Why D?

An opinionated talk on why you should pick D for your next project

Atila Neves

Qatilaneves
https://github.com/atilaneves/
https://www.linkedin.com/in/atilaneves/



Who are you, again?

PhD student at the NA60 experiment (SPS)

Fellow in the IT dept in the security team

e Software Engineer at Cisco Systems

Independent consultant

Co-leader of the D programming language

Responsible for D's standard library



e 2013: Writing C++ for 15 years

(Back to) Emacs, Arch Linux, zsh, and ...D
DConf, Andrei's book, first few lines

2014: First DConf

Maintainer of multiple D packages
2016: Approached at DConf
2019: D co-lead



e “Enable the realisation of ideas, by shifting the way programmers think”
e Code should be beautiful

e Least amount of code possible, but not less



D example: Average line length

import std;
void main() {
auto sum = 0.0;
auto count = stdin
.byLine
.tee!(line => sum += line.length)
.walkLength;
writeln("Average line length: ", count 7 sum / count : 0);

}



D example: Call D from Python

import autowrap;

mixin(wrapDlang! (LibraryName ("mylib"), Module("mymodule")));



e CTFE by default

e String mixins

e Compile-time reflection

e Anything can be a template parameter

e ImportC

e Built-in slices/arrays and associative arrays
e immutable / shared

e Ranges

e Memory safety / bug prevention

e Built-in documentation and testing



CTFE by default

uint factorial(uint i) {
return i == 0 7 1 : i * factorial(i - 1);
}
enum fach = factorial(5); // compile-time constant
enum val = sqrt(50); // from std.math
// but also:
writeln(sqrt(49)); // runtime



String mixins — generate code at compile-time

import std;
string code(int i) {
return text(Cauto x = 7, i, “;7);
}
mixin(code(5));

assert(x == 5);



Compile-time reflection

struct Struct {

int thelnt;
string theString;
}
alias members = __traits(allMembers, Struct);
static assert(members[0] == "thelnt");
static assert(members[1] == "theString");

alias typeofTheString = typeof (__traits(getMember, Struct, "theString"));
static assert(is(typeofTheString == string));

10



Anything can be a template parameter

import std.meta: Filter;

enum isSize4(T) = T.sizeof == 4; // short template metafunction syntax
// 1(...) is the equivalent of <...> in C++

alias types4 = Filter!(isSize4, int, long, float, double);

static assert(types4.length == 2);

11



ImportC — a C compiler in the D compiler

// cfuncs.c

int square(int i) { return i * i; }

// app.d
import cfuncs;

void main() { assert(square(3) == 9); }

12



Built-in slices/arrays and associative arrays

auto arr = [1, 2, 3];

arr "= 4;

assert(arr == [1, 2, 3, 4]);

arr "= [5, 6];

assert(arr == [1, 2, 3, 4, 5, 6]);
assert(arr([2..4] == [3, 4]);

auto aa = ["foo": 1, "bar": 2];

assert(aal["bar"] == 2);

aa["answer"] = 42;

13



How D is familiar

e AOT compiled statically typed language

e Procedural programming

e if/while/do/for/foreach, functions

e C-like syntax, C standard library available

e OOP (class / interface) like Java or C#
e Generic programming a la C++

e No compromise on runtime performance like C++

14



How D is not like C++

The elephant in the room: GC

Easier and better metaprogramming
Modules

Faster to compile

e Just...simpler and easier

15



Garbage Collection

CALM

AND
USE THE GC

16



Dispelling GC myths

GCs are not magically slow
RC is a form of GC
Safety by default is preferable, bottlenecks are unpredictable

malloc/new are slow anyway

17



Metaprogramming in C++

// https://atilaoncode.blog/2015/02/11/the-craziest-code-i-ever-wrote/
template<size_t... Sizes>
constexpr auto myMakeStrings(const char (&...args) [Sizes]) ->
MyTuple<String<Sizes>...> {

//myMakeTuple (myMakeString (argl), myMakeString(arg2), ...)

return myMakeTuple (myMakeString(args)...);

18



Metaprogramming in D

auto myMakeStrings(S...) (S strings) {

return tuple(strings);

19



Concurrency in D — actors

D uses the Actor Model. Actors can:

e Send messages to other actors
e Create more actors

e Decide what to do for the next message it receives

20



Concurrency in D — example

void main() {
auto tid = spawn(&writer);
foreach (i; 0 .. 100) {
writeln("Main thread: ", i);
tid.send(thisTid, i);

enforce(receiveOnly!Tid() == tid);
}
}
void writer() {
for (5;5) {

auto msg = receiveOnly!(Tid, int) ();
writeln("Secondary thread: ", msgl1]);

msg[0] .send (thisTid);
21



Concurrency in D: shared and immutable

e immutable is implicitly shared
e shared can be sent to another thread

e Using shared is ... tricky

22



Structured Concurrency

e Threads are to concurrency what goto is to regular programming.
e In short: don’t spawn threads, don't join them

e Coming to D’s standard library

23



dcompute — D on OpenCL/CUDA

Kernel:

Q@kernel void saxpy(GlobalPointer!(float) res,
float alpha,
GlobalPointer! (float) x,
GlobalPointer! (float) y,

size_t N)
{
auto i = GlobalIndex.x;
if (i >= N) return;
res[i] = alpha * x[i] + y[il;
}

24



dcompute — CUDA invocation

q.enqueue! (saxpy)
(N, 1, 17, [1, 1, 11) // Grid & block & optional shared memory
(b_res, alpha, b_x, b_y, N); // kernel arguments

// equivalent to the following CUDA code:

// sazxpy<<<i, N, 0, g>>>(b_res, alpha, b_z, b_y, N);

23



How D could benefit CERN

A lot less code

Fewer bugs

Far fewer, if any, memory safety bugs

Runtime performance at least the same as C++

Compile-time reflection makes binary protocols easy

26



Future developements in D

Stabilise the language
“Finish” v1 of Phobos, the standard library

Language editions
Phobos v2, v3, ...

e World domination?

27



Conclusion

D: beautiful and powerful

D has nearly all of the features of C++

D has features C++ doesn't

D requires less code to do the same thing

Metaprogramming in D is for mere mortals

D produces performant code

One language to rule them all

28



Questions?

Slide intentionally left blank

29



