including 

multicore CPUs, AMD and NVIDIA GPUs, and new Intel GPUs on Sunspot (Aurora) 
including oversubscription models, with good performance characteristics (now)
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MadEvent with Sycl Plugin
running on Polaris & Sunspot



HEP-CCENext Steps for HEP-CCE in EvGen
● Generally would like to move on to NLO event generation on GPUs
● There are several challenges with this:

○ some technical:
■ often NLO libraries require quad precision (not supported on GPUs, in fact AI pushing 

16- and 8-bit precision)
■ NLO algorithms are very divergent (not GPU friendly)

○ some political:
■ loop libraries are developed by non-DOE, non-US collaborations
■ Newly awarded SciDAC includes porting the only (?) NLO code, MCFM, where the 

developer is US-based (and DOE-based).

● Some options for moving forward:
○ Continue work with MadGraph (CERN+UCLouvain) group who are discussing 

porting one (Ninja) of the four loops libraries MadGraph is compatible with.
○ Complementary to the MCFM port would be making a GPU version of Pythia for 

showering, benefits are Pythia devs are US+DOE based.
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HEP-CCE

Complex Workflows
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HEP-CCE

● HEP has many workflow technologies, serving specific 
use-cases, that are monolithic, and difficult to extend

● Performance on leadership platforms is complex even 
for simple workflows; HPC workflows will become more 
important, but increasingly harder

● Opportunity to harmonize use of experiment-agnostic 
components, integrable solutions for extensibility and 
modularity on leadership platforms.

● HEP-CCE workflows group (including workflows and 
experiments) identified common challenges and 
prototyped cross-workflow approaches
○ Interoperability between workflow systems
○ Common task graph representation
○ Streamlined remote execution
○ Diverse monitoring information
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Graph showing dependencies between task types for 
Rubin image processing. red operate on CCD-visits, blue 
tasks on patches, and purple on both.

HEP Experiments require HPC workflows

Rubin LSST image processing 
workflow



HEP-CCE

Plans for CCE-2
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The following are tentative ideas

We are seeking community input for 
directions to go and challenges to explore



HEP-CCEApplying Lessons Learned by PPS
Work with experiments to develop tailored recommendations
● experiment size, resources and timescale
● existing code and libraries
● data and data structures

Develop experiment-agnostic algorithm examples
● cookbooks - if "scenario == this"; then do "that"
● training examples

Develop pre-packaged mini-apps for ASCR facility testing and next gen planning
● could integrate into HEP benchmarks like SPECHPC or HEPScore
● ability to influence design and parameters of next gen facilities

Continue monitoring evolving hardware and software
● landscape is still changing rapidly - evolutionary or revolutionary?
● use testbeds/mini-apps to track changes
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HEP-CCEFrom Portable Applications to Portable Workflows
Increasing use of HPCs and HTCs in our computing workflows
● very challenging to integrate
● each platform is almost a one-off

Need to develop tools, services and policies to homogenize and simplify this 
process
● identity management
● software delivery and container management
● computing and storage resource brokering with focus on resource availability 

and overall throughput
● scalable, distributed execution engines (Dask, HPX, etc)

○ FaaS (funcX / parsl), Inference as a service (Sonic / Triton)
● data cataloging, delivery and access (xrootd, Globus, rucio)
● edge services

○ pilot submission (Harvester), remote logging and reporting, database access

22



HEP-CCEMachine Language Training for HEP
Current training times for ML models like anomaly detection, pattern rec, detector 
simulation require enormous resources
● multiple days to train
● large datasets, huge memory requirements

Future models are orders of magnitude more resource intensive
● PB training data, TB of memory, thousands of hours to train

Similarly to CCE/PPS, identify and develop suitable scalable training solutions for 
HEP applications
● evaluate performance for HEP applications of distributed data-parallel ML 

training components
○ PyTorch DistributeDataParallel
○ Tensorflow MultiWorkerMirroredStrategy

● optimizing tools
○ Horovod, Raytune, 
○ HEP-developed iDDS
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HEP-CCE

à continuer...
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