&) ®

>~ ALICE

The O2 software framework and GPU
usage in ALICE online and offline
reconstruction in Run 3

David Rohr, Giulio Eulisse for the ALICE Collaboration
CERN Compute Accelerator Forum
12.7.2023
drohr@cern.ch
%

mailto:drohr@cern.ch

ALICE DATA TAKING /
PROCESSING CONCEPT

mailto:drohr@cern.ch

ALICE in Run 3

Targeting to record large minimum bias sample.

- All collisions stored for main detectors = no trigger
- Continuous readout - data in drift detectors overlap
- Recording time frames of contlnuousd ta, ir

- 100x more collisions, much more da

- Overlapping events in TPC with realistic bunch" structure @ 50 kHz Pb-Pb.
- Timeframe of 2 ms shown (will be 10 — 20 ms in production).
- Tracks of different collisions shown in different colors.

12.7.2023 David Rohr,

mailto:drohr@cern.ch

The ALICE detector in Run 3

ALICE uses mainly 3 detectors for barrel tracking: ITS, TPC, TRD + (TOF)
7 layers ITS (Inner Tracking System — silicon tracker)
152 pad rows TPC (Time Projection Chamber)

6 layers TRD (Transition Radiation Detector)
1 layer TOF (Time Of Flight Detector)

ALICE performs continuous readout.

Native data unit is a time frame: all data from
a configurable period of data up to 256 LHC orbits.

Default was ~11 ms (128 LHC orbits) before 2023.
Current default is ~2.8 ms (32 LHC orbits)

12.7.2023 David Rohr, drohr@cern.ch

mailto:drohr@cern.ch

ALICE Raw Data Flow in Run 3

ALICE

O%FLP
(First Level Processors)
~200 2-socket Dell R740
up to 3 CRU per FLP

Zero suppression
in FPGA

=38 TB/s

Central Trigger Processor
Distribution of timing info, heartbeat trigger

David Rohr, drohr@cern.ch 4

mailto:drohr@cern.ch

ALICE Raw Data Flow in Run 3

== GPU computing O%EPN
e = o (Event Processing Nodes)
’
O?FLP -~ b ~2000 GPU & CPU
evel Processors) [ig /. ~900 GB/s e~ -
00 2-socket Dell R740 i i T ; = i .
D to RU pe P = = //,);
\ 1 - = 7 /M//IM“
Zero suppression] L 2 — - ‘ !
in FPGA X e 5. I ~
A o ! = /, \
3.5TB/s 1. a8 7 <
H@nw :1 N
Sae—| | S
S —— = 3 A‘ — i \
e | FLPs EPNs
¥ T, ',.L_}
oms el Infiniband
= A | TS ‘
=
e a gger Processo
D pution o g 0 eartbea gge

12.7. David Rohr, drohr@cern.ch 5

mailto:drohr@cern.ch

ALICE Raw Data Flow in Run 3

= GPU computing O/EPN
L e = o (Event Processing Nodes)
O?FLP - = ~2000 GPU & CPU
evel Processors) [Egi /. ~900 GB/s SR .
0]0 O et Dell R740) \ ~ o7
», A » P S c C c 0 0 s ;’,»7 I . .
P P \ : Wiy T il Majority of
< ” ;= processing in the
Z i ' -/ [m - EPN farm
ero suppression L — ‘ ‘
in FPGA 3 : ju \\ # &
~3.5 TBI/s = | e ~130 GB/s
(- O o0 O pre ed E i c
B no] S
O ‘. : S allpration adata disk storage, 360GB/s
== T RO . | | N (~25% redundancy)
Sl | FLPs EPNs
e Infiniband
! i 45 | [3]
o o 'il\j\]
1 |

R
o
e

D, pution o 0 0 eartbea gge
David Rohr, drohr@cern.ch

12.7.

mailto:drohr@cern.ch

Synchronous and Asynchronous Processing

Data links from detectors

= =

Readout nodes

Run 3 farm

- Event / timeframe building
- Calibration / reconstruction

=

Synchronous processing
- Local processing

<900 GB/s

3.5TB/s

ng

Disk buffer
= =

Asynchronous processing
Reprocessing with full

1
Data Lkng

Du

~ 130 GB/s

i\

calibration
Full reconstruction

1

Reconstructed Datav

12.7.2023

During
no beam

Compressed

\~ Raw Data
Permanent storage

David Rohr, drohr@cern.ch

GPU computing

O?/EPN

(Event Processing Nodes)
~2000 GPU & CPU

~130 GB/s

CTF: Comressed time frames

Calibration data

disk storage, 360GB/s
(~25% redundancy)

mailto:drohr@cern.ch

Synchronous and Asynchronous Processing

GPU computing O%EPN

. (Event Processing Nodes)
Data links from detectors 3.5 TB/s ~2000 GPU & CPU
— S = ;??"
Readout nodes [T .
<900 GB/s = =
ONn~o proce O g’ -
ocal proce g g’% ‘
e eframe bullding P ‘g ;
alibratio eco 0 03 CCDB
E o conditions)
ch ~ 130 GB/ database
™ D D 0 \ Calibration data disk storage, 360GB/s
g R (~25% redundancy)
o £
. eln2 lraltets 2 }c»—@/ Asynchronous
Reproce v 5 0 processing
alipratio ()] g
eCOo O

— Compressed
Reconstructed Datav \/ Raw Data @
Permanent storage N - s <

Analysis Facilities

12.7.2023 David Rohr, drohr@cern.ch 8

mailto:drohr@cern.ch

02 Processing steps

Particle Track
« Synchronous processing (what we called online before): Needs tracking of |
« Extract information for detector calibration: 1% of tracks
— Previously performed in 2 offline passes over the data after the data taking
— Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing
— Anintermediate step between sync. and async. processing produces the final calibration objects__—
— The most complicated calibration is the correction for the TPC space charge distortions :

Cathode ~~ |

12.7.2023 David Rohr, drohr@cern.ch 9

mailto:drohr@cern.ch

02 Processing steps

Particle Track
« Synchronous processing (what we called online before): Needs tracking of e
- Extract information for detector calibration: 1% of tracks -4 AR
— Previously performed in 2 offline passes over the data after the data taking ,,‘" 0 :% i
— Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing | L %
— Anintermediate step between sync. and async. processing produces the final calibration objects__— | : g
— The most complicated calibration is the correction for the TPC space charge distortions :
+ Data compression: < Lol disorions
— TPC is the largest contributor of raw data, and we employ sophisticated algorithms like S :\ A
storing space point coordinates as residuals to tracks to reduce the entropy and remove 5 — —
hits not attached to physics tracks I Forveardranstomegign -~ Rows
— We use ANS entropy encoding for all detectors Needs 100% I __"—[o o
TPC tracking AN, e——
i)

[Track

12.7.2023 David Rohr, drohr@cern.ch 10

mailto:drohr@cern.ch

02 Processing steps

Particle Track
from Collision

* Synchronous processing (what we called online before): Needs tracking of

« Extract information for detector calibration: 1% of tracks
— Previously performed in 2 offline passes over the data after the data taking
— Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing
— Anintermediate step between sync. and async. processing produces the final calibration objects__—
— The most complicated calibration is the correction for the TPC space charge distortions :
+ Data compression:
— TPCis the largest contributor of raw data, and we employ sophisticated algorithms like

Cathode ~~ |

Local distortions

remain
XY, Z /
Clctor

Row, Pad, Time

storing space point coordinates as residuals to tracks to reduce the entropy and remove H ——
hits not attached to physics tracks THYHH Forerd-ransiomgggo >~ Rows
— We use ANS entropy encoding for all detectors Needs 100% ' __"—(‘ R —
B —————— coordinates
- Event reconstruction (tracking, etc.): TPC tracking D e

— Required for calibration, compression, and online quality control
— Need full TPC tracking for data compression

— Need tracking in all detectors for ~1% of the tracks for calibration
- TPC tracking dominant part, rest almost negligible (< 5%)

12.7.2023 David Rohr, drohr@cern.ch 11

mailto:drohr@cern.ch

02 Processing steps

Particle Track

« Synchronous processing (what we called online before): Needs tracking of |
- Extract information for detector calibration: 1% of tracks

— Previously performed in 2 offline passes over the data after the data taking
— Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing

— Anintermediate step between sync. and async. processing produces the final calibration objects _—— |
7
— The most complicated calibration is the correction for the TPC space charge distortions

« Datacompression:

Cathode ~~ |

Local distortions

— TPC is the largest contributor of raw data, and we employ sophisticated algorithms like S P\ A
storing space point coordinates as residuals to tracks to reduce the entropy and remove 5 — —
hits not attached to physics tracks I Forveardranstomegign - £ o
— We use ANS entropy encoding for all detectors Needs 10(_)% ' j Track In distorted
« Event reconstruction (tracking, etc.): TPC tracking Qursomaton ™
— Required for calibration, compression, and online quality control
— Need full TPC tracking for data compression

— Need tracking in all detectors for ~1% of the tracks for calibration
- TPC tracking dominant part, rest almost negligible (< 5%)

« Asynchronous processing (what we called offline before):
. Full reconstruction, full calibration, all detectors
* TPC part faster than in synchronous processing (less hits, no clustering, no compression)
- Different relative importance of GPU / CPU algorithms compared to synchronous processing

12.7.2023 David Rohr, drohr@cern.ch 12

mailto:drohr@cern.ch

0Z. SOFTWARE FRAMEWORK IN ONE SLIDE

» Joint collaboration with FAIR and GSI

Transport Layer: ALFA / FairMQ

ALFA / FAIRMQ: GENERAL IDEA

Device

Data processing happens in separate processes, called devices.

ALFA / FAIRMQ: GENERAL IDEA

@

~

Multiple devices form a topology. Devices exchange messages over so called channels.

ALFA / FAIRMQ: GENERAL IDEA

Certain "expendable" devices are allowed to die without killing the processing.

ALFA / FAIRMQ: GENERAL IDEA

When running on the same node, message passing is actually optimised via the shared memory backend provided by
FairMQ. Only pointers in shared memory are exchanged.

m*ptr

—

Shared Memory

ALFA / FAIRMQ: GENERAL IDEA

Seamless and homogeneous support for multi-node setups using one of the network enabled message passing backends,
e.g. InfiniBand with RDMA.

Em*ptr

Em*ptr
BEEH ——p

Network

Shared Memory

0Z. SOFTWARE FRAMEWORK IN ONE SLIDE

Message passing aware data model. Support for multiple backends:

» Simplified, zero-copy format optimised for performance and direct GPU usage.

Data Layer: 02 Data Model » ROOT based serialisation. Useful for QA and final results.

» Apache Arrow based. Backend of the analysis data model and for integrating with other tools.
» |We contributed the RDataFrame Arrow backend to ROOT.

» Joint collaboration with FAIR and GSI

» Standalone processes (devices) for deployment flexibility & resilience.
Transport Layer: ALFA / FairMQ! > Message passing as a parallelism paradigm

» Shared memory backend for reduced memory usage and improved performance
> Seamless remote communication

10

0Z. SOFTWARE FRAMEWORK IN ONE SLIDE

Hides the hiccups of a distributed system, presenting a familiar "Data Flow" system.
> Reactive-like design (push data, don't pull)
Framework & » Implicit workflow definition via modern (++ API.
Data Processing Layer (DPL) » Core common tasks: topological sort of dependencies, deployment of generated topologies, data lifecycle
handling, service management, common infrastructure services, plug-in manager.
> Integration with the rest of the production system, e.q. Monitoring, Logqging, Control.

Message passing aware data model. Support for multiple backends:

» Simplified, zero-copy format optimised for performance and direct GPU usage.

Data Layer: 02 Data Model » ROOT based serialisation. Useful for QA and final results.

» Apache Arrow based. Backend of the analysis data model and for integrating with other tools.
» |We contributed the RDataFrame Arrow backend to ROOT.

» Joint collaboration with FAIR and GSI

» Standalone processes (devices) for deployment flexibility & resilience
Transport Layer: ALFA / FairMQ! > Message passing as a parallelism paradigm

» Shared memory backend for reduced memory usage and improved performance
> Seamless remote communication

11

0Z DATA PROCESSING LAYER

o User provides a description in
zm= = terms of tasks and physics
quantities.

— e
y

Task2 Eu gl Task3 [JE

0? Data Processing Layer (DPL)
translates the implicit workflow(s)

defined by physicists to an actual

FairMQ topology of devices, injecting - $
readers and merger devices, cevice
completing the topology and taking

care of parallelism & rate limiting.

12

DATA PROCESSING LAYER: BUILDING BLOCK

A DataProcessorSpec defines a pipeline stage as a
building block.

> Specifies inputs and outputs in terms of the 02 Data
Model descriptors.

InputSpec Outputspec
> Provide an implementation of how to act on the inputs

to produce the output. a b

> Advanced user can express possible data or time
parallelism opportunities.

AlgorithmSpec

DataProcessorSpec

13

DATA PROCESSING LAYER: IMPLICIT TOPOLOGY

02 Framework debug GUI

B

ide tree Hide metrics Hide inspector
A \

22002

D
AANN RRRNNNNNNN
il

N

C

(L1 L1 | I

aaaaaaaaaaa
3. 000000

. O W
R T 1) el

Data Processing Lager

Topology is defined implicitly.
Topological sort ensures a viable dataflow is constructed (no cycles!).
Laptop users gets immediate feedback through the debug GUI.
Service APl allows integration with non data flow components (e.q. Control)

02 Framework debug GUI

" Show grid Center Hide tree Hide metrics Hide inspector

Devices Device Inspector

A V¥ Channels

channels: 2

Inputs:
MName Port
from_B_to_D 22002
from_C_to_D 22003
Outputs:
Name Porkt

B
C
D

» Data relayer

L]
inputs/relayed/pending V¥ Select metric ¥ Driver information
min timestamp: @, max Etimestamp: 1529656515244 _ _
> A(41498) Numer of running devices: 4
> B(41499) Bl i ® Play Pause Step
. Workflow options:
» C{41500) [T .
> D(41501) [in| aFloat 2. D0PABE
aDouble 3. 0pPROO
asString foo
aBool true

State stack (depth 1)
#0: RUNNING

02 Framework debug GUI

+ Show grid Center Hide tree Hide metrics Hide inspecktor

Devices Device Inspector

A ¥ Channels

channels: 2

Inputs:

B
C
g Name Port
from_B_to_D 22002
from_C_to_D 22003
D Qutputs:
1l] IlIlIlIlIl1 Name Port
A i » Data relayer
C

4

inputs/relaye V¥V Select metric

V¥ Driver i1nformaktion
min Eimestamp:

Numer of running devices: 4

> A{41498)

» B(41499) Bl i, ® Play Pause Step

> C(41500) m j:::zlow optwns:1

> D(41501) [in| aFloat 2. 000000
aDouble 3.000000
asString foo
aBool true

State stack (depth 1)
#0: RUNNING

02 Framework debug GUI

+ Show grid Center Hide tree Hide metrics Hide inspecktor

Devices

A

g
ARANRARRRNRANNR

B
C
D

:III IIIIIIIIII1

/

C
1

inputs/relayed/pending V¥V Select metric

min Eimestamp: @, max timestamp: 1529656515244

> A(41498)

> B(41499) [~ in
> C{41500) [in|
» D(41501) [in|

Device Inspector

V¥V Channels

channels: 2

Inputs:

MName Port
from_B_to_D 22002
from_C_to_D 22003
Qutputs:

MName Porkt

» Data relayer

V¥ Driver i1nformaktion

Numer of running devices: 4
® Play Pause Step

Workflow opktions:

anint 1

aFloat 2. 000000
aDouble 3.000000
asString foo
aBool true

State stack (depth 1)
#0: RUNNING

+ Show grid Center Hide tree Hide metrics Hide inspector

Devices Device Inspector
A ¥ Channels
B B # channels: 2
E Inputs:
D ARERARRARANNENE Mo Dot
from_B_to_D 22002
from_C_to_D 22003
Qutputs:
a Name Porkt
» Data relayer
Log filter
Log start Erigger
Log stop Erigger
Stop logging INFO ¥ Log level
[10:53:30][INFO] from_C_to_D[@]: in: @ (@ MB) out: @ (@ MB)
[10:53:30][INFO] from_B_to_D[@]: 1n: ©.999001 (0.000131868 MB) out: 0 (0@ MB
[10:53:31][INFO] from_C_to_D[@]: in: @ (@ MB) out: @ (@ MB)
[10:53:31][INFO] from_B_to_D[@]: 1n: @ (@ MB) out: @ (0 MB)
> A(64674) [10:53:32][INFO] from_C_to_D[B]: in: 1 (@.800132 MB) out: © (@ MB)
> B(64675) [10:53:32][INFO] from_B_to_D[B]: in: @ (@ MB) out: 8 (@ MB)
> C(64676) [10:53:33][INFO] from_C_to_D[@]: in: @ (@ MB) out: @ (0@ MB)
> D(64677) [18:53:33][INFO] from_B_to_D[B]: in: 1 (0.000132 MB) out: 0 (@ MB)
[10:53:34][INFO] from_C_to_D[@]: in: @ (@ MB) out: B (0 MB)
[10:53:34][INFO] from_B_to_D[@]: 1n: @ (@ MB) out: @ (0@ MB)
[10:53:35][INFO] from_C_to_D[@]: 1n: @ (@ MB) out: @ (@ MB)
[10:53:35][INFO] from_B_to_D[@]: in: @ (@ MB) out: @ (0@ MB)
[10:53:36][INFO] from_C_to_D[@]: 1n: @ (@ MB) out: @ (@ MB)
[10:53:36][INFO] from_B_to_D[B]: 1n: 1 (0. 000132 MB) oukt: 0 (0 MB)
[10:53:37][INFO] from_C_to_D[@]: 1n: 0,995025 (0.000131343 MB) out: 0 (0 MB
[10:53:371TINFO]1 from B to DI@1: 1n: 1.99005 (0.000262687 MB) out: @ (@ MB)
Workflow options: 18

-—— T e A

02. SYNC RECONSTRUCTION [_—{i—— NUMA

tof -compressed-decoder \\“ =
Domain 1

itstpc-track-matcher_E1

| =N
. I - 4 e

I } A S — |
I MIDRawdaggregator ‘ v'ﬂ‘v/,-. (I
! |] = itskpc-track-matcher_E2

itstpc-track-matcher_E3

itskpc-track-matcher_kE4

| ftd-reconstruckor

mf t-entropy-encoder

Epc-entropy-encoder_EQ

its-stf-decoder_t@

D .

inkternal-dpl-clock readoukt-proxy its-sktf-decoder_k1 ¥ Epc-enktropy-encoder_k1 1tskpc-track-matcher_ES Epc-track-inkerpolation _i: internal-dpl-global-binary-file-sink
! 2 L= = .
| | . "ﬂ:EEEE&; . E — =
e . B I | — =
iks-stf-decoder k2 # tpe-entropy-encoder_t2 itskpoc-track-matcher_ k6 E =
4 _— -] =
. ,‘:-':.- . J m— E
[' =W | c-entropy-encoder_t3 3
‘ C=Ffo = P Py - EE;:
/// ';Ft stf-decoder ‘_‘:,f"! f:" mid-entropy-encoder :
ﬁ = "f#{'{f b, £ der_ta -:" l
T y - poc-entropy-encoder_ .
Epc-tracker_ko o MIDRawDecoder }E"- | = ' 1‘-— .
‘. ’ l-. - ﬁr"-:" ; ___....—-"""" : : Eof —entropy-encoder
r r a— - ﬂ 3 I 7= Cpc-entropy-encoder 5 l
tpoc-tracker_E1l fro-datareader-dpl : . i
. }. 2 — MIDTracker
I t | L Epc-entropy-encoder_E6
n p u Epc-tracker_E2 Eaf-compressar-o - | =

Epc-tracker_E3

N
iy

raw-file-reader

internal-dpl-clock

g .:_YJ-YJ-I 1aYedl

~

its-kracker

Eof-compressed-decoder
MIDRawAggregaktar

!

fEl-reconstruckar

mf t-entropy-encoder

Epc-tracker_EQ

itskpc-track-matcher_EQ

=

—
—

itstpc-track-matcher_E1

Epoc-tracker_El

Y
Epo-tracker_E2

R
. - LY
6 Epc-tracker_E3
|

inkernal-dpl-clock readoukt-proxy

itstpc-track-matcher_E2

itskpc-track-matcher_E3

itskpc-track-matcher_kE4

oy
v

H

internal-dpl-global-binary-file-zink

1 | NUMA
’ | Domain 2

E@-datareader-dpl

[

-of -compressor-0

h

DATA PROCESSING LAYER: INTEGRATION WITH THE CONTROL SYSTEM

Each device runs a finite state machine.

20

DATA PROCESSING LAYER: INTEGRATION WITH THE CONTROL SYSTEM

Control

An external control is responsible to transition states.

21

DATA PROCESSING LAYER: INTEGRATION WITH THE CONTROL SYSTEM

An external control is responsible to transition states. At P2 this is integrated with the Experiment

Control System...
22

DATA PRUCESSING LAYER: INTEGRATION WITH THE CONTROL SYSTEM

Takeaway message:
DPL abstracts away integration

with the control system and
deployment.

An external control is responsible to transition states. At P2 this is integrated with the Experiment

Control System... while on the user laptop or on the grid we have a DPL driver process with such role.
23

0z ASYNC RECONSTRUCTION

W Show grid o/ Show legend Center Hide tree Hide metrics Hide inspector
Workf lows 26 1

Y 021y v iver information
in

ct @ Play Pause Step
n PID: 3103777 - Control port 2027
Wit Frame cost (latency): 3.8(20).0)ms

gpu-reconstruction.ts A

| |

gpu-reconstruction_tt A

"

)

te' State stack (depth 8)

7' S1GCONT all children Debug driver Profile =

20 [—] - —
_

/)

cpv-entropy-decoder
ctp-entropy-decoder
encal-entropy-decoder

gpu-reconstruction_t2 A

1

1: data_queries, 8-187
2: outputmatchers, 187-221

186-entropy-decoder
:to—mtrcpg-d«odor 1824: matcher_variables/e,
V8-entropy-decoder matcher_variables/1,

matcher_varisbles/2,
matcher_variables/3,
matcher_variables/d,
matcher _variasbles/s,
: matcher_variables/6,
: matcher_varisbles/7,
: matcher_variables/s,
: matcher_variasbles/s,
: matcher_varisbles/18,
: matcher_variables/11,
: matcher_varisbles/12,
matcher _variables/13,
matcher_variables/14,
matcher_variables/18,
matcher_variables/16,
: matcher_varisbles/17,
: matcher_varisbles/18,
: matcher_variables/19,
: matcher_variables/28,
: matcher_variables/21,
: matcher_variables/22,
: matcher_varisbles/23,
matcher_variables/24,
matcher_varisbles/28,
matcher _variables/26,
: matcher_variables/27,
matcher_variables/28,
© matcher_variables/29,
: matcher_variables/38,
: matcher_variasbles/31,
: matcher_variables/32,
: matcher_variables/33,
matcher_variables/34,
matcher_variables/3s,
matcher _variasbles/3,
matcher_variables/37,
matcher_variables/3s,
matcher_variasbles/39,
: matcher_variables/48,
: matcher_varisbles/4a1,
: matcher_variables/42,
: matcher_variables/43,
: matcher_varisbles/44,
© matcher_variables/4s,
matcher_varisbles/46,
matcher_variables/47,
matcher_variables/48,
matcher_variables/49,
matcher_variables/Se,
: matcher_variables/s1,
: matcher_variables/s2,
: matcher_variables/s3,
matcher_varisbles/S4,
matcher_variables/ss,

v 1 d-entropy-decoder
1 ts-entropy-decoder
mch-entropy-decoder
wf t-entropy-decoder entropy-deseder
phos-entropy-decoder S A ~
tpc-entropy-decoder_t(

tpc-entropy-decoder_t:

tpc-entropy-decoder_t:

tpc-entropy-decoder_t:

tpc-entropy-decoder_t«
tpc-entropy-decoder_tt //
gpu-reconstruction_te
ke S .
_—— — —

tfid-info-writer
e

LILLLIILI T

mch-cluster-finder_t8 ‘

mch-cluster-finder_ts A

meh-cluster-finder_t2 &

gpu-reconstruction. t2 e
gpu-reconstruction_t3

its-tracker_to internal-dpl-clock ﬁe:m..'.. & internal-dpl-ccdb-backend A [l mid-entropy-decoder MIOF i 1tering qe-task-MID-Digits T Dacacel 1Recal ibrator
its-tracker_ti
: — it | I | .
i
—— -

its-tracker_t3 l
its-tracker_td
its-tracker_tS
its-tracker_té
its-tracker_t7
fts-tracker_t8
Vts-tracker_t9
its-tracker_t10
Vts-tracker_ti1
itstpc-track-matcher |
i tstpe-track-match

qe-task-FTo-RecPoints
itstpe-track-matcher_t
itstpe-track-matcher_|

~track-match
i Estpe-track-matcher. mch-cluster-finder_ts A

itstpe-track-matcher_!
itstpe-track-matcher._! l l
i tstpe-track-matcher.
| txtpe-track-matcher.|
I tatpe-track-matcher_|

mch-cluster-finder_ts &

qe-task-04C-Cel I
:] mch-cluster-finder_ts A
_— =
1 1 o mch-cluster-finder_ts &
= JLaaztannapananey
l—J b mch-cluster=-finder_te &
| e—
= |

wiuiuscer-tincer_t? A

ado=cal ib-basel ine-epn

R

MIOCIusterizer

R

mch-cluster=finder .ty &

{

mch-cluster-finder_t18 A

mchecluster-finder_to
mch-cluster-finder_t1
mch-cluster-finder_t2 mch-cluster-finder_t11 A

mch-cluster-finder_t3
mch-cluster-finder_td
mch-cluster-finder_tS
mch-cluster-finder_té
mchecluster-finder t7
wohecluster-finder_to
moh-cluster-finder_t9
meh-cluster-f inder_t1(
mch-cluster~finder_t1:
trd-global tracking TPc
trd-global tracking_TPe
trd-global tracking_TPe
trd-qlobal tracking. TPc

v € Hide metric selector Metric display style: lines \ /

5860/5868 matching
internal-dpl-clock/arrow-bytes-created
internal-dpl-clock/arrow-bytes-destroyed
internal-dpl-clock/arrow-messages-created

1-dpl-clock
dp age: yed

internal-dpl-clock/arrow-bytes-expired
internal-dpl-clock/shm-of fer-bytes-consumed
internal-dpl-clock/df -sent

nable some metric.

internal-dpl-clock/consumed-timeframes
internal-dpl-clock/cpulsedPercentage
internal-dpl-clock/invel untaryContextwi tches
internal-dpl-clock/voluntaryContextSei tches

251-300
-9

0z ASYNC RECONSTRUCTION

V Show grid o Show legend Center Hide tree Hide metrics Hide inspector

Workf lows 26 '
¥ 93¢y oriver information
in

ct: @Play Pause

Step

‘" PID: 3103777 - Control port 2027
W4 Frame cost (latency): 3.8(203. 8)ms

try
4 -
cpv-entropy-decoder
ctp-entropy-decoder
emcal-entropy-decoder
1dd-entropy-decoder
fte-entropy-decoder
fvh-entropy-decoder
bep i &-entropy-decoder
i ts-entropy-decoder
mch-entropy-decoder
wf t-entropy-decoder
phos-entropy-decoder
tpe-entropy-decoder_ti
tpc-entropy-decoder_t:
tpc-entropy-decoder._ti
tpc-entropy-decoder_t:
tpc-entropy-decoder_t-
tpc-entropy-decoder_t!
gpu-reconstruction_to
gpu-reconstruction_t1
gpu-reconstruction.t2
gpu-reconstruction td
its-tracker_to
its-tracker_t1
its-tracker_t2
its-tracker_t3
its-tracker_t4
its-tracker_tS
its-tracker_té
its-tracker_t7

i ts-tracker_t8
tracker t9

Lo State steck (depth 8)
S1GCONT

itstpe-track-matcher_!
i tstpe-track-matcher |
itstpe-track-matcher_t
itstpc-track-matcher_!
i tstpc-track-matcher.
itstpe-track-matcher_!
i tstpe-track-matcher_t
itstpe-track-matcher_!
| tstpe-track-natcher !
I tstpe-track-matcher_|
i tstpe-track-matcher_t|
i tstpe-track-matcher.
mch-cluster-f inder_t
mch-cluster-finder_t1
mch-cluster-f inder_t2
mch-cluster-finder_t3
mh-cluster-f inder_td
mch-cluster-finder_ts
mch-cluster-f inder_té
mch-cluster-f inder.t?
wchecluster-f inder_to
mh-cluster-finder_t9
mch-cluster-f inder_ti(
mch-cluster-finder_ti:
trd-global tracking.TPe
trd-global tracking_TPc
trd-global tracking_TPe
trd-alobal tracking.TPc

i
5860/5060 matching

Internal-dpl-clock/arrow-bytes-cr

children Debug driver Profile

internal-dpl-clock ﬁeu--—'.
— [

internal-dpl-clock/arrow-bytes-destroyed

dp

age

internsl-dpl-clock/arrow-nessages-destroyed
internal-dpl-clock/arrow-bytes-expired
internal-dpl-clock/shm-of fer-bytes-consumed

internal-dpl-clock/df -sent

internal-dpl-clock/consumed-timeframes
internal-dpl-clock/cpulsedPercentage
internal-dpl-clock/invel untaryContextwi tches
internal-dpl-clock/voluntaryContextSei tches

tfid-info-writer

——

MIOFiltering

/'w-\w " fvb-antropy-deceder
p—) -
e—
cpv-entropy-decoder 'dd-entropy-decoder
A — /__.‘ f | | wf t-entropy-decoder
—— [R T = ——— —— —
et [i g~ [
0-Digits 2do-entropy-decoder 2dc-dig1-reco ics emcal EMCALCe] IRecal ibrator task-EMC-Cells task-OMC-Clusters fve-reconstructor MP-Clusterization ‘mch-entropy-decoder mch-digit-filtering qo-task-MO+-Digits
E —— || = |SS= 2 |=
! = !
mioCluster i zer qe-task-FTo-Reckoints - meh-time-cluster inder =

i

€ Hide metric selector Metric display style:

nable some metric.

tpe-entropy-decoder_t2 A

tpc-entropy-decoder_t3 A

tpc-entropy-decoder_td A

tpc-entropy-decoder_tS A

[s

gpu-reconstructionts A

|]

gpu-reconstruction_tt A
gpu-reconstruction_t2 A
gpu-reconstructiontd A
qe-task-PHS-Clusters 3

mch-cluster-finder_t8 A

itseclusterer &

nét-clusterer A

mch-cluster-finder_t1 &
meh-cluster-findert2 &
mch-cluster-finder_td A

mch-cluster-finder_ts &

HERRRH

mch-cluster-finderts A

e mch-cluster=finder.té &

= |

dgl-.-'--‘:i--m-r-mv'.u a
I—I— HE

mch-cluster-finder_t8 A

A

qe-task-TPC-P10 Qe-task-TPC-Tracks

ToFClusterer

tosk-MIN-Preclusters
Qe-task=TPC-Clusters
|

|

meh-cluster-finder_ts &

mch-cluster-finder_t18 &

meh-cluster-finder_ti1 &

TR

Ty

meractie -

®
b | 200
i gt

Close Convols
B v

@ Attach debugger Profile 03
Offer S

Restart

¥ Remote state

1: data_queries, 8-187

2: cutput_matchers, 187-221

1824: matcher_variables/s, 251-308
1625: matcher_variables/1, 8-8
1026: matcher_varisbles/2, #-0
1027: matcher_varisbles/d, &
1828: matcher_variables/4, 8-8
1029: matcher_varisbles/s, #-0
1839: matcher_variables/6, -8
1631: matcher_varisbles/7, 8-8
1832: matcher_variables/s, -8
1833: matcher_varisbles/s, -8
1034: matcher_variables/10, 8-8
1835: matcher_variables/11, 8-8
1836: matcher_varisbles/12, 8-8
1037: matcher_varisbles/13, -0
matcher_variables/14, -0
matcher_varisbles/1s, 8-8
matcher_varisbles/16, -0
: matcher_varisbles/17, 8-8
: matcher_varisbles/18, 8-0
: matcher_variables/19, 8-8
: matcher_varisbles/26, &-8
: matcher_varisbles/21, -0
: matcher_varisbles/22, 8-8
: matcher_verisbles/23, -0
: matcher_varisbles/24, 8-0
matcher. varisbles/25, -0
matcher_variables/26, 8-0
: matcher_varisbles/27, 8-8
: matcher_varisbles/28, &-8
: matcher_variables/29, 8-8
: matcher_varisbles/38, 8-8
: matcher_varisbles/31, -0
: matcher_varisbles/32, 8-8
: matcher_varisbles/33, &-8
: matcher_varisbles/34, -0
: matcher_varisbles/3s, 8-0
: matcher_variables/3, 8-8
matcher_variables/37, -0
matcher_variables/38, -8
: matcher_varisbles/39, 8-0
: matcher_varisbles/48, 8-8
: matcher_varisbles/d1, 8-8
: matcher_variables/a2, 8-9
: matcher_varisbles/a3, &-8
: matcher_varisbles/4d, -0
: matcher_varisbles/ds, 8-8
: matcher_varisbles/d6, 8-8
: matcher_varisbles/a7, -0
matcher_variables/4s, 8-0
matcher_varisbles/49, 8-0
matcher_variables/se, 8-8
: matcher_varisbles/s1, 8-8
: matcher_varisbles/s2, 8-8
: matcher_variables/s3, 8-8
matcher_varisbles/S4, 8-8
matcher_variables/ss, 8-8

DATA PROCESSING LAYER: EVENT LOOP

The Data Processing Layer (DPL) actually implements the Running state of a Device.

26

DATA PROCESSING LAYER: EVENT LOOP

Update loop time
Run timers

Receive pending
data

No
data complete?

Run user callback
on completed inputs

The (epoll / kqueue based) event loop only wakes up the device when there is something to do, e.g. to handle
incoming data to process using the user provided code.

27

DATA PROCESSING LAYER: PARALLELISM OPPORTUNITIES

Timeframe 2 Timeframe 1

By default, we process inputs asynchronously, where we can have more
than one timeframe in fly at the same time. Horizontal parallelism.

28

DATA PROCESSING LAYER: PARALLELISM OPPORTUNITIES

Data
Processor 1

Pevice 4

Ditferent parts of a given timeframe can be processed in parallel.
Vertical Parallelism.

29

DATA PROCESSING LAYER: RATE LIMITING

Data Data

Data

Processor 1 Processor 2 Processor 3

Device | K il Device 2 B 4l Device 3

Without precautions, timeframes pile up in the input queue of the slowest
device.

30

DATA PROCESSING LAYER: RATE LIMITING

Timeframe 1 Timeframe O
EuE EuEE

©

©

Data

Data
Processor 2

Data
Processor 1

Processor 3

Device | K il Device 2 B 4l Device 3

processed = 0

A back-channel reporting how many timeframes were processed to the source device

is used to limit the number of in-fly timeframes.
31

DATA PROCESSING LAYER: RATE LIMITING

Timeframe 1 Timeframe O
NN T

< <

Data Data
Processor 2 Processor 3

processed = 0

A back-channel reporting how many timeframes were processed to the source device

is used to limit the number of in-fly timeframes.
32

DATA PROCESSING LAYER: RATE LIMITING

Timeframe 1

First device ensures (read - processed) < max-in-fly @

Data Data
Processor 2 Processor 3

processed = 1

A back-channel reporting how many timeframes were processed to the source device

is used to limit the number of in-fly timeframes.
33

DATA PROCESSING LAYER: RATE LIMITING

Timeframe 1

JHFY

Data Data
Processor 2 Processor 3

processed = 1

A back-channel reporting how many timeframes were processed to the source device

is used to limit the number of in-fly timeframes.
34

DATA PROCESSING LAYER: RATE LIMITING

Timeframe 1

First device ensures (allocated - freed) < max-available-memory @

Data Data
Processor 2 Processor 3

freed = 1 GB

Besides the number of timeframes, we have the possibility to rate limit
based on other quantities, e.g. available shared memory.

35

DATA PROCESSING LAYER: PIPELINING

Timeframe 0
[T

Timeframe 1
EEEN a

g

Data
Processor 2

Data
Processor 3

=l Device 3

@*O @Oy N

Pevice 2

Parts of the chain can be faster due to oftloading to GPUs. We can easily increase the
number of downstream devices to increase throughput (at the cost of memory).

36

DATA PROCESSING LAYER: PIPELINING

Data
Processor y

Timeframe 0
EEEN

Device 2
@ \
Timeframe 1 " Device 3
aman _/

Data

Processor 2
"t1 11}

DPL allows to specify pipelining for a given DataProcessors, providing easy parallelisation

of processing.
37

DATA PROCESSING LAYER: MULTIPLEXING

Data Data

Data
Processor 1

Processor 2 Processor 3

Device | BRamn il Device 2 Bame 4 Device 3

1-to-1 mapping between Devices and DataProcessors not mandatory!

38

DATA PROCESSING LAYER: MULTIPLEXING

| Data
Processor 3

Device | sl Device 2

- N

We allow multiple DataProcessors to run cooperatively on the same device. This is
currently ad-hoc, e.g. for digitisation. We are working to have it available in a generic
way for the cases where the extra protections of multiprocessing are not needed.

39

DATA PROCESSING LAYER: FUTURE

We are working to integrate multiplexing and pipelining features to allow
multithreaded execution of (thread safe) data processors.

40

mailto:drohr@cern.ch

GPU usage in ALICE in the past

* ALICE has along history of GPU usage in the online systems, and since 2023 also for offline:

2010
64 * NVIDIAGTX 480 in Run 1

12.7.2023

2015
180 * AMD S9000 in Run 2
Online TPC tracking

David Rohr, drohr@cern.ch

Today
>2000 * AMD MI50 in Run 3
Online and Offline barrel tracking

14

mailto:drohr@cern.ch

Overview of compute time of reconstruction steps

« The table below shows the relative compute time (linux cpu time) of the processing steps running on the processor.

Synchronous processing Asynchronous processing
(50 kHz Pb-Pb, MC data) (650 kHz pp, real data, calorimeters not in run)
TPC Processing (Tracking, Clustering, Compression) 99.37 % TPC Processing (Tracking) 61.41 %
EMCAL Processing 0.20 % ITS TPC Matching 6.13 %
ITS Processing (Clustering + Tracking) 0.10 % MCH Clusterization 6.13 %
TPC Entropy Encoder 0.10 % TPC Entropy Decoder 4.65 %
ITS-TPC Matching 0.09 % ITS Tracking 4.16 %
MFT Processing 0.02 % TOF Matching 412 %
TOF Processing 0.01 % TRD Tracking 3.95 %
TOF Global Matching 0.01 % MCH Tracking 2.02 %
PHOS / CPV Entropy Coder 0.01 % AOD Production 0.88 %
ITS Entropy Coder 0.01 % Quality Control 4.00 %
Rest 0.08 % Rest 2.32%

Only data processing steps
Quality control, calibration, event building excluded!

12.7.2023 David Rohr, drohr@cern.ch 15

mailto:drohr@cern.ch

Overview of compute time of reconstruction steps

« The table below shows the relative compute time (linux cpu time) of the processing steps running on the processor.

Totally dominated
Synchronous processing by TPC: >99% Asynchronous processing
(50 kHz Pb-Pb, MC data)

Processing step

TPC Processing (Tracking, Clustering, Compression) 99.37 % TPC Processing (Tracking) 61.41 %

EMCAL Processing 0.20 % ITS TPC Matching 6.13 %
ITS Processing (Clustering + Tracking) 0.10 % MCH Clusterization 6.13 %
TPC Entropy Encoder 0.10 % TPC Entropy Decoder 4.65 %
ITS-TPC Matching 0.09 % ITS Tracking 4.16 %
MFT Processing 0.02 % TOF Matching 412 %
TOF Processing 0.01 % TRD Tracking 3.95 %
TOF Global Matching 0.01 % MCH Tracking 2.02 %
PHOS / CPV Entropy Coder 0.01 % AOD Production 0.88 %
ITS Entropy Coder 0.01 % Quality Control 4.00 %
Rest 0.08 % Rest 2.32%

Only data processing steps
Quality control, calibration, event building excluded!

12.7.2023 David Rohr, drohr@cern.ch 16

mailto:drohr@cern.ch

Overview of compute time of reconstruction steps
ALICE

* Synchronous processing :

* 99% of compute time spent for TPC.

« EPN farm build for synchronous processing!
« Asynchronous reprocessing :

; * More detectors with significant computing contribution.
Synchronous processing

(50 kHz Pb-Pb, MC data) * To be kept in mind, as EPNS also run async. Reco.
+ GPUs well suited for TPC reco (from Run 1 and 2 experience).
rocessing racking, ustering, Compression . (0 3 5
EMCAL Processing 5o GPUs provide the required compute power.
ITS Processing (Clustering + Tracking) 0.10 % * Time frame concepts yields large enough GPU data chunks.
TPC Entropy Encoder 010% <+ Following up 2 scenarios for EPN GPU processing:
ITS-TPC Matching 0.09 %
MFT Processing 0.02 % Baseline solution (available today):
TOF Processing 0.01 % - Mandatory for synchronous processing
TOF Global Matching 0.01 % TPC sync. reco on GPU
PHOS / CPV Entropy Coder 0.01 %
ITS Entropy Coder 0.01 %
Rest 0.08 % Optimistic solution (under development):

- Achieve best GPU usage in async phase
- Run most of tracking + X on GPU

Only data processing steps
Quality control, calibration, event building excluded!

12.7.2023 David Rohr, drohr@cern.ch 13

mailto:drohr@cern.ch

Raw data decoding

>,

Synchronous Processin

4 LB EPN CTF |
i Online calibrations CCDB ==» (entropy coder)
. TPC clustetring,
tracking, compression ‘ TPC

GPU
S Input for calibration \ ITSIMFT
D

A

<4 BB
=10

ITS tracking
ITSIMFT ITS, MFT clustering for ~1% of
all tracks

ITS/TPC track

: O
matching I

T

H

. Matchin
Event selection o TRDg MID
TOF, . m— | EMCAL
compression TOF digitization - .
clusterization \ Matching PHOS
MID. < to TOF y
reconstruction _ EMCAL cells
Residuals for FTO
_ PHOS cells TPC SCD calib. =0

FTO, reco

CPV clustering

D
FVO, reco

N
)

n

C
HMPID

FDD, reco

CTP

mailto:drohr@cern.ch

Central barrel global tracking chain RUD
ALICE

« Central barrel tracking chosen as best candidate for optimistic scenario for asynchronous reco:
* Mandatory baseline scenario includes everything that must run on the GPU during synchronous reconstruction.
* Optimistic scenario includes everything related to the barrel tracking. = : /;?—?—.-»r»l?f —

Part of baseline 'Q‘-}W‘\.N‘w‘#\
o™ NN
TPC Distortion Correction

TPC Cluster TPC Track l TPC Track . TPC
Finding

Finding Merging Track Fit ‘

ITS ITS Track ITS
Vertexing Finding Track Fit

In operation
Work in progress
Under study Common GPU

Components: GPU API Framework

12.7.2023 David Rohr, drohr@cern.ch 19

mailto:drohr@cern.ch

¢'% Central barrel global tracking chain

ALICE

Central barrel tracking chosen as best candidate for optimistic scenario for asynchronous reco:
Mandatory baseline scenario includes everything that must run on the GPU during synchronous reconstruction.
Optimistic scenario includes everything related to the barrel tracking.

TPC Cluster

Part of baseline
scenario

TPC Cluster
Finding

In operation
Work in progress
Under study

e

\“:ﬂ* 9 m\‘?%.
NHHHI

N

NN

TPC Distortion Correction

TPC Track l TPC Track . TPC

Finding Merging Track Fit

ITS ITS Track ITS
Vertexing Finding Track Fit

Common GPU

Components:

SRR
\ \\.\:\,3:

TPC Track Model
Compression

removal

NN

SRR

\';:\

<

A

GPU API Framework Material Lookup

David Rohr, drohr@cern.ch

mailto:drohr@cern.ch

+ Baseline scenario fully implemented.
* Not mandatory to speed up the synchronous GPU code further.

Baseline scenario

(ready except for 1 optional component)

TPC Cluster

removal

Part of baseline Part of optimistic >[
scenario scenario

TPC Track Model
TPC Distortion Correction Compression

. . <4
TPC Cluster TPC Track TPC Track TPC -
Finding Finding Merging Track Fit ‘
ITS ITS Track ITS
Vertexing Finding Track Fit >]]
In operation
Work in progress

AU GPU API Framework | Vemory Reuse |
Components: GPU API Framework Sorting Material Lookup Memory Reuse

12.7.2023 David Rohr, drohr@cern.ch 21

mailto:drohr@cern.ch

"% Central barrel global tracking chain <
ALICE

« TPC synchronous processing almost fully on the GPU.
« 2 optional parts still being investigated for sync. reco on GPU: TPC entropy encoding / Looper identification < 10 MeV.

Synchronous chain

all events . few % of events
—

TPC Cluster
removal

Part of baseline
scenario

TPC Track Model
Compression

TPC Distortion Correction

TPC Cluster TPC Track l TPC Track . TPC

Finding Finding Merging Track Fit

In operation
Work in progress

AU GPU API Framework | Vemory Reuse |
Components: GPU API Framework Sorting Material Lookup Memory Reuse

12.7.2023 David Rohr, drohr@cern.ch 22

mailto:drohr@cern.ch

"% Central barrel global tracking chain

ALICE

Several steps missing in asynchronous reconstruction:
Matching to ITS
Matching to TOF
Secondary vertexing
TPC interpolation for SCD calibration

Asynchronous chain

Part of baseline

scenario

TPC Distortion Correction

TPC Track l TPC Track . TPC

Finding Merging Track Fit

TPC Cluster
Finding

ITS
Vertexing

ITS Track
Finding

ITS
Track Fit

In operation

TRD . “ f
Tracking V

= l—-

12.7.2023

Work in progress
Under study

Common GPU
Components:

GPU API Framework Material Lookup

David Rohr, drohr@cern.ch 23

mailto:drohr@cern.ch

mailto:drohr@cern.ch

Modular GPU code

CA Tr_ack In-Sector
TPC Track Seeding Merging
TPC Cluster Einder TPC Global Between-Sector
e Transformation Shared K""F'g;l"’:)”WTrr]ZCK Shared Merger Merging
Buffer Buffer Buffer 'fl.'rn;:IkTFPi(t:
GPU Buffer Management
SIECET
i
Buffer
GPU TPC Prolon-
e gation to ITS
Buffer

Shared
Buffer

Every component can still run on the hostTntne exact same way.

Shared buffers either in host memory or in GPU memory.
12.7.2023 David Rohr, drohr@cern.ch

mailto:drohr@cern.ch

Plugin system for multiple APIs with common source code
ALICE

* Generic common C++ Code compatible to CUDA, OpenCL, HIP, and CPU (with pure C++, OpenMP, or OpenCL).
* OpenCL needs clang compiler (ARM or AMD ROCm) or AMD extensions (TPC track finding only on Run 2 GPUs and CPU for testing)
« Certain worthwhile algorithms have a vectorized code branch for CPU using the Vc library
+ All GPU code swapped out in dedicated libraries, same software binaries run on GPU-enabled and CPU servers

« Screening different platforms for best price / performance. Algorithm.cxx lIDFit i Fifrsias ¢ ises arst] oot] ot wcks .
N . " . . I[Every fitter processes a sub-range n of N thal is ortional to its speed ..
(including some non-competitive platforms for cross-checks and validation.) GPU(voi FiTrack it e — =
' Og\tlel?:s r(IEE’UaS:s:tances of Fitter class, does multi-device

« CPUs (AMD Zen, Intel Skylake)
C++ backend with OpenMP, AMD OCL

sdefine GPU() management and scheduling. Can request particular or
Hinclude “Algorithm.oxc multiple devices or fall back to CPU automatically
class FitterBase { _ :
virtual void FitTracks(int n} { IbFRtCu = diopen....)
#pragma omp parallel for [-1
{{ = 0;i < n;i*+) Fi i
for (int] = O:f < mib+) FRTrCk(l): | | py i aser fitters: int nf= 0;

} } fitjnf++] = new FitterBase;

- AMD GPUs
(S9000 with OpenCL 1.2, MI50 /

if (libFitCu) for (i = 0ii < cudalnterface->Count();i++)
fitters[nf++] = cudalnterface->GetFitter();

if (IBFHCI) for (i = 0:i < clinterface->Count();i++)
H fitters[nf++] = clinterface->GetFitter();
included "

%
-

three times aawie dlopen L8

: m— LY
libFitCUDA | aeriizs],__ libFitOpenCL

FitterCUDA.cu

0 NVIDIA GPUs
(RTX 2080/ RTX 2080 Ti/ Tesla T4
with CUDA)

FitterOpenCL.cl FitterOpenCL.cxx

#define GPLU() #define GPU()
#include “Algorithm.cxx” class FitterOpenCL :: public FitterBase {

* ARM Mali GPU with OCL 2.x

#define GPU() __device
#include “Algorithm.cxx™

H H class FitterCUDA : public FitterBase wirtual void FitTracks(int n) {
(Tested on dev-board with Mali G52) " dobi FilTiackeGPUGt D Tack()) __kemel void FifTracksGPU(int 1) clEnqueueNDRangeKernel(...)
virtual void FitTracks(int n) { FitTrack(i);

FitTracksGPU<=c<n>>>(); static MuliGPUManagerCL man;

static MultiGPUManagerCUDA man;
}

Manage / synchronize multiple GPUs

] linked to GPU shared object file ||
libCUDA | | libOpenCL

12.7.2023 David Rohr, drohr@cern.ch 26

mailto:drohr@cern.ch

‘ . Memory allocation / Pipelined processing

ALICE

* Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.
+ Classically: reuse memory between events.

— Single events too small for GPU - Process time frames.
* ALICE reuses memory between different algorithms in a TF, possibly between chunks of collisions in a TF.

*+ Zoomed-in plot of TPC Clusterization stage (part with largest DMA transfers - most difficult to hide in pipeline).

Light / dark blue: GPU kernel execution 1 pipeline iteration

00 Gm @ . 08 B8 © 0

1 860 (@Em @i &=t @ 6 00 &3 8. @ /|
.3 86 (I @l & 0@ 8 6 @ 8l @ no.

Il 80 0@ @i B0 m e . i ol o @
.JO’ @0 (o @ i @ 1. @ 0§ G0 @) @ 1.L@ 6

o it [imariivi il [} i
) howincie Lz £
> i Lo 0 E L
ime
> / <« WMK
Green: DMA transfer Pipeline margin: Transfer of input for next iteration is

chunked itself into small pieces to avoid
for intermittent transfers for current
iteration.

No performance loss when the
DMA transfer finishes before

* Full profile of 3 time frames: 100% GPU utilization with kernel execution, No performance loss from data transfer!

- Y = TR = TR
w " L | w [' w w

mailto:drohr@cern.ch

Implementation principles Ui
ALICE

. GPU code should be modular, such that individual parts can run independently.
* Multiple consecutive components on the GPU should operate with as little host interaction as possible.

'_\

)

GPU code should be generic C++ and not depend on one particular vendor or API. (O2 supports CUDA, HIP, OpenCL)
* No usage of special features that are not portable.

3. GPU usage should be optional and transparent: running O2 should not require any vendor libraries installed.
All GPU code is contained in plugins, with a common interface.
* Even multiple plugins (GPU backends) can run on the same node.

4. Minimize time spent for memory management.
We allocate one large memory segment, and then distribute memory chunks internally.

5. Processing on GPU and data transfer should overlap, such that the GPU does not idle while waiting for data.
« This is implemented via a pipelined processing within time frames, and we also overlap consecutive time frames.

6. Datachunks processed by the GPU must be large enough to exploit the full parallelism.
Fulfilled by design with TFs containing > 100 collisions.

7. GPU and CPU output should be as close as possible.
« But small differences due to concurrency or non-associative floating point arithmetic cannot be avoided.

12.7.2023 David Rohr, drohr@cern.ch 28

mailto:drohr@cern.ch

Implementation details

ALICE

* Multiple GPUs in a server minimize the cost.
* Less servers, less network.
* Synergies of using the same CPU components for multiple GPUs, same for memory.

Splitting the node into 2 NUMA domains minimizes inter-socket communication
- 2virtual EPNSs.
« Still only 1 HCA for the input - writing to shared memory segment in interleaved memory.

» GPUs are processing individual time frames - no inter-GPU communication.
* Host processes can drive 1 GPU each, or run CPU only tasks.

* GPUs can be shared between algorithms.
* With memory reuse if within the same process.
* With separate memory in case of multiple processes (Not done at the moment).

12.7.2023 David Rohr, drohr@cern.ch 29

mailto:drohr@cern.ch

Implementation details %

* Multiple GPUs in a server minimize the cost.
* Less servers, less network.
* Synergies of using the same CPU components for multiple GPUs, same for memory.

Splitting the node into 2 NUMA domains minimizes inter-socket communication
- 2 virtual EPNs.
« Still only 1 HCA for the input - writing to shared memory segment in interleaved memory.

» GPUs are processing individual time frames - no inter-GPU communication.
* Host processes can drive 1 GPU, or run CPU only tasks.

* GPUs can be shared between algorithms.
* With memory reuse if within the same process.
« With separate memory in case of multiple processes (Not done at the moment).

« Benchmarked with MC data: For 100% utilization of 8 GPUs (AMD MI50), we need:
« ~50 CPU cores, ~400 GB of memory, 30 GB/s network input speed, GPU PCle negligible.

a
I

Selected server:
* Supermicro AS-4124GS-TNR, 8 * MI50 GPU, 2 * 32 core AMD Rome 7452 CPU (2.35 GHz), 512 GB RAM (16 * 32GB)
* Infiniband HDR / HDR100 network.
12.7.2023 David Rohr, drohr@cern.ch 30

mailto:drohr@cern.ch

Implementation details

its-tracker

4 itstpe-track-matcher_ta

Synchronous processing
DPL workflow

tof-conpressed-decoder

MICRawAggregator

Fea-reconstructor

tropy-encoder

| ikz-stf-decader_te

tpe-antropy-encader_ts

inter: i1e-5ink

inters ——

i ke-stf-decader_t2

mft-stf-decader

tpe-tracker_t8
|

(===
1
g

ataresder-dpl

tof~comprassor-§

Intecnal-gpl-clock S row-file-reader

13

tpe-tracker_td

4 itstpo-track-matcher_t8

 tstpe-track-matcher_t1
tpc-tracken_ti it i
N

i tstpo-track-matcher_t2
tpe-tracker_tz -

S i tstpe-track-matcher_t3
tpe-tracker_t3

i tstpe-track-matcher._td

i bstpe-track-matcher_t§ inter: y-File-sink

tf-decoder_tz i tstpe-track-matcher_t6

MIDTracker

Epe-antropy-sncoder_t2
=

T 3 tpe-entropy-socodert3

MibRswpecader

fta-datarsader-dpl

tof -campre:

mailto:drohr@cern.ch

, ius-tracker i tstpe-track-matcher_ta

Synchronous processing
DPL workflow

tof-conpressed-decoder
itstpe-track-matcher_t1

 tstpe-track-matcher_tz

pe -mateher_t3

ToFRacoRorkf | ow tpc-track-

internal-dp| i1e-5ink

Intermal-dpleclock b=

i ke-stf-decader_t2

mft-stf-decader

ZL

tpe-tracker_t8
|

MIDTracker

(=== i aabaresiarciyl
g

"

tof -comprassor-§

raw-fi1a-reader

intecnal-gpl-clock +—_

Jes-tracker

Input goes to
interleaved memory e “\\\

4 i tetpe-track-matcher_t8

 tstpe-track-matcher_t1

i tstpo-track-matcher_t2
tpe-tracker_tz X

s~ i tstpe-track-matcher_t3
tpe-tracker_t3

AN (LU
NN
SEs

i tstpe-track-matcher._td

i bstpe-track-matcher_t§ y-File-sink

i 3¢

? tpe-antropy-encadar_t2
o i

tpe-antropy-encader_t3
SNTTTATTTATINATT

MibRswpecader

fta-datarsader-dpl

tof -compressor-8

12.7.2023

mailto:drohr@cern.ch

Implementation details

ALICE_

To illustrate the complexity:
Full synchronous workflow including
Quiality Control and Calibration

12.7.2023 David Rohr, 33

mailto:drohr@cern.ch

mailto:drohr@cern.ch

Synchronous processing performance

ALICE

+ Performance of Alice O2 software on different GPU models and compared to CPU.

350 T T T T 18 T T T T T
¢ NVIDIA RTX 3020 NVIDIAALOD
> NVIDIARTX 2080 Ti . AMD MI100

2 ; 16 L % NVIDIARTX 1080 Ti AMD MI50 b
@ 300 - al ' NVIDIA V100s
=y
= 14]
g 20| " . y
g + A+ W+ T N A T — * —' 12 - ALICE Performance : .
S +o [Pb-Pb Sy = 5.02 TeV
8 200 G+ + ALICE Performance 8 2 E A]
¥ Pb-Pb VSyy = 5.02 TeV S 10
£ . = * o
%150—- i rﬂj]:l—l;'ﬂ oo 00 g2 O O o om A % 8L x* o 1
E \7@;|FJ\>< KRR K KK = : e oK e O]
& 100 -+ : : . 1 g B~
e Bd ” (AR +
- £l 4 - T | pp]
g . * # - r
E 50 [, weKek Y NVIDIA A100 . e B O - ‘
= L NVIDIARTX 2080 Ti AMD MI100 2f xRl & i b f J

Eé NVIDIARTX 1080 Ti AMD MI50 R;I’éj i I

¥ NVIDIAV100s [L RRR B &

0 1 1 | 1 1 - 1 1 Il 1 1
0 5x10" 1x10° 1.5x10% 2x10° 2.5x10% 3x10° ¢ 0 5x107 1x108 1.5x108 2x108 2.5x108 3x108
Number of TPC clusters Number of TPC clusters
* MI50 GPU replaces ~80 AMD Rome CPU cores in synchronous reconstruction.
* Includes TPC clusterization, which is not optimized for the CPU! Without GPUs, more than 2000
« ~55 CPU cores in asynchronous reconstruction (more realistic comparison). 64-core ser\ll_ers would be n'eeded for
. . online processing:
+ Validated software with MI100 GPU, ca 35% faster. P g

12.7.2023 David Rohr, drohr@cern.ch B85

mailto:drohr@cern.ch

Synchronous processing performance %

ALICE
+ Performance of Alice O2 software on different GPU models and compared to CPU.
350 T T T T 18 T T T T T
t NVIDIA RTX 3090 NVIDIAA100
. NVIDIARTX 2080 Ti AMD MI100

E 16 - * NVIDIARTX1080Ti AMD MI50

g 300 -~ & [NVIDIAV100s

el Experience from 2022:

& °: B GPU TPC Processing performance for pp as expected, but also less

B a0l Gr challenging than Pb-Pb.

¢ N * No 50 kHz Pb-Pb data taken so far, waiting for October 2023! v

€ 10l » Low-rate Pb-Pb data in 2022 required negligible processing. - o

g lf% = | = Current EPN farm consists of 280 servers. e e

g 100 o 5‘3 » Extension ongoing to 350 servers, new servers with MI1100. L e 5 X

S * From current MC estimates and experience from 2022 Pb-Pb data: L

2 : : P

E 50, KRk X Extended EPN farm should have ~30% processing margin.

= C'f NVIDIARTX 1080 Ti AMD MI50 Lﬁ I7,=<I"‘—1 a1 a7

3 L . NVIDIAV100s [‘ Zﬂi\ : ! L L
: 0 5x107 1x108 1.5x108 2x10° 2.5x108 3x10° 5x107 1x108 1.5x108 %108 2 5x108 %108
Number of TPC clusters Number of TPC clusters
* MI50 GPU replaces ~80 AMD Rome CPU cores in synchronous reconstruction.
* Includes TPC clusterization, which is not optimized for the CPU! Without GPUs, more than 2000
« ~55 CPU cores in asynchronous reconstruction (more realistic comparison). 64-core ser\ll_ers would be n'eeded for

» Validated software with MI100 GPU, ca 35% faster. ontine processing:

12.7.2023 David Rohr, drohr@cern.ch 36

mailto:drohr@cern.ch

Overview of compute time of reconstruction steps

« The table below shows the relative compute time (linux cpu time) of the processing steps running on the processor.

Synchronous processing Asynchronous processing
(50 kHz Pb-Pb, MC data, processing only)
TPC Processing (Tracking, Clustering, Compression) 99.37 % TPC Processing (Tracking) 61.41 %
EMCAL Processing 0.20% ITS TPC Matching 6.13 %
ITS Processing (Clustering + Tracking) 0.10% MCH Clusterization 6.13 %
TPC Entropy Encoder 0.10% TPC Entropy Decoder 4.65 %
ITS-TPC Matching 0.09% ITS Tracking 4.16 %
MFT Processing 0.02% TOF Matching 412 %
TOF Processing 0.01% TRD Tracking 3.95 %
TOF Global Matching 0.01% MCH Tracking 2.02 %
PHOS / CPV Entropy Coder 0.01% AOD Production 0.88 %
ITS Entropy Coder 0.01 % Quality Control 4.00 %
Rest 0.08% Rest 2.32%

12.7.2023 David Rohr, drohr@cern.ch 37

mailto:drohr@cern.ch

Overview of compute time of reconstruction steps

ALICE

« The table below shows the relative compute time (linux cpu time) of the processing steps running on the processor.
* Synchronous reconstruction fully dominated by the TPC (99%), no reason to offload anything else to the GPU.
. In async reco, currently the 61.4% TPC are on the GPU, with the full optimistic scenario (full barrel tracking) it will be 79.77%.

Synchronous processing
(50 kHz Pb-Pb, MC data, processing only)

TPC Processing (Tracking, Clustering, Compression) 9937 %
EMCAL Processing 0.20 %
ITS Processing (Clustering + Tracking) 0.10 %
TPC Entropy Encoder 0.10 %
ITS-TPC Matching 0.09 %
MFT Processing 0.02 %
TOF Processing 0.01 %
TOF Global Matching 0.01 %
PHOS / CPV Entropy Coder 0.01 %
ITS Entropy Coder 0.01 %
Rest 0.08 %

Asynchronous processing
(650 kHz pp, real data, calorimeters not in run)

TPC Processing (Tracking) ~ 6141%
ITS TPC Matching 6.13 %
MCH Clusterization 6.13 %
TPC Entropy Decoder 4.65 %
ITS Tracking 4.16 %
TOF Matching 412 %
TRD Tracking 3.95 %
MCH Tracking 2.02 %
AOD Production 0.88 %
Quality Control 4.00 %
Rest 2.32%

Running on GPU in baseline scenario |

12.7.2023 David Rohr, drohr@cern.ch 38

mailto:drohr@cern.ch

Overview of compute time of reconstruction steps
ALICE

« Async reco GPU speedup on the EPN:

The speed of light is ~6.5x speedup, since 85% of the compute power is in the GPU (reduce the CPU time by 85%, more becomes GPU-bound).
— Only in case everything scales as well as TPC processing.

— Even then cannot be reached since GPU processing needs CPU resources.

Today, offloading the ~60% of the async to the GPU should yield a speedup around 2.5x.

— We remove 60% of the CPU time, while we are st|I.I pPU—bound, Asynchronous processing
but we have some overhead CPU resources for driving the 8 GPUs.] 4
(650 kHz pp, real data, calorimeters not in run)

In the optimistic scenario, by offloading 80% we might get close to 5x.

— still a bit away from the speed of light.
TPC Processing (Tracking) ~ 6141%
ITS TPC Matching 6.13 %
MCH Clusterization 6.13 %
TPC Entropy Decoder 4.65 %
ITS Tracking 4.16 %
TOF Matching 412 %
TRD Tracking 3.95 %
MCH Tracking 2.02 %
AOD Production 0.88 %
Quality Control 4.00 %
Rest 2.32%
Running on GPU in baseline scenario |
12.7.2023 David Rohr, drohr@cern.ch 39

mailto:drohr@cern.ch

Time frame scheduling sync vs. async

* Synchronous processing: rate defined from data 1°°_ . ' ‘ ' ' | : ‘ _
taking: 351 TFs per second. _ m 1 \ h WM] | ‘i | _
+ EPNs must handle that rate, and have some margin. i f; 1 ” “ ‘ H n } | ‘ | ‘ ﬂ 1
* Asynchronous processing: process TFs as fast as 80; ‘ { { | i ’ h r ! ' l M I |
possible, ideally reach 100% CPU load. 1 | ‘ l il \. \ ‘\ Jl ‘ M |
I | 4
q | i ‘ “ |
- Need many TFs in flight, to use all CPU cores via DPL - [! h | \ J r]
pipelines. 60 | ‘ l i
* Available memory limits the maximum number of TFs = B
in flight. 5

40 - ‘ 9
» Constant TF publishing rate ideal to spread the load 1
horizontally and vertically in the processing graph. ‘ :
* Injecting TFs into the chain with unstable rate leads to I CPU load with TFs injected as fast as possible,]
oscillations in the processing. 20 (only limited by max TF in flight in memory) 1
| - Leads to strong CPU load oscillations. 1

0 1 1 1 | 1 1 1 |

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time [s]

12.7.2023 David Rohr, drohr@cern.ch 40

mailto:drohr@cern.ch

Real speedup in asynchronous reconstruction

* Synchronous processing: rate defined from data
taking: 351 TFs per second.

+ EPNs must handle that rate, and have some margin.

* Asynchronous processing: process TFs as fast as
possible, ideally reach 100% CPU load.

* Need many TFs in flight, to use all CPU cores via DPL
pipelines.

* Available memory limits the maximum number of TFs
in flight.

» Constant TF publishing rate ideal to spread the load
horizontally and vertically in the processing graph.

* Injecting TFs into the chain with unstable rate leads to
oscillations in the processing.

- Heuristic to smoothen TF publishing rate solves

the problem.

Will use 2.8 ms TFs from 2023 to reduce memory
usage in GRID sites.
12.7.2023

9

CPU [%]

100

80

60 H

40

20

L e — T

1

if fi e m T | 1 W‘ i

CPU load with smoothened TF publishing rate. (in]
addition to maximum TF in flight). 1
* Average CPU utilization of 90% |
* 11.6% higher throughput

* Unused 10% are only HyperThreaded cores

0

David Rohr, drohr@cern.ch

1000 2000 3000 4000 5000

Time [s]

6000 7000 8000 9000

41

mailto:drohr@cern.ch

Real speedup in asynchronous reconstruction
ALICE

For asynchronous reconstruction, EPN nodes are used as GRID nodes.
Identical workflow as on other GRID sites, only different configuration using GPU, more memory, more CPU cores.
EPN farm split in 2 scheduling pools: synchronous and asynchronous.
Unused nodes in the synchronous pool are moved to the asynchronous pool.
As needed for data-taking, nodes are moved to the synchronous pool with lead time to let the current jobs finished.

If needed immediately, GRID jobs are killed and nodes moved immediately.

42

12.7.2023 David Rohr, drohr@cern.ch

mailto:drohr@cern.ch

Real speedup in asynchronous reconstruction %
ALICE

 For asynchronous reconstruction, EPN nodes are used as GRID nodes.
« ldentical workflow as on other GRID sites, only different configuration using GPU, more memory, more CPU cores.
* EPN farm splitin 2 scheduling pools: synchronous and asynchronous.
— Unused nodes in the synchronous pool are moved to the asynchronous pool.
— As needed for data-taking, nodes are moved to the synchronous pool with lead time to let the current jobs finished.
— If needed immediately, GRID jobs are killed and nodes moved immediately.
« Performance benchmarks cover multiple cases:
« EPN splitinto 16 * 8 cores, or into 8 * 16 cores, ignoring the GPU : to compare CPUs and GPUs.
* EPN split into 8 or 2 identical fractions: 1 NUMA domain (4 GPUs) or 1 GPU.
* Processing time per time-frame while the GRID job is running (neglecting overhead at begin / end).
* In all cases server fully loaded with identical jobs, to avoid effects from HyperThreading, memory, etc.

Configuration (2022 pp, 650 kHz) Time per TF (11ms, 1 instance) | Time per TF (11ms, full server)

CPU 8 core 76.91s 4.81s
CPU 16 core 34.18s 4.27s —
1 GPU + 16 CPU cores 14.60s 1.83s
1 NUMA domain (4 GPUs + 64 cores) 3.5s 1.70s

B

Factor 2.51
Matches expected factor 2.5

12.7.2023 David Rohr, drohr@cern.ch

i
w

mailto:drohr@cern.ch

Real speedup in asynchronous reconstruction %
ALICE

 For asynchronous reconstruction, EPN nodes are used as GRID nodes.
« ldentical workflow as on other GRID sites, only different configuration using GPU, more memory, more CPU cores.
* EPN farm splitin 2 scheduling pools: synchronous and asynchronous.
— Unused nodes in the synchronous pool are moved to the asynchronous pool.
— As needed for data-taking, nodes are moved to the synchronous pool with lead time to let the current jobs finished.
— If needed immediately, GRID jobs are killed and nodes moved immediately.
« Performance benchmarks cover multiple cases:
« EPN splitinto 16 * 8 cores, or into 8 * 16 cores, ignoring the GPU : to compare CPUs and GPUs.
* EPN split into 8 or 2 identical fractions: 1 NUMA domain (4 GPUs) or 1 GPU.
* Processing time per time-frame while the GRID job is running (neglecting overhead at begin / end).
* In all cases server fully loaded with identical jobs, to avoid effects from HyperThreading, memory, etc.

Configuration (2022 pp, 650 kHz) Time per TF (11ms, 1 instance) | Time per TF (11ms, full server)

CPU 8 core . . . 6.91s 4.81s
Configuration used for async processing

CPU 16 core (Also resembles most the synchronous B4.18s 4.27s —

1 GPU + 16 CPU cores processing configuration) 4.60s 1.83s

B

Factor 2.51
Matches expected factor 2.5

1 NUMA domain (4 GPUs + 64 cores) 3.5s 1.70s

12.7.2023 David Rohr, drohr@cern.ch

i
i

mailto:drohr@cern.ch

Real speedup in asynchronous reconstruction %
ALICE

« Overhead at begining / end of job:
* Constant overhead at start / stop of processing: 149 s (1.8%)
- Negligible compared to job runtime (benchmark job was 8491 s, could be extended to >10h)
* Additional time needed for AOD checking / merging: 238s (2.8%, CPU only Postprocessing to speed up analysis)
« Time lost at processing dip at the beginning during condition fetching / initialization: 32s (0.4%)
« Some interesting performance comparisons:
* 1 GPU workflow, running isolated on a node v.s. running 8 times in parallel on a node: ??% faster (HyperThreading).
* 1 NUMA workflow, with rate smoothing v.s. without rate smoothing: 11.6% faster.
* Benefits of 2* 1 NUMA domain workflow over 8 * 1 GPU workflow:
* Not all CPU processes duplicated - fewer processes, and significantly less memory consumption (~ 100 GB difference).
« Share the CPU processes in DPL workflow - more CPU capacity compensates load fluctuations, less context switches.

Configuration (2022 pp, 650 kHz) Time per TF (11ms, 1 instance) | Time per TF (11ms, full server)

CPU 8 core 76.91s 4.81s
CPU 16 core 34.18s 4.27s —
1 GPU + 16 CPU cores 14.60s 1.83s
1 NUMA domain (4 GPUs + 64 cores) 3.5s 1.70s

B

Factor 2.51
Matches expected factor 2.5

12.7.2023 David Rohr, drohr@cern.ch

I
a1

mailto:drohr@cern.ch

Lessons learned

ALICE

GPUs can speed up the processing significantly.
* Not necessarily all workload needs to run on GPU, but the hot spot.

Inexperienced users can contribute improvements to algorithms, for implementing full new reconstruction steps on
GPU more expert knowledge is needed.

(Remote) Debug GUI to inspect topology (remotely) is very useful.
Scheduling for synchronous and asynchronous processing is different.
Should also optimize for memory perhaps sacrificing a bit of performance.
* 1lmsv.s. 2.8ms TFs.
*« Memory is more limited on GRID sites than on your online farm.
« A common software framework for multiple GPU types allows for changing the vendor and simplifies debugging.
Default build should contain all GPU backends, to be enabled transparently and optionally (e.g. via plugins).

» Having the full reconstruction in a single monolithic process is failure-prone and difficult to debug (Run 3), too many
individual processes can have huge memory demand - good compromise needed.

12.7.2023 David Rohr, drohr@cern.ch 46

mailto:drohr@cern.ch

Conclusions %

ALICE_

« ALICE employs GPUs heavily to speed up online and offline processing.
* 99% of synchronous reconstruction on the GPU (no reason at all to port the rest).
* Today ~60% of full asynchronous processing (for 650 kHz pp) on GPU (if offline jobs on the EPN farm).
— Willincrease to 80% with full barrel tracking (optimistic scenario).
* Synchronous processing successful in 2021 - 2023.
* pp datataking and low-IR Pb-Pb went smooth and as expected, but not causing full compute load.
* Full rate will come with Pb-Pb in October 2023.
— 50 kHz Pb-Pb processing validated with data replay of MC data (~ 30% margin).

* Asynchronous reconstruction has started, processing the TPC reconstruction on the GPUs in the EPN farm, and in
CPU-only style on the CERN GRID site.

* EPN nodes are 2.51x faster when using GPUs.

12.7.2023 David Rohr, drohr@cern.ch 47

mailto:drohr@cern.ch

	2023-07-12 GPU Forum
	Slide 0: The O2 software framework and GPU usage in ALICE online and offline reconstruction in Run 3
	Slide 1: ALICE Data Taking / Processing concept
	Slide 2: ALICE in Run 3
	Slide 3: The ALICE detector in Run 3
	Slide 4: ALICE Raw Data Flow in Run 3
	Slide 5: ALICE Raw Data Flow in Run 3
	Slide 6: ALICE Raw Data Flow in Run 3
	Slide 7: Synchronous and Asynchronous Processing
	Slide 8: Synchronous and Asynchronous Processing
	Slide 9: O2 Processing steps
	Slide 10: O2 Processing steps
	Slide 11: O2 Processing steps
	Slide 12: O2 Processing steps

	2023-05-chep-o2
	2023-07-12 GPU Forum
	Slide 13: ALICE GPU USAGE STRATEGY
	Slide 14: GPU usage in ALICE in the past
	Slide 15: Overview of compute time of reconstruction steps
	Slide 16: Overview of compute time of reconstruction steps
	Slide 17: Overview of compute time of reconstruction steps
	Slide 18: Synchronous Processing
	Slide 19: Central barrel global tracking chain
	Slide 20: Central barrel global tracking chain
	Slide 21: Central barrel global tracking chain
	Slide 22: Central barrel global tracking chain
	Slide 23: Central barrel global tracking chain
	Slide 24: Implementation
	Slide 25
	Slide 26: Plugin system for multiple APIs with common source code
	Slide 27: Memory allocation / Pipelined processing
	Slide 28: Implementation principles
	Slide 29: Implementation details
	Slide 30: Implementation details
	Slide 31: Implementation details
	Slide 32: Implementation details
	Slide 33: Implementation details
	Slide 34: Performance
	Slide 35: Synchronous processing performance
	Slide 36: Synchronous processing performance
	Slide 37: Overview of compute time of reconstruction steps
	Slide 38: Overview of compute time of reconstruction steps
	Slide 39: Overview of compute time of reconstruction steps
	Slide 40: Time frame scheduling sync vs. async
	Slide 41: Real speedup in asynchronous reconstruction
	Slide 42: Real speedup in asynchronous reconstruction
	Slide 43: Real speedup in asynchronous reconstruction
	Slide 44: Real speedup in asynchronous reconstruction
	Slide 45: Real speedup in asynchronous reconstruction
	Slide 46: Lessons learned
	Slide 47: Conclusions

