
An Introduction to RISC-V
Compute Accelerator Forum

Jonas Hahnfeld, EP-SFT

September 13, 2023

What is RISC-V? (on one slide)

▶ Open Standard Instruction Set Architecture (ISA)
▶ Specifications are open source, no royalty fees
▶ RISC-V cores can be open or proprietary

▶ Started at the University of California, Berkley, in 2010

▶ Since 2020 published by RISC-V International located in Switzerland

▶ Modular design: base ISA with very few (integer) instructions
▶ Many standard extensions and possibility for custom instructions

2 / 44

What is RISC-V? (on one slide)

▶ Open Standard Instruction Set Architecture (ISA)
▶ Specifications are open source, no royalty fees
▶ RISC-V cores can be open or proprietary

▶ Started at the University of California, Berkley, in 2010

▶ Since 2020 published by RISC-V International located in Switzerland

▶ Modular design: base ISA with very few (integer) instructions
▶ Many standard extensions and possibility for custom instructions

2 / 44

What is RISC-V? (on one slide)

▶ Open Standard Instruction Set Architecture (ISA)
▶ Specifications are open source, no royalty fees
▶ RISC-V cores can be open or proprietary

▶ Started at the University of California, Berkley, in 2010

▶ Since 2020 published by RISC-V International located in Switzerland

▶ Modular design: base ISA with very few (integer) instructions
▶ Many standard extensions and possibility for custom instructions

2 / 44

An Introduction to RISC-V

Background

History of RISC-V

The RISC-V ISA
Base Integer Instruction Set(s)
Standard Extensions

RISC-V Vector Extension (RVV)

Conclusions

3 / 44

Background

RISC and CISC

▶ RISC = Reduced Instruction Set Computer
▶ Term coined by David Patterson of the Berkley RISC project (1980s)
▶ Very “simple” instructions, that can be executed fast(er)

▶ Notable architectures today: Arm, Power, RISC-V

▶ CISC = Complex Instruction Set Computer
▶ (Some) instructions perform many operations
▶ e.g. memory load, arithmetic operation, memory store

▶ Notable architectures today: x86, z/Architecture (IBM Z mainframe)

5 / 44

RISC and CISC

▶ RISC = Reduced Instruction Set Computer
▶ Term coined by David Patterson of the Berkley RISC project (1980s)
▶ Very “simple” instructions, that can be executed fast(er)

▶ Notable architectures today: Arm, Power, RISC-V

▶ CISC = Complex Instruction Set Computer
▶ (Some) instructions perform many operations
▶ e.g. memory load, arithmetic operation, memory store

▶ Notable architectures today: x86, z/Architecture (IBM Z mainframe)

5 / 44

RISC and CISC

▶ RISC = Reduced Instruction Set Computer
▶ Term coined by David Patterson of the Berkley RISC project (1980s)
▶ Very “simple” instructions, that can be executed fast(er)

▶ Notable architectures today: Arm, Power, RISC-V

▶ CISC = Complex Instruction Set Computer
▶ (Some) instructions perform many operations
▶ e.g. memory load, arithmetic operation, memory store (cf. add [rdi], 2)

▶ Notable architectures today: x86, z/Architecture (IBM Z mainframe)

5 / 44

RISC and CISC

▶ RISC = Reduced Instruction Set Computer
▶ Term coined by David Patterson of the Berkley RISC project (1980s)
▶ Very “simple” instructions, that can be executed fast(er)
▶ Notable architectures today: Arm, Power, RISC-V

▶ CISC = Complex Instruction Set Computer
▶ (Some) instructions perform many operations
▶ e.g. memory load, arithmetic operation, memory store (cf. add [rdi], 2)

▶ Notable architectures today: x86, z/Architecture (IBM Z mainframe)

5 / 44

RISC and CISC

▶ RISC = Reduced Instruction Set Computer
▶ Term coined by David Patterson of the Berkley RISC project (1980s)
▶ Very “simple” instructions, that can be executed fast(er)
▶ Notable architectures today: Arm, Power, RISC-V

▶ CISC = Complex Instruction Set Computer
▶ (Some) instructions perform many operations
▶ e.g. memory load, arithmetic operation, memory store (cf. add [rdi], 2)
▶ Notable architectures today: x86, z/Architecture (IBM Z mainframe)

5 / 44

RISC and CISC – the meaning of “Reduced”

▶ Does not mean “few instructions”
▶ Example: Armv9 has 402 “base instructions”, 404 “SIMD and FP instructions”, 765

“SVE instructions”...

▶ Does not mean only “simple operations”
▶ Example: instructions for FP square root in Arm and RISC-V
▶ Arm even has instructions for hashing (SHA1, SHA256, SHA512)!

▶ (RISC-V has them in the Zk Standard Extension for Scalar Cryptography)

▶ Nowadays mostly refers to “load-store architectures”

6 / 44

RISC and CISC – the meaning of “Reduced”

▶ Does not mean “few instructions”
▶ Example: Armv9 has 402 “base instructions”, 404 “SIMD and FP instructions”, 765

“SVE instructions”...

▶ Does not mean only “simple operations”
▶ Example: instructions for FP square root in Arm and RISC-V
▶ Arm even has instructions for hashing (SHA1, SHA256, SHA512)!

▶ (RISC-V has them in the Zk Standard Extension for Scalar Cryptography)

▶ Nowadays mostly refers to “load-store architectures”

6 / 44

RISC and CISC – the meaning of “Reduced”

▶ Does not mean “few instructions”
▶ Example: Armv9 has 402 “base instructions”, 404 “SIMD and FP instructions”, 765

“SVE instructions”...

▶ Does not mean only “simple operations”
▶ Example: instructions for FP square root in Arm and RISC-V
▶ Arm even has instructions for hashing (SHA1, SHA256, SHA512)!

▶ (RISC-V has them in the Zk Standard Extension for Scalar Cryptography)

▶ Nowadays mostly refers to “load-store architectures”

6 / 44

Load-Store Architectures

▶ Principle of load-store architectures:
▶ Instructions either load from or store to memory,
▶ OR perform operations between registers
▶ (hence also sometimes called “register-register architecture”)

▶ On the contrary, x86 is a “register-memory architecture”

▶ Compare:
▶ x86: add DWORD PTR [rdi], 2

▶ RISC-V:

lw a5 ,0(a0)

addiw a5 ,a5 ,2

sw a5 ,0(a0)

7 / 44

Load-Store Architectures

▶ Principle of load-store architectures:
▶ Instructions either load from or store to memory,
▶ OR perform operations between registers
▶ (hence also sometimes called “register-register architecture”)

▶ On the contrary, x86 is a “register-memory architecture”

▶ Compare:
▶ x86: add DWORD PTR [rdi], 2

▶ RISC-V:

lw a5 ,0(a0)

addiw a5 ,a5 ,2

sw a5 ,0(a0)

7 / 44

Load-Store Architectures

▶ Principle of load-store architectures:
▶ Instructions either load from or store to memory,
▶ OR perform operations between registers
▶ (hence also sometimes called “register-register architecture”)

▶ On the contrary, x86 is a “register-memory architecture”

▶ Compare:
▶ x86: add DWORD PTR [rdi], 2

▶ RISC-V:

lw a5 ,0(a0)

addiw a5 ,a5 ,2

sw a5 ,0(a0)

7 / 44

Load-Store Architectures

▶ Principle of load-store architectures:
▶ Instructions either load from or store to memory,
▶ OR perform operations between registers
▶ (hence also sometimes called “register-register architecture”)

▶ On the contrary, x86 is a “register-memory architecture”

▶ Compare:
▶ x86: add DWORD PTR [rdi], 2
▶ RISC-V:

lw a5 ,0(a0)

addiw a5 ,a5 ,2

sw a5 ,0(a0)

7 / 44

History of RISC-V

The Beginnings

▶ Started in May 2010 at the Par Lab at UC Berkley
▶ Prof. Krste Asanović, graduate students Yunsup Lee and Andrew Waterman
▶ Joined by Prof. David Patterson, Director of Par Lab

▶ (who coined the term RISC in 1980s during the Berkley RISC project!)

▶ Fifth generation RISC ISA design at Berkley

▶ First publication of RISC-V instruction set in May 2011:
▶ The RISC-V Instruction Set Manual, Volume I: Base User-Level ISA

▶ Later that month, May 2011: first tapeout of a RISC-V chip in 28nm

9 / 44

The Beginnings

▶ Started in May 2010 at the Par Lab at UC Berkley
▶ Prof. Krste Asanović, graduate students Yunsup Lee and Andrew Waterman
▶ Joined by Prof. David Patterson, Director of Par Lab

▶ (who coined the term RISC in 1980s during the Berkley RISC project!)

▶ Fifth generation RISC ISA design at Berkley

▶ First publication of RISC-V instruction set in May 2011:
▶ The RISC-V Instruction Set Manual, Volume I: Base User-Level ISA

▶ Later that month, May 2011: first tapeout of a RISC-V chip in 28nm

9 / 44

The Beginnings

▶ Started in May 2010 at the Par Lab at UC Berkley
▶ Prof. Krste Asanović, graduate students Yunsup Lee and Andrew Waterman
▶ Joined by Prof. David Patterson, Director of Par Lab

▶ (who coined the term RISC in 1980s during the Berkley RISC project!)

▶ Fifth generation RISC ISA design at Berkley

▶ First publication of RISC-V instruction set in May 2011:
▶ The RISC-V Instruction Set Manual, Volume I: Base User-Level ISA

▶ Later that month, May 2011: first tapeout of a RISC-V chip in 28nm

9 / 44

RISC-V Foundation and RISC-V International

▶ RISC-V Foundation launched in 2015
▶ Steer development and ratification of RISC-V by its members
▶ Freely publish the RISC-V ISA documents for unrestricted use

▶ Decision in November 2019 to relocate to Switzerland
▶ After reflections of geo-political landscape, to “alleviate uncertainty going forward”

▶ RISC-V International Association incorporated in Switzerland in March 2020

10 / 44

RISC-V Foundation and RISC-V International

▶ RISC-V Foundation launched in 2015
▶ Steer development and ratification of RISC-V by its members
▶ Freely publish the RISC-V ISA documents for unrestricted use

▶ Decision in November 2019 to relocate to Switzerland
▶ After reflections of geo-political landscape, to “alleviate uncertainty going forward”

▶ RISC-V International Association incorporated in Switzerland in March 2020

10 / 44

RISC-V Foundation and RISC-V International

▶ RISC-V Foundation launched in 2015
▶ Steer development and ratification of RISC-V by its members
▶ Freely publish the RISC-V ISA documents for unrestricted use

▶ Decision in November 2019 to relocate to Switzerland
▶ After reflections of geo-political landscape, to “alleviate uncertainty going forward”

▶ RISC-V International Association incorporated in Switzerland in March 2020

10 / 44

Current Status of the Standard

▶ Unprivileged ISA first ratified and frozen in December 2019
▶ Included “Base Integer Instruction Sets” and some standard extensions

▶ A number of extensions ratified in 2021
▶ For bit manipulation, half-precision floating-point, vector

▶ Some more ratifications in 2022 and 2023
▶ Multiply without divide, reduced integer bases, total store ordering

▶ Important addition this year: Profiles
▶ Group a base ISA with mandatory standard extensions plus options
▶ Also includes expectations, for example regarding atomicity

11 / 44

Current Status of the Standard

▶ Unprivileged ISA first ratified and frozen in December 2019
▶ Included “Base Integer Instruction Sets” and some standard extensions

▶ A number of extensions ratified in 2021
▶ For bit manipulation, half-precision floating-point, vector

▶ Some more ratifications in 2022 and 2023
▶ Multiply without divide, reduced integer bases, total store ordering

▶ Important addition this year: Profiles
▶ Group a base ISA with mandatory standard extensions plus options
▶ Also includes expectations, for example regarding atomicity

11 / 44

Current Status of the Standard

▶ Unprivileged ISA first ratified and frozen in December 2019
▶ Included “Base Integer Instruction Sets” and some standard extensions

▶ A number of extensions ratified in 2021
▶ For bit manipulation, half-precision floating-point, vector

▶ Some more ratifications in 2022 and 2023
▶ Multiply without divide, reduced integer bases, total store ordering

▶ Important addition this year: Profiles
▶ Group a base ISA with mandatory standard extensions plus options
▶ Also includes expectations, for example regarding atomicity

11 / 44

Current Status of the Standard

▶ Unprivileged ISA first ratified and frozen in December 2019
▶ Included “Base Integer Instruction Sets” and some standard extensions

▶ A number of extensions ratified in 2021
▶ For bit manipulation, half-precision floating-point, vector

▶ Some more ratifications in 2022 and 2023
▶ Multiply without divide, reduced integer bases, total store ordering

▶ Important addition this year: Profiles
▶ Group a base ISA with mandatory standard extensions plus options
▶ Also includes expectations, for example regarding atomicity

11 / 44

Software Milestones

▶ First toolchain support in binutils 2.28 (March 2017) and GCC 7.1 (May 2017)

▶ First Linux port merged in v4.15 (January 2018)

▶ Followed by userspace support in glibc 2.27 (February 2018)

▶ Official Debian architecture since July 2023!

12 / 44

Software Milestones

▶ First toolchain support in binutils 2.28 (March 2017) and GCC 7.1 (May 2017)

▶ First Linux port merged in v4.15 (January 2018)

▶ Followed by userspace support in glibc 2.27 (February 2018)

▶ Official Debian architecture since July 2023!

12 / 44

Software Milestones

▶ First toolchain support in binutils 2.28 (March 2017) and GCC 7.1 (May 2017)

▶ First Linux port merged in v4.15 (January 2018)

▶ Followed by userspace support in glibc 2.27 (February 2018)

▶ Official Debian architecture since July 2023!

12 / 44

The RISC-V ISA

RV32I Base Integer Instruction Set

▶ 32 registers, x0-x31, 32 bits wide (x0 hardwired to zero)

▶ 32-bit instruction encoding (except “C” extension, see later)

▶ 40 instructions:
▶ 21x integer computation instructions (add, sub, shift, logical operations)
▶ 8x control transfer instructions (unconditional jump, conditional branches)
▶ 8x load and store instructions (word, half-word, byte)
▶ Memory ordering (fence), environment call, and breakpoint instructions

14 / 44

RV32I Base Integer Instruction Set

▶ 32 registers, x0-x31, 32 bits wide (x0 hardwired to zero)

▶ 32-bit instruction encoding (except “C” extension, see later)

▶ 40 instructions:
▶ 21x integer computation instructions (add, sub, shift, logical operations)
▶ 8x control transfer instructions (unconditional jump, conditional branches)
▶ 8x load and store instructions (word, half-word, byte)
▶ Memory ordering (fence), environment call, and breakpoint instructions

14 / 44

RV64I Base Integer Instruction Set

▶ 32 registers widened to 64 bits

▶ 15 new instructions:
▶ 9x integer computation instructions on 32-bit words
▶ 3x shift immediate instructions for 64 bits
▶ 3x load and store instructions on doublewords

15 / 44

RV64I Base Integer Instruction Set

▶ 32 registers widened to 64 bits

▶ 15 new instructions:
▶ 9x integer computation instructions on 32-bit words
▶ 3x shift immediate instructions for 64 bits
▶ 3x load and store instructions on doublewords

15 / 44

RV32E, RV64E, RV128I Base Integer Instruction Sets

▶ RV32E and RV64E are reduced versions of RV32I and RV64I
▶ Only 16 general-purpose registers
▶ Designed for microcontrollers in embedded systems

▶ RV128I extends RV64I to 128 bits
▶ For future exploration, specification not frozen at the moment

16 / 44

RV32E, RV64E, RV128I Base Integer Instruction Sets

▶ RV32E and RV64E are reduced versions of RV32I and RV64I
▶ Only 16 general-purpose registers
▶ Designed for microcontrollers in embedded systems

▶ RV128I extends RV64I to 128 bits
▶ For future exploration, specification not frozen at the moment

16 / 44

“M” Standard Extension for Integer Multiplication and Division

▶ Integer multiplication and division

▶ 8 / 13 new instructions for RV32 / RV64:
▶ 4x integer multiplication (+ 1x multiplication of 32-bit words for RV64)
▶ 4x integer division and remainder (+ 4x for 32-bit words for RV64)

17 / 44

“M” Standard Extension for Integer Multiplication and Division

▶ Integer multiplication and division

▶ 8 / 13 new instructions for RV32 / RV64:
▶ 4x integer multiplication (+ 1x multiplication of 32-bit words for RV64)
▶ 4x integer division and remainder (+ 4x for 32-bit words for RV64)

17 / 44

“A” Standard Extension for Atomic Instructions

▶ Instructions for atomic operations:
▶ Load-reserved/store-conditional instructions (LR/SC)
▶ Atomic fetch-and-op memory instructions

▶ 11 / 22 new instructions:
▶ 2x LR/SC instructions (+ 2x for doublewords on RV64)
▶ 9x atomic memory operations (+ 9x for doublewords on RV64)

▶ Requirement: naturally aligned addresses

▶ Atomic memory operations:
▶ Atomically swap, add, and, or, xor two values
▶ Atomically compute signed / unsigned maximum / minimum of two values

18 / 44

“A” Standard Extension for Atomic Instructions

▶ Instructions for atomic operations:
▶ Load-reserved/store-conditional instructions (LR/SC)
▶ Atomic fetch-and-op memory instructions

▶ 11 / 22 new instructions:
▶ 2x LR/SC instructions (+ 2x for doublewords on RV64)
▶ 9x atomic memory operations (+ 9x for doublewords on RV64)

▶ Requirement: naturally aligned addresses

▶ Atomic memory operations:
▶ Atomically swap, add, and, or, xor two values
▶ Atomically compute signed / unsigned maximum / minimum of two values

18 / 44

“A” Standard Extension for Atomic Instructions

▶ Instructions for atomic operations:
▶ Load-reserved/store-conditional instructions (LR/SC)
▶ Atomic fetch-and-op memory instructions

▶ 11 / 22 new instructions:
▶ 2x LR/SC instructions (+ 2x for doublewords on RV64)
▶ 9x atomic memory operations (+ 9x for doublewords on RV64)
▶ Requirement: naturally aligned addresses

▶ Atomic memory operations:
▶ Atomically swap, add, and, or, xor two values
▶ Atomically compute signed / unsigned maximum / minimum of two values

18 / 44

“A” Standard Extension for Atomic Instructions

▶ Instructions for atomic operations:
▶ Load-reserved/store-conditional instructions (LR/SC)
▶ Atomic fetch-and-op memory instructions

▶ 11 / 22 new instructions:
▶ 2x LR/SC instructions (+ 2x for doublewords on RV64)
▶ 9x atomic memory operations (+ 9x for doublewords on RV64)
▶ Requirement: naturally aligned addresses

▶ Atomic memory operations:
▶ Atomically swap, add, and, or, xor two values
▶ Atomically compute signed / unsigned maximum / minimum of two values

18 / 44

“A” Standard Extension for Atomic Instructions – LR/SC loops

▶ RISC-V chooses LR/SC loops over compare-and-set (CAS) instructions
▶ Claimed to be a better fit and more efficient, see standard for rationale

▶ CAS can be implemented with LR/SC instructions:

a0 holds address of memory location

a1 holds expected value

a2 holds desired value

a0 holds return value , 0 if successful , !0 otherwise

cas:

lr.w t0 , (a0) # Load original value.

bne t0 , a1 , fail # Doesn ’t match , so fail.

sc.w t0 , a2 , (a0) # Try to update.

bnez t0, cas # Retry if store -conditional failed.

li a0 , 0 # Set return to success.

jr ra # Return.

fail:

li a0 , 1 # Set return to failure.

jr ra # Return.

19 / 44

“A” Standard Extension for Atomic Instructions – LR/SC loops

▶ RISC-V chooses LR/SC loops over compare-and-set (CAS) instructions
▶ Claimed to be a better fit and more efficient, see standard for rationale
▶ CAS can be implemented with LR/SC instructions:

a0 holds address of memory location

a1 holds expected value

a2 holds desired value

a0 holds return value , 0 if successful , !0 otherwise

cas:

lr.w t0 , (a0) # Load original value.

bne t0 , a1 , fail # Doesn ’t match , so fail.

sc.w t0 , a2 , (a0) # Try to update.

bnez t0, cas # Retry if store -conditional failed.

li a0 , 0 # Set return to success.

jr ra # Return.

fail:

li a0 , 1 # Set return to failure.

jr ra # Return.

19 / 44

“F” Standard Extension for Single-Precision Floating-Point

▶ 32 registers, f0-f31, 32 bits wide

▶ 26 / 30 new instructions:
▶ 2x load and store instruction
▶ 7x floating point computation (add, sub, mul, div, sqrt, min, max)
▶ 4x fused multiply-add instructions
▶ 4x conversion instructions to / from integers (+ 4x to / from 64-bit integers)
▶ 3x sign-injection instructions (copy, negate, xor)
▶ 2x instructions to move bit patterns to / from general registers
▶ 3x compare and 1x classify instructions

20 / 44

“F” Standard Extension for Single-Precision Floating-Point

▶ 32 registers, f0-f31, 32 bits wide

▶ 26 / 30 new instructions:
▶ 2x load and store instruction
▶ 7x floating point computation (add, sub, mul, div, sqrt, min, max)
▶ 4x fused multiply-add instructions
▶ 4x conversion instructions to / from integers (+ 4x to / from 64-bit integers)
▶ 3x sign-injection instructions (copy, negate, xor)
▶ 2x instructions to move bit patterns to / from general registers
▶ 3x compare and 1x classify instructions

20 / 44

“D” Standard Extension for Double-Precision Floating-Point

▶ 32 floating point registers widened to 64 bits
▶ Can hold both single- or double-precision values

▶ 26 / 32 new instructions:
▶ 13x analogous load/store/computational instructions
▶ 4x analogous conversion instructions to / from int. (+ 4x to / from 64-bit int.)
▶ 2x conversion instructions to / from single-precision
▶ 3x analogous sign-injection instructions
▶ 2x instructions to move bit patterns (only RV64)
▶ 4x analogous compare / classify instructions

21 / 44

“D” Standard Extension for Double-Precision Floating-Point

▶ 32 floating point registers widened to 64 bits
▶ Can hold both single- or double-precision values

▶ 26 / 32 new instructions:
▶ 13x analogous load/store/computational instructions
▶ 4x analogous conversion instructions to / from int. (+ 4x to / from 64-bit int.)
▶ 2x conversion instructions to / from single-precision
▶ 3x analogous sign-injection instructions
▶ 2x instructions to move bit patterns (only RV64)
▶ 4x analogous compare / classify instructions

21 / 44

“G” = “General-Purpose” ISA

▶ Letter “G” used as abbreviation for: IMAFDZicsr Zifencei

▶ Includes all standard extensions presented so far and:
▶ Zicsr: Control and Status Register (CSR) Instructions

▶ e.g. cycle and timing counters, hardware performance counters, floating-point CSR

▶ Zifencei: Instruction-Fetch Fence

▶ Note: in the future Profiles probably are going to become more important

22 / 44

“G” = “General-Purpose” ISA

▶ Letter “G” used as abbreviation for: IMAFDZicsr Zifencei

▶ Includes all standard extensions presented so far and:
▶ Zicsr: Control and Status Register (CSR) Instructions

▶ e.g. cycle and timing counters, hardware performance counters, floating-point CSR

▶ Zifencei: Instruction-Fetch Fence

▶ Note: in the future Profiles probably are going to become more important

22 / 44

“G” = “General-Purpose” ISA

▶ Letter “G” used as abbreviation for: IMAFDZicsr Zifencei

▶ Includes all standard extensions presented so far and:
▶ Zicsr: Control and Status Register (CSR) Instructions

▶ e.g. cycle and timing counters, hardware performance counters, floating-point CSR

▶ Zifencei: Instruction-Fetch Fence

▶ Note: in the future Profiles probably are going to become more important

22 / 44

“C” Standard Extension for Compressed Instructions

▶ 16-bit encodings of commonly used instructions
▶ Also lowers code alignment requirements for 32-bit encodings

▶ Trade-offs:

▶ Small immediate or address offset
▶ Implying smaller target ranges for loads/stores/jumps/branches

▶ Restrictions on the register (either special or most popular ones)

▶ “50%–60% of the RISC-V instructions in a program can be replaced with RVC
instructions, resulting in a 25%–30% code-size reduction.”

23 / 44

“C” Standard Extension for Compressed Instructions

▶ 16-bit encodings of commonly used instructions
▶ Also lowers code alignment requirements for 32-bit encodings

▶ Trade-offs:
▶ Small immediate or address offset

▶ Implying smaller target ranges for loads/stores/jumps/branches

▶ Restrictions on the register (either special or most popular ones)

▶ “50%–60% of the RISC-V instructions in a program can be replaced with RVC
instructions, resulting in a 25%–30% code-size reduction.”

23 / 44

“C” Standard Extension for Compressed Instructions

▶ 16-bit encodings of commonly used instructions
▶ Also lowers code alignment requirements for 32-bit encodings

▶ Trade-offs:
▶ Small immediate or address offset

▶ Implying smaller target ranges for loads/stores/jumps/branches

▶ Restrictions on the register (either special or most popular ones)

▶ “50%–60% of the RISC-V instructions in a program can be replaced with RVC
instructions, resulting in a 25%–30% code-size reduction.”

23 / 44

“C” Standard Extension for Compressed Instructions

▶ 16-bit encodings of commonly used instructions
▶ Also lowers code alignment requirements for 32-bit encodings

▶ Trade-offs:
▶ Small immediate or address offset

▶ Implying smaller target ranges for loads/stores/jumps/branches

▶ Restrictions on the register (either special or most popular ones)

▶ “50%–60% of the RISC-V instructions in a program can be replaced with RVC
instructions, resulting in a 25%–30% code-size reduction.”

23 / 44

More Standard Extensions

Unprivileged Architecture:

▶ Q: Quad-Precision Floating-Point

▶ B: Bit Manipulation

▶ V: Vector Operations (will talk about this a bit more)

▶ Zk: Scalar Cryptography

▶ Zihintpause: Pause Hint

▶ Ztso: Total Store Ordering

24 / 44

Even More Standard Extensions

Unprivileged Architecture:

▶ Zfh{,min}: Half-Precision Floating-Point

▶ Z{f,d}inx: {Single,Double}-Precision Floating-Point in Integer Register

▶ Zhinx{,min}: Half-Precision Floating-Point in Integer Register

▶ Zmmul: Multiplication Subset of the M Extension

Privileged Architecture:

▶ H: Hypervisor

▶ S: Supervisor

25 / 44

Some Words on Naming and Non-Standard Extensions

▶ Standard ISA extensions
▶ Single letter (e.g. M, A, F, D)
▶ “Z” prefix followed by alphabetical name

▶ Second letter conventionally indicates closest standard extension
▶ For example Zicsr and Zfh

▶ Non-standard extensions, for example by vendors:
▶ “X” prefix followed by alphabetical name
▶ Convention by toolchains: start with vendor name

▶ For example XVentanaCondOps and various XThead*

26 / 44

Some Words on Naming and Non-Standard Extensions

▶ Standard ISA extensions
▶ Single letter (e.g. M, A, F, D)
▶ “Z” prefix followed by alphabetical name

▶ Second letter conventionally indicates closest standard extension
▶ For example Zicsr and Zfh

▶ Non-standard extensions, for example by vendors:
▶ “X” prefix followed by alphabetical name
▶ Convention by toolchains: start with vendor name

▶ For example XVentanaCondOps and various XThead*

26 / 44

RISC-V Vector Extension (RVV)

Motivation

▶ Can it [RISC-V] run Doom?

▶ Can it run Doom faster with RISC-V Vector Extensions?

▶ Some grains of salt:
▶ FPGAs running at relatively low frequency of 25MHz
▶ Hardware already fully optimized? Software fully optimized?
▶ Manually inserting vector intrinsics

28 / 44

Motivation

▶ Can it [RISC-V] run Doom?

▶ Can it run Doom faster with RISC-V Vector Extensions?

▶ Some grains of salt:
▶ FPGAs running at relatively low frequency of 25MHz
▶ Hardware already fully optimized? Software fully optimized?
▶ Manually inserting vector intrinsics

28 / 44

Motivation

▶ Can it [RISC-V] run Doom? Yes.

▶ Can it run Doom faster with RISC-V Vector Extensions?

▶ Some grains of salt:
▶ FPGAs running at relatively low frequency of 25MHz
▶ Hardware already fully optimized? Software fully optimized?
▶ Manually inserting vector intrinsics

28 / 44

Motivation

▶ Can it [RISC-V] run Doom? Yes.

▶ Can it run Doom faster with RISC-V Vector Extensions?

▶ Some grains of salt:
▶ FPGAs running at relatively low frequency of 25MHz
▶ Hardware already fully optimized? Software fully optimized?
▶ Manually inserting vector intrinsics

28 / 44

Motivation

▶ Can it [RISC-V] run Doom? Yes.

▶ Can it run Doom faster with RISC-V Vector Extensions? Yes.

▶ Some grains of salt:
▶ FPGAs running at relatively low frequency of 25MHz
▶ Hardware already fully optimized? Software fully optimized?
▶ Manually inserting vector intrinsics

28 / 44

Motivation

▶ Can it [RISC-V] run Doom? Yes.

▶ Can it run Doom faster with RISC-V Vector Extensions? Yes.

▶ Some grains of salt:
▶ FPGAs running at relatively low frequency of 25MHz
▶ Hardware already fully optimized? Software fully optimized?
▶ Manually inserting vector intrinsics

28 / 44

https://www.youtube.com/watch?v=F8mIADXTPQI

Motivation

▶ Can it [RISC-V] run Doom? Yes.

▶ Can it run Doom faster with RISC-V Vector Extensions? Yes.

▶ Some grains of salt:
▶ FPGAs running at relatively low frequency of 25MHz
▶ Hardware already fully optimized? Software fully optimized?
▶ Manually inserting vector intrinsics

28 / 44

A Quick Look at SIMD Extensions in Other ISAs

▶ SIMD = Single Instruction, Multiple Data
▶ To exploit Data-Level Parallelism, for example adding elements of two vectors

▶ Instructions available in SIMD extensions for current ISAs:
▶ x86: Streaming SIMD Extensions (SSE), Advanced Vector Extensions (AVX)
▶ Arm NEON

29 / 44

A Quick Look at SIMD Extensions in Other ISAs

▶ SIMD = Single Instruction, Multiple Data
▶ To exploit Data-Level Parallelism, for example adding elements of two vectors

▶ Instructions available in SIMD extensions for current ISAs:
▶ x86: Streaming SIMD Extensions (SSE), Advanced Vector Extensions (AVX)
▶ Arm NEON

29 / 44

A Vector Loop: saxpy

▶ Single-precision vector operation: y⃗ ← ax⃗ + y⃗

void saxpy(int n, const float a, const float *x, float *y) {

#pragma clang loop vectorize(assume_safety)

#pragma clang loop interleave(disable)

for (int i = 0; i < n; i++) {

y[i] = a * x[i] + y[i];

}

}

0Clang #pragmas just to shorten the produced assembly code.
30 / 44

Code using SSE instructions (omitting setup code)

vectorized:

movups xmm2 , xmmword ptr [rsi + r8] # load x

mulps xmm2 , xmm1 # multiply with a (in xmm1)

movups xmm3 , xmmword ptr [rdx + r8] # load y

addps xmm3 , xmm2 # ax + y

movups xmmword ptr [rdx + r8], xmm3 # store y

add r8 , 16 # compute next offset (+ 4 elements)

cmp rdi , r8 # compare to final offset to process

jne vectorized # with vectorized loop (pre -computed)

cmp rcx , rax # check if elements remain

je done # otherwise done

scalar:

movss xmm1 , dword ptr [rsi + 4*rcx] # load x

mulss xmm1 , xmm0 # multiply with a

addss xmm1 , dword ptr [rdx + 4*rcx] # load and add y

movss dword ptr [rdx + 4*rcx], xmm1 # store y

inc rcx

cmp rax , rcx

jne scalar

done: ret
31 / 44

Issues with “SIMD Instruction Set Extensions for Multimedia”
(according to “Computer Architecture - A Quantative Approach” by Hennessy and Patterson)

▶ Fixed-size registers: need new instructions for larger vectors
▶ On x86: MMX (64 bits); SSE (128 bits); AVX (256 bits); AVX-512 (512 bits*)

▶ Partial solution: have “scalable” vector registers
▶ Arm Scalable Vector Extensions (SVE)
▶ Implementation-defined vector length from 128 bits to 2048 bits

▶ Related: how to deal with vectors that are not multiples of the register size?
▶ Traditional approach: scalar remainder loop
▶ Masking / predication in Arm SVE and x86 AVX-512 can help

▶ Natural solution developed in the 1960s/1970s used in the Cray-1
▶ Have a vector-length register set by the application
▶ Determines length for following vector operations

32 / 44

Issues with “SIMD Instruction Set Extensions for Multimedia”
(according to “Computer Architecture - A Quantative Approach” by Hennessy and Patterson)

▶ Fixed-size registers: need new instructions for larger vectors
▶ On x86: MMX (64 bits); SSE (128 bits); AVX (256 bits); AVX-512 (512 bits*)

▶ Partial solution: have “scalable” vector registers
▶ Arm Scalable Vector Extensions (SVE)
▶ Implementation-defined vector length from 128 bits to 2048 bits

▶ Related: how to deal with vectors that are not multiples of the register size?
▶ Traditional approach: scalar remainder loop
▶ Masking / predication in Arm SVE and x86 AVX-512 can help

▶ Natural solution developed in the 1960s/1970s used in the Cray-1
▶ Have a vector-length register set by the application
▶ Determines length for following vector operations

32 / 44

Issues with “SIMD Instruction Set Extensions for Multimedia”
(according to “Computer Architecture - A Quantative Approach” by Hennessy and Patterson)

▶ Fixed-size registers: need new instructions for larger vectors
▶ On x86: MMX (64 bits); SSE (128 bits); AVX (256 bits); AVX-512 (512 bits*)

▶ Partial solution: have “scalable” vector registers
▶ Arm Scalable Vector Extensions (SVE)
▶ Implementation-defined vector length from 128 bits to 2048 bits

▶ Related: how to deal with vectors that are not multiples of the register size?
▶ Traditional approach: scalar remainder loop
▶ Masking / predication in Arm SVE and x86 AVX-512 can help

▶ Natural solution developed in the 1960s/1970s used in the Cray-1
▶ Have a vector-length register set by the application
▶ Determines length for following vector operations

32 / 44

Issues with “SIMD Instruction Set Extensions for Multimedia”
(according to “Computer Architecture - A Quantative Approach” by Hennessy and Patterson)

▶ Fixed-size registers: need new instructions for larger vectors
▶ On x86: MMX (64 bits); SSE (128 bits); AVX (256 bits); AVX-512 (512 bits*)

▶ Partial solution: have “scalable” vector registers
▶ Arm Scalable Vector Extensions (SVE)
▶ Implementation-defined vector length from 128 bits to 2048 bits

▶ Related: how to deal with vectors that are not multiples of the register size?
▶ Traditional approach: scalar remainder loop
▶ Masking / predication in Arm SVE and x86 AVX-512 can help

▶ Natural solution developed in the 1960s/1970s used in the Cray-1
▶ Have a vector-length register set by the application
▶ Determines length for following vector operations

32 / 44

“V” Standard Extension for Vector Operations (RVV) – Registers

▶ 32 vector registers, v0-v31
▶ Fixed vector length (VLEN ≤ 216) bits of state (must be power of 2)

▶ Application configures vector type (vtype):
▶ Selected element width (SEW ≥ 8), how to interpret data

▶ Must be smaller than hardware supported element length (ELEN ≥ 8)

▶ Vector register group multiplier (LMUL ≤ 8)
▶ For example, LMUL = 8 creates four groups of eight registers

▶ Maximum number of elements: VLMAX = LMUL ∗ VLEN/SEW
▶ Indices guaranteed to fit in 16 bits, maximum VLMAX = 8 ∗ 216/8 = 65, 536
▶ Selected vector length vl ≤ VLMAX

33 / 44

“V” Standard Extension for Vector Operations (RVV) – Registers

▶ 32 vector registers, v0-v31
▶ Fixed vector length (VLEN ≤ 216) bits of state (must be power of 2)

▶ Application configures vector type (vtype):
▶ Selected element width (SEW ≥ 8), how to interpret data

▶ Must be smaller than hardware supported element length (ELEN ≥ 8)

▶ Vector register group multiplier (LMUL ≤ 8)
▶ For example, LMUL = 8 creates four groups of eight registers

▶ Maximum number of elements: VLMAX = LMUL ∗ VLEN/SEW
▶ Indices guaranteed to fit in 16 bits, maximum VLMAX = 8 ∗ 216/8 = 65, 536
▶ Selected vector length vl ≤ VLMAX

33 / 44

“V” Standard Extension for Vector Operations (RVV) – Registers

▶ 32 vector registers, v0-v31
▶ Fixed vector length (VLEN ≤ 216) bits of state (must be power of 2)

▶ Application configures vector type (vtype):
▶ Selected element width (SEW ≥ 8), how to interpret data

▶ Must be smaller than hardware supported element length (ELEN ≥ 8)

▶ Vector register group multiplier (LMUL ≤ 8)
▶ For example, LMUL = 8 creates four groups of eight registers

▶ Maximum number of elements: VLMAX = LMUL ∗ VLEN/SEW
▶ Indices guaranteed to fit in 16 bits, maximum VLMAX = 8 ∗ 216/8 = 65, 536
▶ Selected vector length vl ≤ VLMAX

33 / 44

“V” Standard Extension for Vector Operations (RVV) – Registers

▶ 32 vector registers, v0-v31
▶ Fixed vector length (VLEN ≤ 216) bits of state (must be power of 2)

▶ Application configures vector type (vtype):
▶ Selected element width (SEW ≥ 8), how to interpret data

▶ Must be smaller than hardware supported element length (ELEN ≥ 8)

▶ Vector register group multiplier (LMUL ≤ 8)
▶ For example, LMUL = 8 creates four groups of eight registers

▶ Maximum number of elements: VLMAX = LMUL ∗ VLEN/SEW
▶ Indices guaranteed to fit in 16 bits, maximum VLMAX = 8 ∗ 216/8 = 65, 536
▶ Selected vector length vl ≤ VLMAX

33 / 44

RVV Configuration-Setting Instructions

▶ Three instructions to set vl and vtype: vset{i}vl{i}
▶ Focus on vsetvli rd, rs1, vtypei

▶ rs1: application vector length (AVL), ie total number of elements to process
▶ vtypei: immediate with new vtype setting (with assembler names)
▶ rd: instruction returns new vl that was set

▶ An example: vsetvli t0, a0, e32, m8, ta, ma
▶ a0 elements of SEW = 32 (for example single-precision FP)
▶ LMUL = 8 to group eight registers each
▶ (ta, ma sets vector mask and tail agnostic)
▶ t0 is assigned vl ≤ VLMAX, vl ≤ AVL (and some more constraints)

34 / 44

RVV Configuration-Setting Instructions

▶ Three instructions to set vl and vtype: vset{i}vl{i}
▶ Focus on vsetvli rd, rs1, vtypei

▶ rs1: application vector length (AVL), ie total number of elements to process
▶ vtypei: immediate with new vtype setting (with assembler names)
▶ rd: instruction returns new vl that was set

▶ An example: vsetvli t0, a0, e32, m8, ta, ma
▶ a0 elements of SEW = 32 (for example single-precision FP)
▶ LMUL = 8 to group eight registers each
▶ (ta, ma sets vector mask and tail agnostic)
▶ t0 is assigned vl ≤ VLMAX, vl ≤ AVL (and some more constraints)

34 / 44

RVV Instructions

▶ Configuration-setting instructions

▶ Vector load and store instructions

▶ Vector integer arithmetic instructions

▶ Vector fixed-point arithmetic instructions

▶ Vector floating-point instructions

▶ Vector reduction operations

▶ Vector mask instructions

▶ Vector permutation instructions

35 / 44

Code using RVV (from the standard)

register arguments:

a0 n

fa0 a

a1 x

a2 y

saxpy:

vsetvli a4 , a0 , e32 , m8 , ta , ma # ask for a0 elements , get a4

vle32.v v0 , (a1) # load x

sub a0 , a0 , a4 # subtract processed elements

slli a4, a4, 2 # shift by 2 = multiply by 4

add a1 , a1 , a4 # compute next pointer for x

vle32.v v8 , (a2) # load y

vfmacc.vf v8, fa0 , v0 # compute ax + y

vse32.v v8 , (a2) # store y

add a2 , a2 , a4 # compute next pointer for y

bnez a0, saxpy # if elements left , jump back

ret

36 / 44

Compiler Vectorization

▶ Manual vectorization is tedious, time-consuming, and error-prone

→ if possible, should rely on compiler to optimize the code

▶ Autovectorization improved a lot in the last years
▶ Works well for simple examples
▶ Might need some help for more complex cases
▶ Still not possible for many advanced cases

▶ RVV 1.0 currently only supported by upstream Clang
▶ Old fork of GCC not updated anymore

37 / 44

Compiler Vectorization

▶ Manual vectorization is tedious, time-consuming, and error-prone

→ if possible, should rely on compiler to optimize the code

▶ Autovectorization improved a lot in the last years
▶ Works well for simple examples
▶ Might need some help for more complex cases
▶ Still not possible for many advanced cases

▶ RVV 1.0 currently only supported by upstream Clang
▶ Old fork of GCC not updated anymore

37 / 44

Compiler Vectorization

▶ Manual vectorization is tedious, time-consuming, and error-prone

→ if possible, should rely on compiler to optimize the code

▶ Autovectorization improved a lot in the last years
▶ Works well for simple examples
▶ Might need some help for more complex cases
▶ Still not possible for many advanced cases

▶ RVV 1.0 currently only supported by upstream Clang
▶ Old fork of GCC not updated anymore

37 / 44

saxpy for RV64GC with Clang

saxpy(int , float , float const*, float *):

blez a0, .LBB0_2

.LBB0_1:

flw ft0 , 0(a1)

flw ft1 , 0(a2)

fmadd.s ft0 , fa0 , ft0 , ft1

fsw ft0 , 0(a2)

addi a2, a2, 4

addi a0, a0, -1

addi a1, a1, 4

bnez a0, .LBB0_1

.LBB0_2:

ret

38 / 44

saxpy for RV64GCV with Clang (1/3)

saxpy(int , float , float const*, float *):

blez a0, done

csrr t1, vlenb # get Vector Byte Length (VLEN /8)

srli t0, t1, 2 # divide by 4 = number of floats

bgeu a0, t0, vectorized_setup

li a7 , 0

j scalar_setup

vectorized_setup:

addi a3, t0, -1 # subtract 1 -> mask

and a6 , a0 , a3 # remainder elements

sub a7 , a0 , a6 # vectorizable elements

vsetvli a3 , zero , e32 , m1 , ta , ma # request zero = max elements

vfmv.v.f v8, fa0 # "splat" scalar value of a

mv a3 , a7 # vectorized elements left

mv a4 , a2 # address of y

mv a5 , a1 # address of x

vectorized:

see next slide

39 / 44

saxpy for RV64GCV with Clang (2/3)

vectorized:

vl1re32.v v9 , (a5) # load x

vl1re32.v v10 , (a4) # load y

vfmacc.vv v10 , v8, v9 # compute ax + y

vs1r.v v10 , (a4) # store y

add a5 , a5 , t1 # compute next pointer for x

sub a3 , a3 , t0 # subtract processed elements

add a4 , a4 , t1 # compute next pointer for x

bnez a3, vectorized # if elements left , jump back

beqz a6, done # done if no remainder

scalar_setup:

slli a3, a7, 2 # offset after vectorized loop

add a2 , a2 , a3 # address of y

add a1 , a1 , a3 # address of x

sub a0 , a0 , a7 # subtract processed elements

scalar:

see next slide

40 / 44

saxpy for RV64GCV with Clang (3/3)

scalar:

flw ft0 , 0(a1) # load x

flw ft1 , 0(a2) # load y

fmadd.s ft0 , fa0 , ft0 , ft1 # compute ax + y

fsw ft0 , 0(a2) # store y

addi a2, a2, 4 # compute next pointer for y

addi a0, a0, -1 # subtract processed elements

addi a1, a1, 4 # compute next pointer for x

bnez a0, scalar # if elements left , jump back

done:

ret

41 / 44

Comments on saxpy for RV64GCV with Clang

▶ Big caveat: RVV 1.0 is still quite new!
▶ Encouraging to see compiler support, even if suboptimal for now

▶ Generated code uses RVV with fixed-size vectors
▶ Queries implementation-defined size of vector register (VLEN/8)
▶ Likely reason: matches Arm Scalable Vector Extensions

▶ ... and scalar remainder loop
▶ Probably does not yield optimal performance
▶ Especially more remainder elements for bigger vector registers

42 / 44

Comments on saxpy for RV64GCV with Clang

▶ Big caveat: RVV 1.0 is still quite new!
▶ Encouraging to see compiler support, even if suboptimal for now

▶ Generated code uses RVV with fixed-size vectors
▶ Queries implementation-defined size of vector register (VLEN/8)
▶ Likely reason: matches Arm Scalable Vector Extensions

▶ ... and scalar remainder loop
▶ Probably does not yield optimal performance
▶ Especially more remainder elements for bigger vector registers

42 / 44

Comments on saxpy for RV64GCV with Clang

▶ Big caveat: RVV 1.0 is still quite new!
▶ Encouraging to see compiler support, even if suboptimal for now

▶ Generated code uses RVV with fixed-size vectors
▶ Queries implementation-defined size of vector register (VLEN/8)
▶ Likely reason: matches Arm Scalable Vector Extensions

▶ ... and scalar remainder loop
▶ Probably does not yield optimal performance
▶ Especially more remainder elements for bigger vector registers

42 / 44

Conclusions

Conclusions

▶ RISC-V is an Open Standard ISA

▶ Modular design with base ISA and extensions

▶ RISC-V Vector Extensions with interesting design decisions
▶ Portable code to future hardware with larger vectors

▶ First single board computers are there (e.g. VisionFive v2)
▶ No hardware with RVV 1.0 yet (some with RVV 0.7.1)

44 / 44

Conclusions

▶ RISC-V is an Open Standard ISA

▶ Modular design with base ISA and extensions

▶ RISC-V Vector Extensions with interesting design decisions
▶ Portable code to future hardware with larger vectors

▶ First single board computers are there (e.g. VisionFive v2)
▶ No hardware with RVV 1.0 yet (some with RVV 0.7.1)

44 / 44

Conclusions

▶ RISC-V is an Open Standard ISA

▶ Modular design with base ISA and extensions

▶ RISC-V Vector Extensions with interesting design decisions
▶ Portable code to future hardware with larger vectors

▶ First single board computers are there (e.g. VisionFive v2)
▶ No hardware with RVV 1.0 yet (some with RVV 0.7.1)

44 / 44

Conclusions

▶ RISC-V is an Open Standard ISA

▶ Modular design with base ISA and extensions

▶ RISC-V Vector Extensions with interesting design decisions
▶ Portable code to future hardware with larger vectors

▶ First single board computers are there (e.g. VisionFive v2)
▶ No hardware with RVV 1.0 yet (some with RVV 0.7.1)

44 / 44

	What is RISC-V?
	Background
	History of RISC-V
	The RISC-V ISA
	Base Integer Instruction Set(s)
	Standard Extensions

	RISC-V Vector Extension (RVV)
	Conclusions

