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Celeritas project goal

- Accelerate scientific discovery by improving LHC L
detector simulation throughput and energy efficiency

- Long term goal: as much work as possible on GPU
- Initial funding: focus on EM physics (but keep door open for more!)

- Jointly funded by US DOE ASCR and HEP

- Research and develop novel algorithms for GPU-based Monte Carlo
simulation in High Energy Physics CELERITAS

- Implement production-quality code for GPU simulation

* Integrate collaboratively into experiment frameworks
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https://home.cern/resources/image/accelerators/lhc-images-gallery

Motivation 1: computational demand

* HL upgrade means 10x higher
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@ ATLAS MC baseline //

= More detector data means more simulations
needed
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= Tens of millions of “equivalent
2006-era CPU hours” for analysis

= 20-25% is from full-fidelity MC
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« Even AI/ML based “fast simulation” 20';
methods will need lots of training 0
data

2020 2022 2024 2026 2028 2030 2032 2034

GPU projection based on enerqy efficiency
and speedup of ExaSMR MC code
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Motivation 2: computational supply

+ “Heterogeneous” architectures are increasingly common in high
performance computing

» Scientific codes can run on GPU with much higher energy efficiency

e.q., Perlimutter reports 5x average: https://blogs.nvidia.com/blog/gpu-energy-efficiency-nersc/

- Demand for Al/ML training and models will accelerate this trend
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...but there’s a catch

- Exascale Computing Project (ECP) funded a wide range of scientific
libraries and applications to run efficiently on next-generation GPUs

- In all cases, performance on GPU requires:

= Algorithmic restructuring (reorganizing data, separating states, transposing loops)
= New numerical approaches (targeting higher compute-to-memory ratios)

= Alternative physics models (more favorable to thread-level parallelism)

= Not simply porting code

Drastically different hardware requires dramatically different software
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Methods
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High-level capabilities targeting LHC simulation

Equivalent to G4EmStandardPhysics
...using Urban MSC for high-E MISC, only y, e*

Full-featured Geant4 detector
geometries using VecGeom 1.x

Runtime selectable processes, physics
options, field definition

Execution on CUDA (Nvidia), HIP* (AMD), '%
and CPU devices GPU-traced rasterization of CMS 2018

I S S S ——
| N I N S
| |
g 1 1 T T ]
' —5'00 —2'50 (') 250 560 :

*VecGeom currently requires CUDA:
%gﬁ,ﬁ%{gﬁg ORANGE naVigation rGQUired for HIP Source. Johnson, S.R. Geant4 Meeting 2023 @




ORANGE: surface-based navigation

. Designed for deeply Posiion ___Votume ___SuriacerSense
A 1 -
nested reactor models A 1
- Portable (CUDA/HIP) Move internal | 1 —
geometry implementation [ C 1 a inside
, C 2 a outside
 Tracking based on CSG :
tree of surfaces
comprising volumes .
. . 1 2
* Maximize run-time : : §
Discrete state points ; afat
performance by (avoiding “fuzziness”) o«— 57>,
preprocessing is optimal for GPU A
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Magnetic field propagation

- Composition based: PoDoloEoF
Operator _linput ___|Output |

- Templated for extensibility Fiold » =
= Built-in “uniform” and “r-z field map” Equation of motion x,p, B X', p'
o _ Integrator X, p, h X", p*, e
= Magnetic field (Lorentz) equation Driver X, p, S X*, p*, s*
= Single driver (for now) with runtime step tolerances Propagator x,Q,E s x*,Q,s"

Runge—-Kutta 4 and Dormand-Prince RK5(4)7M integrators

Custom field propagator without safety evaluation*

% OAK RIDGE *safety calculation resulted consistently in slowdown on GPU @
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Stepping loop on a GPU

Process large batches of tracks

Initialize
new tracks per kernel (103-1069)
\
Pre-step
\
Along-step
Field Linear
\ Initialize | | = Ll Al L, dSeIect | Moveto
new tracks TEEIE CNEFEEE GlsemEis boundary
interaction
Select
discrete
interaction
¢ : : FEOSIEICTS Process
Interact c alIJISbZ';:k secondaries
Move to
boundary )
\ Topological sort: a loop over kernels
Post-step
user 5 .
callback Using many small kernels improves
v extensibility
Process
OAK RIDGE secondaries
%National Laboratory Source: Johnson, S.R. Geant4 Meeting 2023




Celeritas/Geant4 integration

Imports EM physics selection, cross sections, parameters

Converts geometry to VecGeom model without 1/0

Offloads EM tracks from Geant4

(Via G4UserTrackingAction, G4VFastSimulationModel, or G4VTrackingManager)

Scores hits to user “sensitive detectors”
(Copies from GPU to CPU; reconstructs G4Hit, G4Step, G4Track; calls Hit)

Builds against Geant4 10.5-11.1

Celeritas has production quality interfaces

to simplify user application integration
%gﬁ)ﬁﬁiggg Source: Johnson, S.R. Geant4 Meeting 2023 @




Results
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P h S i cs ve rifi cati o n 50 Cross-section tables set to 56 bins per decade
------------------------

y C 2 Geant4 v11.0.3 .

a0l —— Celeritas (aa3395cad) -

30 __ 1o ]

ool =

Mean energy deposition [MeV]

10H —

Single-model distributions

Volume-dependent hit count and energy _
deposition distributions

Steps per track per particle type

Step-per-track distributions ; e e e =

Rel. Diff. (%)

Most significant disagreement remaining:
Urban MSC

Rel. Diff.
N O O a4

Steps per track
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Tognini

EM offloading with FullSimLight

. ATLAS FullSimLight: hadronic tile = % \

F-  — Celeritas M 615

ean
Std Dev 82.41

calorimeter module segment p G, @i
- 64 segments in full ATLAS, 2 in this test beam
. 18 GeV i+ beam, no field - oo

y FTFP_BERT (defaUIt) phySiCS IiSt Oog U200 400 “. 600 ' ‘10100‘ : ‘1250‘ : ‘14‘00‘

(includes standard EM)

175 F —— Geant4

« Celeritas reconstructs hits and sends to
user-defined G4VSensitiveDetector . IR S L

X [cm]
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%OAK RIDGE yz-integrated energy deposition %

National Laboratory  Test problem: Lachnit, Pezzotti; FSL integration: Morgan ‘
Source; Johnson, S.R. Geantd Meeting 2023

+ ~100 lines of code to integrate
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- Offload e-, e+, y to Celeritas

AE/Ax [MeV /cm]
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- Good agreement in energy deposition
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—>¢ Geant4
—>¢ G4+Celeritas CPU
—e— G4+Celeritas GPU

Offload performance results

- 1/4 of a Perimutter (NERSC) GPU node
16 cores of AMD EPYC, 1 Nvidia A100

101 L

1 primary per event

ATLAS Tilecal 18GeV n* / 1 primary / 2'° track slots
" | " " " | " | " ol

/T E
Xt
X
X
)&

Speedup (C/G4) Throughput [event/s]

« Time includes startup overhead, Geant4 hadronic 10
physics, track reconstruction, and SD callback L ;\;\;ﬁ
« GPU speedup: 1.7-1.9x at full occupancy | ¢ Goantd

—>¢— G4+Celeritas CPU

100 - —e— G4+Celeritas GPU

Using all CPU cores with a single GPU
« CPU-only speedup: 1.1-1.3x

- LHC-scale energy per event (i.e., all 64 modules)
is needed for GPU efficiency

Throughput [event/s]

64 primaries per event

ATLAS Tilecal 18GeV n™* /64 primaries / 213 track slots
. L . . . L . L ol

|
—_

Speedup (C/G4) o
N
L /

« One fast GPU can be shared effectively by full
multithreaded Geant4

75 N

—_
b
y

*X_
1 2 4 8 16 32

% OAK RIDGE CPU threads @
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CMSSW integration
* Initial CMSSW integration complete

= 500 lines of code
= Complications from extra user track state

- Performance isn’t comparable due to
different physics

= Lots of region-dependent cuts, parameter changes
» Fast simulation bypasses transport loop

« Strong collaboration with CMS

= CMSSW has agreed to integrate Celeritas as an external
= CPU-only for now to facility software infrastructure
= Maximum speedup for offloading EM: ~2.5x

%OAK RIDGE
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Maximum Speedup by EM Offloading

CMStt e CMSSW HL-LHC
-~ CMSSW Run-3
—o— HL-LHC Limit

—o— Run-3 Limit

o

12 3 4 5 6 7 8 9

Number of CPU Threads

CMSt e HL-LHC

-e- Run-3
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Number of CPU Threads
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CMSSW Run 3 hit distribution
010

CMS Run 3&4 Standalone Simulations

N
g (b) CMS Run3tt  —Celeritas
© —CMSSW
+ Standalone Geant4 app celer—g4 Y /
- 32 tt events from Pythia 10’
- FTFP_BERT physics 1089 /
» Geant4 simulates hadronics 10?
» All EM tracks offloaded to Celeritas
= Lepto-nuclear reactions neglected 000 0 1000
_ _ _ Hit Position z (cm)
- Multiple field options
= No magnetic field Standalone Run 3 hit distribution
= Uniform 4T field = I
» Discretized+interpolated RZ field (901x481 points) ° 10°
10°
« CMSSW/Geant4 throughput: 8x o
(we’re simulating a harder problem than necessary, 10°
but we now have an equivalent test problem) i

: x10°

-1 0 1
%OAK RIDGE Position z (cm) @
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CMS Run 3&4 Standalone Results

@)
- Promising performance S &
=5 2.0
= SD reconstruction adds <15% overhead g 151
n

= |nitial comparison of hits shows good agreement
= Run 3: 25%-190% improvement at 8 cores

= With task-based framework we might see better (due to
less GPU contention)

» Possible future improvements:

25
<t
@,

= Magnetic field propagation o 2.0f

= Activating track sorting to get smaller kernel grid sizes E 1.5 |
]

= Single-precision? (Especially on consumer cards) j’-; 1.0

o
&
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Run 3; Nvidia A100

—%— No field
—+— RZ map field
—e— Uniform field

Disable 5D
| |

4 8
CPU cores

E 2 16

Run 4 (HL-LHC); Nvidia A100

- —#&— No field
—+— RZ map field

IS

| —e— Uniform field

4 8
CPU cores
Nvidia A100 vs AMD 7532 EPYC

E 2 16
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Standalone EM performance

%

1300 x 10 GeV e, 16 events

4 Perlmutter node (NERSC)

1 x Nvidia A100 GPU, s x 64-core AMD EPYC 7763

Celeritas GPU vs CPU

CUDA (1 CPU thread) vs OpenMP (16 CPU threads)

Key metrics favor GPU
= Capacity: 50-94% loss if GPUs are ignored

Speedup (1 GPU / 16 CPU)

= Efficiency: up to 4x performance per watt

OAK RIDGE
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Previous versions of this slide used Summit
which shows much worse CPU performance
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Problem definition Modifier
A “infinite” medium F +field
B simple-cms M +msc
C idealized calorimeter
Z cms2018
: | VecGeom |4
|
7
] 3 =
D
S
s 3
@ 12 5
u(t_s TestEm3 is 2.5x faster with ORANGE %
¥
. 1
B
B
| | | | | | | | | v0.4.;|l on pelrlmutttlar
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Step-dependent behavior

- Number of active particle tracks
changes drastically due to EM shower

« Saturated GPU takes the most time

but <50% of step iterations
Despite using masking instead of sorting!

- Converting the tail of long-lived tracks

%

does not kill us
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7 x 1300 x 10 GeV e: CMS 2018 detector
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Speedup with respect to Geant4 LT sa
Problem definition g 10° = ' =
A “infinite” medium §’ .| >as e I
Standalone Celeritas on CPU B simplecms ] RFF A
. C idealized calorimeter T e = |
is ~50% faster than Geant4  z  cms2018 TEEEEZCBZENE
for EM test suite vl L % - onNe
M +msc 4 XX
GPU/G4 throughput: 2.5-20x — 1ol
= - -+
O i
Still investigating disparity S & §§§+G4 <
between “+G4” (offloaded S | & ceuics
O i +
from Geant4) versus 5 | + %
standalone app A m ¥ ¢" =
< (" O K N
QK Ripcr TEESE SO @

%
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TestEMS3 performance disparity

Throughput vs Geant4

CPU GPU

“No” divergence (all boxes)

Performance parity on CPU

ORANGE

Physics time parity on GPU

Step counts are equivalent
ORANGE faster on GPU

= Neutral propagation: 1.4x

= Field propagation: 3.6x
= Boundary crossing: 1.5x

VecGeom

%OAK RIDGE
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Power efficiency

%

Estimated using reported
Thermal Design Power (TDP) and
Celeritas throughput

GPU consistently shows higher
energy efficiency -

A100/EPYC price: ~4x &
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Efficiency [event/W-h]
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Machine GPU  [CPU_ |
Summit  Nvidia V100 IBM Power9

Perlmutter Nvidia A100 AMD EPYC 7763
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EM only, no SDs

Frontier AMD MI250x AMD EPYC 7453
X B Summit (CPU)
X % Summit (GPU)
B Frontier (CPU)
X Frontier (GPU)
X B Perlmutter (CPU)
X Perlmutter (GPU)
X X i ® Perlmutter (G4)
X o X
X x ok X
L X x X X X
] - X X
o | X
® .. m g X
N o e 0
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Conclusions
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Ongoing work

« Collaboration & integration

= CMSSW
= Athena (ATLAS) framework
= Student projects

« Verification & validation

= EM test problems
= CMSSW workflow

« Optimization and geometry

= 96% of standalone runtime in CMS2018 is in
geometry routines

= GPU native sensitive detectors

= ORANGE navigation

= Track sorting

%OAK RIDGE
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CMS2018 GPU

mm Geometry
B Physics
mm Geo&Phys

|

along-step-neutral
geo-boundary

along-step-uniform-msc
Fast kernel (<2%)

mmm  Geometry
mmm  Physics
mmm Geo&Phys

CMS2018 CPU



Celeritas future

« Designed for easy integration

» Potentially incorporate into Geant4 as an accelerator for certain HEP applications
= Continue integration into HEP experiment frameworks

« Designed for extensibility

= Optical photon simulation to be funded starting next year
= Incremental addition of HEP physics for GPU offloading

« Designed for performance

= Still have many avenues to investigate (without change to external interface!)
= Surface-based geometry predicted to be much faster for complex applications
= Works well on CPU, better on GPU

%OAK RIDGE
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Summary: by the numbers

- to integrate Celeritas into a FullSimLight tile calorimeter
100 lines of code v J

test application, with no modifications to Geant4

with 16 AMD EPYC cores for the ATLAS test beam

1 8 full-simulation including hadronics and SD hits, by using 1 Nvidia A100
) X Speedup application [NERSC Perlmutter]

when using Celeritas on GPU (compared to Geant4 MT
2_20 X throughPUt CPU) for EM test problems [NERSC Perimutter]

4 performance for TestEM3 (ORANGE geometry) using Celeritas GPU
X p er Watt instead of Geant4 CPU |NERSC FPerimutter]

Q0K RIDCE Celeritas v0.4: https://celeritas-project.qgithub.io/celeritas/ @
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Historical context

016

LHC Run 2

2018

2014

GeantV

ExaSMR

G Exa Pilot

2020
2022

2024

AdePT

%
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Code development

* Production-focused scientific
software

Infrastructure

EM physics

Magnetic fields
Framework integration
Optimization

300 [

= 90% of source code is reusable library code

[\

o1

o
T T

0 Diagnostics
o eome
= 1:2 ratio of lines of documentation to code % 200 Standasman o)
Documentation
= 50k lines of test code “;3 150
(db)
- Z
* Early push for EM physics 100
50 |

» Last year’s focus:

o

® |ntegration with Geant4
® Optimization on GPU (and CPU)
m ORANGE features for ExaSMR reactor simulation

% OAK RIDGE %
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Code development (flip side)

- 1 fix for every 2 enhancements 160 | m= Infrastructure
140 | ™= Magnetic fields
. . . [ ] Frar‘ne'woyk integration
» Integration campaigns critical for 120 | o Jpfimization
. . . §o) ORNL geome
f|nd|ng bUQSASSU@S .gj 100 '= gtanda?or;etagg , ’
_ . . o 80| {
ATLAS integration at LBL, Feb. 2023 g ol - |
= CMS integration at ORNL, June 2023 2
40 f : e
» Bug fix rate is decreasing though! 20 o
= Most fixes are for new features 0 - ~ " <
= Each PR requires a new unit test that fails without Q Q S 5
the fix and passes after Bug fix pull requests

% OAK RIDGE %
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Core design philosophy

+ Algorithms and structure will need to change due to:

= Increasing complexity of new physics added
= Design requirements from downstream integration
= Performance bottlenecks found during analysis

« Therefore code needs to be amenable to refactoring

= Heavy use of composition rather than inheritance or massive functions
= Data-oriented to allow the same data to be reused in multiple functions
= Template-friendly interfaces hide underlying data structures

%OAK RIDGE
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Geant4 interface library

Geant4 user application

RunAction EventAction TrackingAction Sensitive detectors
Celeritas accel interface Geant4
LocalTransporter SharedParams < Geometry Physics Thread-local

Low-level Celeritas code
VecGeom GPU/CPU HitProcessor
Stepper
#0AK RIDGE https.//celeritas-project. github.io/celeritas/user/index.html %
National Laborato:
35 Johnson, ;eth R. “Ce/ert/'farg v0.2: Offloading EM tracks to GPU from Geant4,” 21 Feb 2023.
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Performance per step

 Large variation in timing for early steps

possibly due to “looping” low-energy particles in
vacuum

 For same number of active tracks, end of

simulation is 50-80% slower per step
likely due to geometry divergence

%OAK RIDGE
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Time per step [ms]

Time per step [ms]
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