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Preamble: the sleepy July 14 spectator

• Fell asleep on his terrace waiting for the fireworks
• Suddenly awaken by the first shot
• Q: Can he make up for his absence during the explosion?
• A: Thanks to 

• mechanical laws
• observations

• He can:
• reconstruct the fragments’ trajectories
• notice that the fastest are the furthest away
• establish that they seem to come from one point
• evaluate the moment of the explosion

Transposed to the Universe, this is cosmology’s program
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Plan

1. Newtonian introduction
2. GR cosmo: metric, comoving, temperature
3. Horizon - Inflation
4. Baryon asymmetry and leptogenesis
5. Dark matter: needs; WIMPS and alternatives
6. (Hubble tensions)
7. (Gravitational waves) 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Cosmological Hypotheses
Cosmology = madly ambitious endeavour(Einstein):
Huge universe, not fully accessible
⇒ starting hypotheses necessary;  
     (check for coherence afterwards)
The Universe is :
• simpler than its parts (earth, sun,... = details)
• governed everywhere by same physical laws, �

     fixed by measurements on earth �
(not directly observable)

• isotropic ⇔ no privileged direction (observable)

• homogeneous ⇔ no privileged places = anti-geocentrism�
(not directly observable: further = earlier)

⇒ very constrained system, predictive and testable



If you suppose the earth surface to be :
• isotropic around a town �
⇔ exactly concentric mountains

• homogeneous ⇔ same landscape around every town

• both ⇒ surface with cst curvature k=1/R = single parameter

Hypotheses example:�
Is the Earth a sphere?

sphere
(∑𝜃i >180°, k>0)

plane
(∑𝜃i =180°, k=0)

saddle
(∑𝜃i <180°, k<0)
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Earth: validity of the hypotheses
• single local measurement of Rearth: validates nothing�

Eratosthenes deduction from Alexandria & Asswan’s wells

• many local measurements: better (if they agree!!!)�
⇒  importance of widening the horizon:
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Earth: validity of the hypotheses
• single local measurement of Rearth: validates nothing�

Eratosthenes deduction from Alexandria & Asswan’s wells

• many local measurements: better (if they agree!!!)�
⇒  importance of widening the horizon:

Ideal: global measurement (shadow of Earth on Moon (Aristotle),  
plane, satellite…), but requires a zoom-out impossible in cosmology 
Remark: forget foregrounds (= “annoying details”!!!)
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Homogeneity of the Universe
Not globally testable: you can only assume homogeneity and later test the 
coherence of its implications: 

• Isotropy+homogeneity at given time ⇒ matter distribution (stars, 
galaxies...) is constant (ρ = ct), and infinite (no boundaries) 

• The only compatible movements preserve ratios of distances,   
 == “comovements”: 

⇒Hubble law:  speed increases linearly with distance

Expansion de l’Univers: Modèle Newtonien c.f. e.g. Peacock,

“Physical Cosmology”

! Hypothèse cosmo ≡ distrib. de masse ρ:
• isotrope sym. sphér. autour x0 = 0 expérim.

√

• homogène → ∞, indép. x0 idéalisation ±
√ →

! Coordonnées comouvantes x0 naturelles:
0

x(t)

x0
.
= x(t0)

x

x(t) = x0.a(t); a(t) < a(t0)
.
= a0

.
= 1

∀ Objets en comvt: x0
.
= cte

⇒ ẋ(t) = x0.ȧ(t);

⇒ ẋ(t)
x(t) = ȧ(t)

a(t)

.
= H(t) loi Hubble

! Mvt. petite masse comouvante m: $= trivial Veff (a) ∼ 1/a

a

E0,−k > 0

E0,−k < 0

E0 = m
2 ẋ2 − mG

M(x)

x

= m
2 x2

0ȧ
2 − mG 4π

3 x2
0

ρM
0

a

⇔
(

ȧ
a

)2
= H2 = 8πG

3

ρM
0

a3
−

k

a2
; k

.
= −2E0

mx0
2

Défs: H0 = h[100km/s/Mpc] = h[1010ans]−1; h = 0.7 ± 0.1

→ ρc
0

.
= 3H2

0/8πG = h2[10mp/m3] !Exo! vérifier
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⇒ ẋ(t) = x0.ȧ(t);
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⇒ ẋ(t)
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) ẋ(t) = ȧ(t)x0 =
ȧ(t)

a(t)
x(t)

, ẋ(t) = H(t)x(t)

) x(t) = a(t)x0
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Comoving Expansion: �
it’s just a piece of cake!
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Comoving Expansion: �
it’s just a piece of cake!

• When cooking a chocolate nuggets 
cake, the ratios of distances between 
nuggets stay fixed   D/D′￼= D0/D′￼0

• You can define the scale factor  a(t) 
as the ratio of some coordinate of a 
nugget at time t,  and the same 
coordinate when cooking is over (t0)

• a(t) so defined is the same for all 
nuggets, independently of the chosen 
coordinate (x,y or z) and origin.

Q1: what is the dynamics of a(t) in cosmology?
Q2: does this evolution stay compatible with the hypotheses?

8
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Newtonian Dynamics (0):�
2 properties of gravitation 

For any force ~ 1 / r2  like gravity (or electricity), the attraction from a 
spherical shell of mass M and radius R on mass m at r is: (Newton)

• vanishing when the sphere  

includes the mass m ( R > r )

• identical to a point mass M  

located at the center of the sphere,  
when the mass m is outside the sphere ( R < r )


Thus, for a spherical mass distribution, only the  
blue shells attract the mass m, with a total force


mr

R

Fm(r) = GNmM(r)
1

r2
= mGN

4⇡⇢r3

3

1

r2
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Newtonian Dynamics (1)
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0ȧ
2 − mG 4π

3 x2
0

ρM
0

a

⇔
(

ȧ
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×
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m x2
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⇒ ẋ(t)
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Newtonian Dynamics (1)
• Let’s choose a point (the earth) as a 

center
• Consider a star m at distance x(t) of 
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2 ẋ2 − mG

M(x)

x

= m
2 x2

0ȧ
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2 ẋ2 − mG

M(x)

x

= m
2 x2

0ȧ
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2 ẋ2 − mG

M(x)

x

= m
2 x2

0ȧ
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0ȧ
2 − mG 4π

3 x2
0

ρM
0

a

⇔
(

ȧ
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2 ẋ2 − mG

M(x)

x

= m
2 x2

0ȧ
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Newtonian Dynamics (2)

• Today: Hubble constant 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≈

11
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⇒ ẋ(t) = x0.ȧ(t);

⇒ ẋ(t)
x(t) = ȧ(t)
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2 ẋ2 − mG

M(x)

x

= m
2 x2

0ȧ
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2 ẋ2 − mG

M(x)

x

= m
2 x2

0ȧ
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2 ẋ2 − mG

M(x)

x

= m
2 x2

0ȧ
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Effets relativistes (⇐ rel. générale Einstein)

! Courbure spatiale = k
a2 : k > 0: univ. fermé (sphère)

k < 0: univ. ouvert (selle)

> 180◦

< 180◦

! Décalage vers le rouge
(→ futur)

:
















λ(t) = λ0a(t)

ν(t) = ν0/a(t)
.
= ν0(1 + z(t)) (> ν0)

→ ρR(t) = ρR
0 /a4(t) (densité radiation ∼ T 4 → a(t)T (t) = cte)

p = ρR/3 → dQ = d(ρRa3) − pd(a3) = 0 (système isolé)

⇒ H2 =

(
ȧ

a

)2

= H2
0

(

ΩR

a4
+

ΩM

a3
+

1 −
∑

i=R,M,Λ Ωi

a2
+ ΩΛ

)

ΩΛ ≈ 0.7 cte cosmologique; domination pour a ∼> 1 a(t) ∼ exp(
√

ΩΛH0t)

ΩM .
= ρM

0 /ρc
0 ≈ 0.3 ” matière: a < ΩM/ΩΛ a(t) ∼ t2/3

ΩR .
= ρR

0 /ρc
0 ≈ 4.2 × 10−5h−2 ” radiation: a < ΩR/ΩM a(t) ∼ 10−10

(
t

1s

)1/2

=
1MeV

T (t)

H(t) = 1.6 g1/2
∗

T 2(t)

mPl

J.0rloff@GIF: 15-16 Septembre 2003 Baryo-, Lepto-génèse & !CP (Cosmo) / 4

(today)



Is this construction really homogeneous???

Discussion

12

(P. Geluck)



Is this construction really homogeneous???
Some

people

think 

"here" 

is just

here.

But in fact, 
you can 
find

“here”s 
   every- 
     where !

I know it,

because I 
was just 
there, 
… 

and they 

asked me:  
 “What 

 brings you 

        here?”

Discussion

12

(P. Geluck)



Is this construction really homogeneous???
Some

people

think 

"here" 

is just

here.

But in fact, 
you can 
find

“here”s 
   every- 
     where !

I know it,

because I 
was just 
there, 
… 

and they 

asked me:  
 “What 

 brings you 

        here?”

Discussion

12

FC|A =Force on object C computed from spheres around A ?=?FC|B?

(P. Geluck)



Is this construction really homogeneous???
Some

people

think 

"here" 

is just

here.

But in fact, 
you can 
find

“here”s 
   every- 
     where !

I know it,

because I 
was just 
there, 
… 

and they 

asked me:  
 “What 

 brings you 

        here?”

Discussion

12

FC|A =Force on object C computed from spheres around A ?=?FC|B?
Is FC mathematically well-defined ???

(P. Geluck)



13



13



Is this construction really homogeneous???

Discussion

14

A

C



Is this construction really homogeneous???

Discussion

14

FC|A =Force on object C computed from spheres around A

A

C



Is this construction really homogeneous???

Discussion

14

FC|A =Force on object C computed from spheres around A
?=?FC|B???  Is FC mathematically well-defined ???⇔

A

C



Is this construction really homogeneous???

Discussion

14

FC|A =Force on object C computed from spheres around A
?=?FC|B???  Is FC mathematically well-defined ???⇔

A

C

B

No!!!



Is this construction really homogeneous???

Discussion

14

FC|A =Force on object C computed from spheres around A
?=?FC|B???  Is FC mathematically well-defined ???⇔

Are differences of forces well-defined? (hint: absolute convergence) 
FC-B|A=(FC|A-FB|A) ?=? FC-B|B (= FC|B )

A

C

B

No!!!



Is this construction really homogeneous???

Discussion

14

FC|A =Force on object C computed from spheres around A
?=?FC|B???  Is FC mathematically well-defined ???⇔

Are differences of forces well-defined? (hint: absolute convergence) 
FC-B|A=(FC|A-FB|A) ?=? FC-B|B (= FC|B )

A

C

B

No!!!



Is this construction really homogeneous???

Discussion

14

FC|A =Force on object C computed from spheres around A
?=?FC|B???  Is FC mathematically well-defined ???⇔

Are differences of forces well-defined? (hint: absolute convergence) 
FC-B|A=(FC|A-FB|A) ?=? FC-B|B (= FC|B )

A

C

B
FC|A

No!!!



Is this construction really homogeneous???

Discussion

14

FC|A =Force on object C computed from spheres around A
?=?FC|B???  Is FC mathematically well-defined ???⇔

Are differences of forces well-defined? (hint: absolute convergence) 
FC-B|A=(FC|A-FB|A) ?=? FC-B|B (= FC|B )

A

C

B
FC|A

-FB|A

No!!!



Is this construction really homogeneous???

Discussion

14

FC|A =Force on object C computed from spheres around A
?=?FC|B???  Is FC mathematically well-defined ???⇔

Are differences of forces well-defined? (hint: absolute convergence) 
FC-B|A=(FC|A-FB|A) ?=? FC-B|B (= FC|B )

A

C

B
FC|BFC|A

-FB|A

No!!!

YES!!



Is this construction really homogeneous???

Discussion

14

FC|A =Force on object C computed from spheres around A
?=?FC|B???  Is FC mathematically well-defined ???⇔

Are differences of forces well-defined? (hint: absolute convergence) 
FC-B|A=(FC|A-FB|A) ?=? FC-B|B (= FC|B )

Then relative accelerations are well-defined! But…

A

C

B
FC|BFC|A

-FB|A

No!!!

YES!!



Is this construction really homogeneous???

Discussion

14

FC|A =Force on object C computed from spheres around A
?=?FC|B???  Is FC mathematically well-defined ???⇔

Are differences of forces well-defined? (hint: absolute convergence) 
FC-B|A=(FC|A-FB|A) ?=? FC-B|B (= FC|B )

Then relative accelerations are well-defined! But…
FA|A=FB|B=0; can both A and B be at rest in an inertial frame? 

Which one is « right »???

A

C

B
FC|BFC|A

-FB|A

No!!!

YES!!



Is this construction really homogeneous???

Discussion

14

FC|A =Force on object C computed from spheres around A
?=?FC|B???  Is FC mathematically well-defined ???⇔

Are differences of forces well-defined? (hint: absolute convergence) 
FC-B|A=(FC|A-FB|A) ?=? FC-B|B (= FC|B )

Then relative accelerations are well-defined! But…
FA|A=FB|B=0; can both A and B be at rest in an inertial frame? 

Which one is « right »???
Both? ⇒Need more general valid frames!.. ⇒ General relativity!!!

A

C

B
FC|BFC|A

-FB|A

No!!!

YES!!



Is this construction really homogeneous???

Discussion

14

FC|A =Force on object C computed from spheres around A
?=?FC|B???  Is FC mathematically well-defined ???⇔

Are differences of forces well-defined? (hint: absolute convergence) 
FC-B|A=(FC|A-FB|A) ?=? FC-B|B (= FC|B )

Then relative accelerations are well-defined! But…
FA|A=FB|B=0; can both A and B be at rest in an inertial frame? 

Which one is « right »???
Both? ⇒Need more general valid frames!.. ⇒ General relativity!!!

Further reading: J.D.Norton Newton paradox; Cosmological Woes

A

C

B
FC|BFC|A

-FB|A

No!!!

YES!!

http://www.pitt.edu/~jdnorton/papers/Paradox_II.pdf
http://www2.pitt.edu/~jdnorton/papers/cosmological-woes-HGR4.pdf
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• Finally, let ‘a’ be a function of time ‘a(t)’
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where a(t) is the scale factor and k is the curvature parameter.
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2
k ,
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2) r is a comoving coordinate.

Physical results depend only on the physical coordinate rphys = a(t)r
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Maximally symmetric geometry in comoving coordinates (r,θ,φ):

⇒

Conformal time:
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Conformal distance:
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⇒

⇒

Chapter 2.

INFLATION

Why is the universe homogeneous and isotropic?
Why is the CMB so uniform?

2.1. THE HORIZON PROBLEM

Consider the propagation of light in the FRW spacetime

ds2 = a
2(⌧)

h
d⌧ 2 � d�2 � S

2

k
(�)d⌦2

i
.

Because of isotropy, we can focus on purely radial geodesics (d✓ = d� = 0):

ds2 = a
2(⌧)

h
d⌧ 2 � d�2

i
.

Photons travel on null geodesics,

ds2 = 0 ) �� = ±�⌧

(straight lines)

Consider the FRW universe in these coordinates:

particle horizon at p

p

event horizon at p

comoving particle outside 
the particle horizon at p

13

see Baumann's lectures
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r2 ⌘ S2
k(�)

http://www.damtp.cam.ac.uk/user/db275/Inflation/Lectures.pdf
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1.3. DYNAMICS

The dynamics of a(t) is determined by the Einstein equation:

Gµ⌫[a(t)]

“CURVATURE”

= 8⇡G Tµ⌫

“MATTER”

• ENERGY-MOMENTUM TENSOR

� number current
four-vector Nµ = (N0 , Ni) =

✓
number
density

, flux

◆

� energy-momentum
tensor Tµ⌫ =

✓
T00 T0i

Ti0 Tij

◆
=

0

B@
energy
density

energy
flux

momentum
density

stress
tensor

1

CA

A comoving observer sees a homogeneous and isotropic universe i↵:

� Any 3-scalar is only a function of time N0 ⌘ n(t) T00 ⌘ ⇢(t)

� Any 3-vector vanishes Ni ⌘ 0 T0i ⌘ 0

� Any 3-tensor is proportional to gij Tij ⌘ �P (t)gij

Hence, Nµ = (n , 0) T
µ
⌫ ⌘ g

µ�
T�⌫ =

0

BBB@

⇢

�P

�P

�P

1

CCCA
( perfect

fluid

A general observer sees

Nµ = nUµ T
µ
⌫ = (⇢+ P )Uµ

U⌫ � P �
µ

⌫

where
n : no. density
⇢ : energy density
P : pressure

9
=

;
in the rest frame

of the fluid

Uµ : relative 4-velocity

For Uµ = (1, 0, 0, 0) this reduces to the previous results.

For Uµ = �(1, vi) we get boosted quantities: e.g. N0 = �n, etc.

7
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for observer at rest in fluid

• CONSERVATION LAWS

1) Particle number

In Minkowski, the conservation of particle number implies

ṅ = �@iN
i () @µN

µ = 0

+
In curved spacetimes, this becomes rµN

µ = 0 = @µN
µ + �µ

µ�
N

�

+

Using N
i = 0 and �µ

µ0
= �i

i0
=

ȧ

a
�
i

i
= 3

ȧ

a
, we get

ṅ

n
= �3

ȧ

a
) n / a

�3
.

2) Energy and momentum

In Minkowski, the conservation of energy and momentum implies

continuity ⇢̇ = �@i⇡
i

Euler ⇡̇i = @iP

)
() @µT

µ
⌫ = 0

+

In curved spacetimes, this becomes rµT
µ
⌫ = 0 = @µT

µ
⌫ + �µ

µ�
T

�
⌫ � ��

µ⌫
T

µ
�

Consider the ⌫ = 0 component in FRW:

@µT
µ
0 + �µ

µ�
T

�
0 � ��

µ0
T

µ
� = 0

Since T
i
0 = 0, this reduces to

d⇢

dt
+ �i

i0
⇢� �i

j0
T

j
i = 0

Using T
j
i = �P �

j

i
and �i

i0
= 3

ȧ

a
, we get ⇢̇+ 3

ȧ

a
(⇢+ P ) = 0

continuity
equation

or
d(⇢a3)

dt
= �P

d(a3)

dt

“dU = �PdV ”
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We get the FRIEDMANN EQUATIONS

✓
ȧ

a

◆2

=
8⇡G

3
⇢� k

a2

ä

a
= �4⇡G

3
(⇢+ 3P ) , ⇢̇ = �3

ȧ

a
(⇢+ P )

where ⇢ ⌘ ⇢� + ⇢⌫| {z }
⇢r

+ ⇢c + ⇢b| {z }
⇢m

+ ⇢⇤ .

In terms of the Hubble parameter,

the first Friedmann equation becomes
H

2 =
8⇡G

3
⇢� k

a2
(?)

We will use a subscript ‘0’ to denote quantities today, at t = t0.

A flat universe (k = 0) corresponds to a critical density

⇢crit,0 =
3H2

0

8⇡G
= 1.9⇥ 10�29

h
2 grams cm�3

= 2.8⇥ 1011 h2
M�Mpc�3

For each component I = r,m,⇤, . . . ,

define the fractional density today as
⌦I ⌘

⇢I,0

⇢crit,0

Eq. (?) then becomes

H
2(a) = H

2

0

h
⌦r a

�4 + ⌦m a
�3 + ⌦k a

�2 + ⌦⇤

i
,

where a0 ⌘ 1 and ⌦k ⌘
�k

(a0H0)2
.

Observations show that

|⌦k|  0.01 , ⌦r = 9.4⇥ 10�5
, ⌦m = 0.32 , ⌦⇤ = 0.68 ,

⌦b = 0.05 ,

⌦c = 0.27 ,

0.001 < ⌦⌫ < 0.02 .

We will from now on set ⌦k ⌘ 0.

11

Exercise: show that if const, thenw = P/ρ =

• COSMIC INVENTORY

Classify sources by their equation of state w ⌘ P/⇢

For w = const. we can integrate
⇢̇

⇢
= �3(1 + w)

ȧ

a
, to get ⇢ / a

�3(1+w) .

Name w ⇢ Examples

m MATTER 0 a
�3

non-relativistic

particles

Cold Dark Matter
(CDM)

Baryons
(nuclei + electrons!)

c

b

r RADIATION
1

3
a
�4

relativistic

particles

Photons

Neutrinos

Gravitons

�

⌫

g

⇤
DARK
ENERGY

�1 a
0 “What the hell!? ”

Vacuum Energy

Modified Gravity

⇤

9

1st eqn

2d eqn

and in particular: const  if ρ = w = − 1
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9

Exercise 1: find an explanation (or a proof) why ρr ∼ a -1/4 
Exercise 2: keeping  cst. despite expansion, needs energy; wherefrom?ρΛ

Notice:  

            so 
ρ ∝ T4

T ∝ 1/a
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ȧ

a
(⇢+ P )

where ⇢ ⌘ ⇢� + ⇢⌫| {z }
⇢r

+ ⇢c + ⇢b| {z }
⇢m

+ ⇢⇤ .

In terms of the Hubble parameter,

the first Friedmann equation becomes
H

2 =
8⇡G

3
⇢� k

a2
(?)

We will use a subscript ‘0’ to denote quantities today, at t = t0.

A flat universe (k = 0) corresponds to a critical density

⇢crit,0 =
3H2

0

8⇡G
= 1.9⇥ 10�29

h
2 grams cm�3

= 2.8⇥ 1011 h2
M�Mpc�3

For each component I = r,m,⇤, . . . ,

define the fractional density today as
⌦I ⌘

⇢I,0

⇢crit,0

Eq. (?) then becomes

H
2(a) = H

2

0

h
⌦r a

�4 + ⌦m a
�3 + ⌦k a

�2 + ⌦⇤

i
,

where a0 ⌘ 1 and ⌦k ⌘
�k

(a0H0)2
.

Observations show that

|⌦k|  0.01 , ⌦r = 9.4⇥ 10�5
, ⌦m = 0.32 , ⌦⇤ = 0.68 ,

⌦b = 0.05 ,

⌦c = 0.27 ,

0.001 < ⌦⌫ < 0.02 .

We will from now on set ⌦k ⌘ 0.

11

H
2 = H

2
0 [
⌦r

a4
+

⌦m

a3
+ ⌦⇤ +

(1�
P

⌦i)

a2
]

= �Veff (a)/a
2

Combining all components

(with 0 energy: k is part of V)
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1.2.2 Redshift

Everything we know about the universe is inferred from the light we receive from distant ob-

jects. The light emitted by a distant galaxy can be viewed either quantum mechanically as

freely-propagating photons, or classically as propagating electromagnetic waves. To interpret

the observations correctly, we need to take into account that the wavelength of the light gets

stretched (or, equivalently, the photons lose energy) by the expansion of the universe. We now

quantify this e↵ect.

Redshifting of photons.—In the quantum mechanical description, the wavelength of light is in-

versely proportional to the photon momentum, � = h/p. Since according to (1.2.51) the mo-

mentum of a photon evolves as a(t)�1, the wavelength scales as a(t). Light emitted at time t1

with wavelength �1 will be observed at t0 with wavelength

�0 =
a(t0)

a(t1)
�1 . (1.2.54)

Since a(t0) > a(t1), the wavelength of the light increases, �0 > �1.

Redshifting of classical waves.—We can derive the same result by treating light as classical

electromagnetic waves. Consider a galaxy at a fixed comoving distance d. At a time ⌧1, the

galaxy emits a signal of short conformal duration �⌧ (see fig. 1.5). According to (1.1.24), the

light arrives at our telescopes at time ⌧0 = ⌧1+d. The conformal duration of the signal measured

by the detector is the same as at the source, but the physical time intervals are di↵erent at the

points of emission and detection,

�t1 = a(⌧1)�⌧ and �t0 = a(⌧0)�⌧ . (1.2.55)

If �t is the period of the light wave, the light is emitted with wavelength �1 = �t1 (in units

where c = 1), but is observed with wavelength �0 = �t0, so that

�0

�1

=
a(⌧0)

a(⌧1)
. (1.2.56)

Figure 1.5: In conformal time, the period of a light wave (�⌧) is equal at emission (⌧1) and at observation (⌧0).
However, measured in physical time (�t = a(⌧)�⌧) the period is longer when it reaches us, �t0 > �t1. We
say that the light has redshifted since its wavelength is now longer, �0 > �1.

It is conventional to define the redshift parameter as the fractional shift in wavelength of a

photon emitted by a distant galaxy at time t1 and observed on Earth today,

z ⌘ �0 � �1

�1

. (1.2.57)

Redshift z : 1 + z ⌘ �0

�1
=

a(t0)�⌧

a(t1)�⌧

a(t1) = a(t0)[1 + (t1 � t0)H0 + · · · ] ) z ⇡ H0d

Redshift measures (small, i.e. linear) distances d: 

Distance… but which distance???  
(not equiv. beyond linear approx…)17 1. Geometry and Dynamics

with

without

di
st
an
ce

redshift
Figure 1.8: Distance measures in a flat universe, with matter only (dotted lines) and with 70% dark energy
(solid lines). In a dark energy dominated universe, distances out to a fixed redshift are larger than in a
matter-dominated universe.

will first discuss possible forms of cosmological stress-energy tensors Tµ⌫ (§1.3.1), then compute

the Einstein tensor Gµ⌫ for the FRW background (§1.3.2), and finally put them together to solve

for the evolution of the scale factor a(t) as a function of the matter content (§1.3.3).

1.3.1 Matter Sources

We first show that the requirements of isotropy and homogeneity force the coarse-grained stress-

energy tensor to be that of a perfect fluid,

Tµ⌫ = (⇢+ P )UµU⌫ � P gµ⌫ , (1.3.77)

where ⇢ and P are the energy density and the pressure of the fluid and U
µ is its four-velocity

(relative to the observer).

Number Density

In fact, before we get to the stress-energy tensor, we study a simpler object: the number current

four-vector Nµ. The µ = 0 component, N0, measures the number density of particles, where for

us a “particle” may be an entire galaxy. The µ = i component, N i, is the flux of the particles in

the direction x
i. Isotropy requires that the mean value of any 3-vector, such as N i, must vanish,

and homogeneity requires that the mean value of any 3-scalar15, such as N0, is a function only

of time. Hence, the current of galaxies, as measured by a comoving observer, has the following

components

N
0 = n(t) , N

i = 0 , (1.3.78)

where n(t) is the number of galaxies per proper volume as measured by a comoving observer.

A general observer (i.e. an observer in motion relative to the mean rest frame of the particles),

would measure the following number current four-vector

N
µ = nU

µ
, (1.3.79)

where U
µ ⌘ dX

µ
/ds is the relative four-velocity between the particles and the observer. Of

course, we recover the previous result (1.3.78) for a comoving observer, Uµ = (1, 0, 0, 0). For

15A 3-scalar is a quantity that is invariant under purely spatial coordinate transformations.

• metric distance: (sphere area) 

• apparent Luminosity: 
 

• Angular distance: 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We then find

1 + z =
a(t0)

a(t1)
. (1.2.58)

It is also common to define a(t0) ⌘ 1, so that

1 + z =
1

a(t1)
. (1.2.59)

Hubble’s law.—For nearby sources, we may expand a(t1) in a power series,

a(t1) = a(t0)
⇥
1 + (t1 � t0)H0 + · · ·

⇤
, (1.2.60)

where H0 is the Hubble constant

H0 ⌘
ȧ(t0)

a(t0)
. (1.2.61)

Eq. (1.2.58) then gives z = H0(t0 � t1) + · · · . For close objects, t0 � t1 is simply the physical

distance d (in units with c = 1). We therefore find that the redshift increases linearly with

distance

z ' H0d . (1.2.62)

The slope in a redshift-distance diagram (cf. fig. 1.8) therefore measures the current expansion

rate of the universe, H0. These measurements used to come with very large uncertainties. Since

H0 normalizes everything else (see below), it became conventional to define11

H0 ⌘ 100h kms�1Mpc�1
, (1.2.63)

where the parameter h is used to keep track of how uncertainties in H0 propagate into other

cosmological parameters. Today, measurements of H0 have become much more precise,12

h ⇡ 0.67± 0.01 . (1.2.64)

1.2.3 Distances⇤

For distant objects, we have to be more careful about what we mean by “distance”:

• Metric distance.—We first define a distance that isn’t really observable, but that will be

useful in defining observable distances. Consider the FRW metric in the form (1.1.21),

ds2 = dt2 � a
2(t)

h
d�2 + S

2

k
(�)d⌦2

i
, (1.2.65)

where13

Sk(�) ⌘

8
><

>:

R0 sinh(�/R0) k = �1

� k = 0

R0 sin(�/R0) k = +1

. (1.2.66)

The distance multiplying the solid angle element d⌦2 is the metric distance,

dm = Sk(�) . (1.2.67)

11A parsec (pc) is 3.26 light-years. Blame astronomers for the funny units in (6.3.29).
12Planck 2013 Results – Cosmological Parameters [arXiv:1303.5076].
13Notice that the definition of Sk(�) contains a length scale R0 after we chose to make the scale factor dimen-

sionless, a(t0) ⌘ 1. This is achieved by using the rescaling symmetry a ! �a, � ! �/�, and S
2

k ! S
2

k/�.
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• Angular diameter distance.—Sometimes we can make use of ‘standard rulers’, i.e. objects

of known physical size D. (This is the case, for example, for the fluctuations in the CMB.)

Let us assume again that the object is at a comoving distance � and the photons which

we observe today were emitted at time t1. A naive astronomer could decide to measure

the distance dA to the object by measuring its angular size �✓ and using the Euclidean

formula for its distance,14

dA =
D

�✓
. (1.2.72)

This quantity is called the angular diameter distance. The FRW metric (1.1.23) implies

source

observer

Figure 1.7: Geometry associated with the definition of angular diameter distance.

the following relation between the physical (transverse) size of the object and its angular

size on the sky

D = a(t1)Sk(�)�✓ =
dm

1 + z
�✓ . (1.2.73)

Hence, we get

dA =
dm

1 + z
. (1.2.74)

The angular diameter distance measures the distance between us and the object when

the light was emitted. We see that angular diameter and luminosity distances aren’t

independent, but related by

dA =
dL

(1 + z)2
. (1.2.75)

Fig. 1.8 shows the redshift dependence of the three distance measures dm, dL, and dA. Notice

that all three distances are larger in a universe with dark energy (in the form of a cosmological

constant ⇤) than in one without. This fact was employed in the discovery of dark energy (see

fig. 1.9 in §1.3.3).

1.3 Dynamics

The dynamics of the universe is determined by the Einstein equation

Gµ⌫ = 8⇡GTµ⌫ . (1.3.76)

This relates the Einstein tensor Gµ⌫ (a measure of the “spacetime curvature” of the FRW

universe) to the stress-energy tensor Tµ⌫ (a measure of the “matter content” of the universe). We

14This formula assumes �✓ ⌧ 1 (in radians) which is true for all cosmological objects.

dL = dm(1 + z)

⇠
p

Abs.lumi/Flux
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Supernovae are very bright (~galaxy!) & distant probes, with good 
absolute luminosity → dL probes a(t) beyond linear regime
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Figure 1.9: Type IA supernovae and the discovery dark energy. If we assume a flat universe, then the
supernovae clearly appear fainter (or more distant) than predicted in a matter-only universe (⌦m = 1.0).
(SDSS = Sloan Digital Sky Survey; SNLS = SuperNova Legacy Survey; HST = Hubble Space Telescope.)
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Figure 1.10: A combination CMB and LSS observations indicate that the spatial geometry of the universe
is flat. The energy density of the universe is dominated by a cosmological constant. Notice that the CMB
data alone cannot exclude a matter-only universe with large spatial curvature. The evidence for dark energy
requires additional input.

Single-Component Universe

The di↵erent scalings of radiation (a�4), matter (a�3) and vacuum energy (a0) imply that for

most of its history the universe was dominated by a single component (first radiation, then

matter, then vacuum energy; see fig. 1.11). Parameterising this component by its equation of

state wI captures all cases of interest. For a flat, single-component universe, the Friedmann

equation (1.3.135) reduces to
ȧ

a
= H0

p
⌦I a

�
3

2
(1+wI) . (1.3.136)
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Supernovae & The Accelerating Universe (history)
1998 (discovery)
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Universe Composition in Time

Preface

This course is about 13.8 billion years of cosmic evolution:

At early times, the universe was hot and dense. Interactions between particles were frequent

and energetic. Matter was in the form of free electrons and atomic nuclei with light bouncing

between them. As the primordial plasma cooled, the light elements—hydrogen, helium and

lithium—formed. At some point, the energy had dropped enough for the first stable atoms

to exist. At that moment, photons started to stream freely. Today, billions of years later, we

observe this afterglow of the Big Bang as microwave radiation. This radiation is found to be

almost completely uniform, the same temperature (about 2.7 K) in all directions. Crucially, the

cosmic microwave background contains small variations in temperature at a level of 1 part in

10 000. Parts of the sky are slightly hotter, parts slightly colder. These fluctuations reflect tiny

variations in the primordial density of matter. Over time, and under the influence of gravity,

these matter fluctuations grew. Dense regions were getting denser. Eventually, galaxies, stars

and planets formed.
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This picture of the universe—from fractions of a second after the Big Bang until today—

is a scientific fact. However, the story isn’t without surprises. The majority of the universe

today consists of forms of matter and energy that are unlike anything we have ever seen in

terrestrial experiments. Dark matter is required to explain the stability of galaxies and the rate

of formation of large-scale structures. Dark energy is required to rationalise the striking fact that

the expansion of the universe started to accelerate recently (meaning a few billion years ago).

What dark matter and dark energy are is still a mystery. Finally, there is growing evidence

that the primordial density perturbations originated from microscopic quantum fluctuations,

stretched to cosmic sizes during a period of inflationary expansion. The physical origin of

inflation is still a topic of active research.

1
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Planck 2013 CMB temperature anisotropies map

4 methods compared in : Planck 2013 results. XII. Component separation

O. Perdereau Planck 2013 Moriond EW 2014 9 / 2828

T = 2.72582 K
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Exercise: compare Hubble radius (aH)-1 (=points where v=c) and part. 
horizon at time t for a single fluid (w>-1/3). What is the value of τi ?

31 2. Inflation

2.1.2 Growing Hubble Sphere

It is the particle horizon that is relevant for the horizon problem of the standard Big Bang

cosmology. Eq. (2.1.3) can be written in the following illuminating way

�ph(⌧) =

Z
t

ti

dt

a
=

Z
a

ai

da

aȧ
=

Z
ln a

ln ai

(aH)�1 d ln a , (2.1.5)

where ai ⌘ 0 corresponds to the Big Bang singularity. The causal structure of the spacetime

can hence be related to the evolution of the comoving Hubble radius (aH)�1. For a universe

dominated by a fluid with constant equation of state w ⌘ P/⇢, we get

(aH)�1 = H
�1

0
a

1

2
(1+3w)

. (2.1.6)

Note the dependence of the exponent on the combination (1 + 3w). All familiar matter sources

satisfy the strong energy condition (SEC), 1 + 3w > 0, so it used to be a standard assumption

that the comoving Hubble radius increases as the universe expands. In this case, the integral in

(2.1.5) is dominated by the upper limit and receives vanishing contributions from early times.

We see this explicitly in the example of a perfect fluid. Using (2.1.6) in (2.1.5), we find

�ph(a) =
2H�1

0

(1 + 3w)


a

1

2
(1+3w) � a

1

2
(1+3w)

i

�
⌘ ⌧ � ⌧i . (2.1.7)

The fact that the comoving horizon receives its largest contribution from late times can be made

manifest by defining

⌧i ⌘
2H�1

0

(1 + 3w)
a

1

2
(1+3w)

i

ai!0 , w>�
1

3�����������! 0 . (2.1.8)

The comoving horizon is finite,

�ph(t) =
2H�1

0

(1 + 3w)
a(t)

1

2
(1+3w) =

2

(1 + 3w)
(aH)�1

. (2.1.9)

We see that in the standard cosmology �ph ⇠ (aH)�1. This has lead to the confusing practice

of referring to both the particle horizon and the Hubble radius as the “horizon” (see §2.2.2).

2.1.3 Why is the CMB so uniform?

About 380 000 years after the Big Bang, the universe had cooled enough to allow the formation

of hydrogen atoms and the decoupling of photons from the primordial plasma (see §3.3.3). We

observe this event in the form of the cosmic microwave background (CMB), an afterglow of the

hot Big Bang. Remarkably, this radiation is almost perfectly isotropic, with anisotropies in the

CMB temperature being smaller than one part in ten thousand.

A moment’s thought will convince you that the finiteness of the conformal time elapsed

between ti = 0 and the time of the formation of the CMB, trec, implies a serious problem: it

means that most spots in the CMB have non-overlapping past light cones and hence never were

in causal contact. This is illustrated by the spacetime diagram in fig. 2.2. Consider two opposite

directions on the sky. The CMB photons that we receive from these directions were emitted at

the points labelled p and q in fig. 2.2. We see that the photons were emitted su�ciently close to

the Big Bang singularity that the past light cones of p and q don’t overlap. This implies that

no point lies inside the particle horizons of both p and q. So the puzzle is: how do the photons

30 2. Inflation

particle horizon at p

p

event horizon at p

comoving particle outside 
the particle horizon at p

Figure 2.1: Spacetime diagram illustrating the concept of horizons. Dotted lines show the worldlines of
comoving objects. The event horizon is the maximal distance to which we can send signal. The particle
horizon is the maximal distance from which we can receive signals.

• Particle horizon.—Eq. (2.1.2) tells us that the maximal comoving distance that light can

travel between two times ⌧1 and ⌧2 > ⌧1 is simply �⌧ = ⌧2�⌧1 (recall that c ⌘ 1). Hence, if

the Big Bang ‘started’ with the singularity at ti ⌘ 0,2 then the greatest comoving distance

from which an observer at time t will be able to receive signals travelling at the speed of

light is given by

�ph(⌧) = ⌧ � ⌧i =

Z
t

ti

dt

a(t)
. (2.1.3)

This is called the (comoving) particle horizon. The size of the particle horizon at time ⌧

may be visualised by the intersection of the past light cone of an observer p with the

spacelike surface ⌧ = ⌧i (see fig. 2.1). Causal influences have to come from within this

region. Only comoving particles whose worldlines intersect the past light cone of p can

send a signal to an observer at p. The boundary of the region containing such worldlines

is the particle horizon at p. Notice that every observer has his of her own particle horizon.

• Event horizon.—Just as there are past events that we cannot see now, there may be future

events that we will never be able to see (and distant regions that we will never be able to

influence). In comoving coordinates, the greatest distance from which an observer at time

tf will receive signals emitted at any time later than t is given by

�eh(⌧) = ⌧f � ⌧ =

Z
tf

t

dt

a(t)
. (2.1.4)

This is called the (comoving) event horizon. It is similar to the event horizon of black

holes. Here, ⌧f denotes the ‘final moment of (conformal) time’. Notice that this may be

finite even if physical time is infinite, tf = +1. Whether this is the case or not depends

on the form of a(t). In particular, ⌧f is finite for our universe, if dark energy is really a

cosmological constant.

2Notice that the Big Bang singularity is a moment in time, but not a point space. Indeed, in figs. 2.1 and 2.2

we describe the singularity by an extended (possibly infinite) spacelike hypersurface.

Future horizon

Past horizon

�ph(⌧) ⌘ ⌧ � ⌧i =

Z t

ti

dt

a(t)

31 2. Inflation

2.1.2 Growing Hubble Sphere

It is the particle horizon that is relevant for the horizon problem of the standard Big Bang

cosmology. Eq. (2.1.3) can be written in the following illuminating way

�ph(⌧) =

Z
t

ti

dt

a
=

Z
a

ai

da

aȧ
=

Z
ln a

ln ai

(aH)�1 d ln a , (2.1.5)

where ai ⌘ 0 corresponds to the Big Bang singularity. The causal structure of the spacetime

can hence be related to the evolution of the comoving Hubble radius (aH)�1. For a universe

dominated by a fluid with constant equation of state w ⌘ P/⇢, we get

(aH)�1 = H
�1

0
a
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2
(1+3w)

. (2.1.6)

Note the dependence of the exponent on the combination (1 + 3w). All familiar matter sources

satisfy the strong energy condition (SEC), 1 + 3w > 0, so it used to be a standard assumption

that the comoving Hubble radius increases as the universe expands. In this case, the integral in

(2.1.5) is dominated by the upper limit and receives vanishing contributions from early times.

We see this explicitly in the example of a perfect fluid. Using (2.1.6) in (2.1.5), we find

�ph(a) =
2H�1
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The fact that the comoving horizon receives its largest contribution from late times can be made

manifest by defining
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The comoving horizon is finite,

�ph(t) =
2H�1
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(1+3w) =

2
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. (2.1.9)

We see that in the standard cosmology �ph ⇠ (aH)�1. This has lead to the confusing practice

of referring to both the particle horizon and the Hubble radius as the “horizon” (see §2.2.2).

2.1.3 Why is the CMB so uniform?

About 380 000 years after the Big Bang, the universe had cooled enough to allow the formation

of hydrogen atoms and the decoupling of photons from the primordial plasma (see §3.3.3). We

observe this event in the form of the cosmic microwave background (CMB), an afterglow of the

hot Big Bang. Remarkably, this radiation is almost perfectly isotropic, with anisotropies in the

CMB temperature being smaller than one part in ten thousand.

A moment’s thought will convince you that the finiteness of the conformal time elapsed

between ti = 0 and the time of the formation of the CMB, trec, implies a serious problem: it

means that most spots in the CMB have non-overlapping past light cones and hence never were

in causal contact. This is illustrated by the spacetime diagram in fig. 2.2. Consider two opposite

directions on the sky. The CMB photons that we receive from these directions were emitted at

the points labelled p and q in fig. 2.2. We see that the photons were emitted su�ciently close to

the Big Bang singularity that the past light cones of p and q don’t overlap. This implies that

no point lies inside the particle horizons of both p and q. So the puzzle is: how do the photons



Horizon problem

• Q: How can points p and q (at opposite directions on the CMB sky) 
have equal temperatures (with precision 10-4 ) ???

• A: by giving them more time to talk, with a shrinking Hubble radius!  
Since  ,  this requires   (P=wρ  
< 0???), e.g.  inflation ( , H=const)

(aH)−1 = H−1
0 a

1
2 (1+3w) w = − 1/3
w = 1
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coming from p and q “know” that they should be at almost exactly the same temperature? The

same question applies to any two points in the CMB that are separated by more than 1 degree

in the sky. The homogeneity of the CMB spans scales that are much larger than the particle

horizon at the time when the CMB was formed. In fact, in the standard cosmology the CMB is

made of about 104 disconnected patches of space. If there wasn’t enough time for these regions

to communicate, why do they look so similar? This is the horizon problem.
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Figure 2.2: The horizon problem in the conventional Big Bang model. All events that we currently observe
are on our past light cone. The intersection of our past light cone with the spacelike slice labelled CMB
corresponds to two opposite points in the observed CMB. Their past light cones don’t overlap before they
hit the singularity, a = 0, so the points appear never to have been in causal contact. The same applies to
any two points in the CMB that are separated by more than 1 degree on the sky.

2.2 A Shrinking Hubble Sphere

Our description of the horizon problem has highlighted the fundamental role played by the

growing Hubble sphere of the standard Big Bang cosmology. A simple solution to the horizon

problem therefore suggests itself: let us conjecture a phase of decreasing Hubble radius in the

early universe,
d

dt
(aH)�1

< 0 . (2.2.10)

If this lasts long enough, the horizon problem can be avoided. Physically, the shrinking Hubble

sphere requires a SEC-violating fluid, 1 + 3w < 0.

2.2.1 Solution of the Horizon Problem

For a shrinking Hubble sphere, the integral in (2.1.5) is dominated by the lower limit. The Big

Bang singularity is now pushed to negative conformal time,

⌧i =
2H�1

0

(1 + 3w)
a

1

2
(1+3w)

i

ai!0 , w<�
1

3�����������! �1 . (2.2.11)

This implies that there was “much more conformal time between the singularity and decoupling

than we had thought”! Fig. 2.3 shows the new spacetime diagram. The past light cones of
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Figure 2.3: Inflationary solution to the horizon problem. The comoving Hubble sphere shrinks during
inflation and expands during the conventional Big Bang evolution (at least until dark energy takes over at
a ⇡ 0.5). Conformal time during inflation is negative. The spacelike singularity of the standard Big Bang is
replaced by the reheating surface, i.e. rather than marking the beginning of time it now corresponds simply
to the transition from inflation to the standard Big Bang evolution. All points in the CMB have overlapping
past light cones and therefore originated from a causally connected region of space.

widely separated points in the CMB now had enough time to intersect before the time ⌧i. The

uniformity of the CMB is not a mystery anymore. In inflationary cosmology, ⌧ = 0 isn’t the

initial singularity, but instead becomes only a transition point between inflation and the standard

Big Bang evolution. There is time both before and after ⌧ = 0.

2.2.2 Hubble Radius vs. Particle Horizon

A quick word of warning about bad (but unfortunately standard) language in the inflationary

literature: Both the particle horizon �ph and the Hubble radius (aH)�1 are often referred to

simply as the “horizon”. In the standard FRW evolution (with ordinary matter) the two are

roughly the same—cf. eq. (2.1.9)—so giving them the same name isn’t an issue. However, the

whole point of inflation is to make the particle horizon much larger than the Hubble radius.

The Hubble radius (aH)�1 is the (comoving) distance over which particles can travel in the

course of one expansion time.3 It is therefore another way of measuring whether particles are

causally connected with each other: comparing the comoving separation � of two particles with

(aH)�1 determines whether the particles can communicate with each other at a given moment

(i.e. within the next Hubble time). This makes it clear that �ph and (aH)�1 are conceptually

very di↵erent:

3The expansion time, tH ⌘ H
�1 = dt/d ln a, is roughly the time in which the scale factor doubles.
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Exiting & entering the Hubble radius

Exercise: how many inflation e-folds (  are at least 
needed to fit the recombination Hubble radius  inside a 
Hubble radius before inflation , if 

• after inflation, the universe is reheated to TE ≈ EGUT ≈  GeV

• radiation domination (H∝a-2) is assumed up to Trec ≈  eV

N = ln(aE /aI)
(arecHrec)−1

(aIHI)−1

1015

10−1
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34 2. Inflation

• if � > �ph, then the particles could never have communicated.

• if � > (aH)�1, then the particles cannot talk to each other now.

Inflation is a mechanism to achieve �ph � (aH)�1. This means that particles can’t communi-

cate now (or when the CMB was created), but were in causal contact early on. In particular,

the shrinking Hubble sphere means that particles which were initially in causal contact with

another—i.e. separated by a distance � < (aIHI)�1—can no longer communicate after a suf-

ficiently long period of inflation: � > (aH)�1; see fig. 2.4. However, at any moment before

horizon exit (careful: I really mean exit of the Hubble radius!) the particles could still talk

to each other and establish similar conditions. Everything within the Hubble sphere at the

beginning of inflation, (aIHI)�1, was causally connected.

Since the Hubble radius is easier to calculate than the particle horizon it is common to use

the Hubble radius as a means of judging the horizon problem. If the entire observable universe

was within the comoving Hubble radius at the beginning of inflation—i.e. (aIHI)�1 was larger

than the comoving radius of the observable universe (a0H0)�1—then there is no horizon problem.

Notice that this is more conservative than using the particle horizon since �ph(t) is always bigger

than (aH)�1(t). Moreover, using (aIHI)�1 as a measure of the horizon problem means that we

don’t have to assume anything about earlier times t < tI .

time

scales

reheating
inflation “ Big Bang ”

standard Big Bang

inflation

Figure 2.4: Scales of cosmological interest were larger than the Hubble radius until a ⇡ 10
�5 (where today is

at a(t0) ⌘ 1). However, at very early times, before inflation operated, all scales of interest were smaller than
the Hubble radius and therefore susceptible to microphysical processing. Similarly, at very late times, the
scales of cosmological interest are back within the Hubble radius. Notice the symmetry of the inflationary
solution. Scales just entering the horizon today, 60 e-folds after the end of inflation, left the horizon 60
e-folds before the end of inflation.

Duration of inflation.—How much inflation do we need to solve the horizon problem? At the very
least, we require that the observable universe today fits in the comoving Hubble radius at the begin-
ning of inflation,

(a0H0)
�1

< (aIHI)
�1

. (2.2.12)

Let us assume that the universe was radiation dominated since the end of inflation and ignore the
relatively recent matter- and dark energy-dominated epochs. Remembering that H / a

�2 during
radiation domination, we have

a0H0

aEHE

⇠ a0

aE

✓
aE

a0

◆2

=
aE

a0
⇠ T0

TE

⇠ 10�28
, (2.2.13)

Comoving



A model: slow roll of «inflaton»
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2.3 THE PHYSICS OF INFLATION

Inflation occurs: " = � Ḣ

H2
= �d lnH

dN
< 1, where dN ⌘ d ln a = Hdt.

Inflation lasts: ⌘ =
d ln "

dN
=

"̇

H"
< 1

What microphyscis leads to {", |⌘|} < 1?

Scalar Field Dynamics

Inflation is often modelled by the evolution of a scalar field � (the inflaton)
with energy density V (�) (the inflaton potential):

The stress-energy tensor associated with the inflaton is

Tµ⌫ = @µ�@⌫�� gµ⌫

✓
1

2
g
↵�
@↵�@��� V (�)

◆

Let us evaluate this for a homogeneous field � = �(t):

⇢� ⌘ T
0
0 =

1

2
�̇
2 + V (�) (= KE + PE)

P� ⌘ �1

3
T

i
i =

1

2
�̇
2 � V (�) (= KE� PE)
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For scalar « inflaton » field in potential:

We then feed this into the Friedmann equations

H
2 =

⇢�

3M 2

pl

=
1

3M 2

pl


1

2
�̇
2 + V

�
(F1) Mpl ⌘

r
~c
8⇡G

Ḣ = �⇢� + P�

2M 2

pl

= �1

2

�̇
2

M
2

pl

(F2)

Take a time derivative of (F1)

2HḢ =
1

3M 2

pl

h
�̇�̈+ V

0
�̇

i
, where V

0 ⌘ dV

d�

and use (F2) to get the Klein-Gordon equation:

�̈

ACCELERATION

+ 3H�̇

FRICTION

= � V
0

FORCE

(KG)

The ratio of (F2) and (F1) gives " =
1

2
�̇
2

M
2

pl
H2

< 1 .

Inflation occurs if the KE is small = slow-roll inflation

For inflation to last the acceleration should be small: � ⌘ � �̈

H�̇
< 1

It is easy to show that ⌘ =
"̇

H"
= 2("� �).

The conditions {", |�|} ⌧ 1 imply {", |⌘|} ⌧ 1.
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Slow Roll (SR)

Stays Slow (SS)So far, this was exact. Now, we make the slow-roll approximation:

1) " =
1

2
�̇
2

M
2

pl
H2

⌧ 1 ) H
2 ⇡ V

3M 2

pl

(F)SR

2) |�| = |�̈|
H|�̇|

⌧ 1 ) 3H�̇ ⇡ �V
0 (KG)SR

(KG)SR
#

• Hence, we find " =
1

2
�̇
2

M
2

pl
H2

⇡
M

2

pl

2

✓
V

0

V

◆2

⌘ ✏v

"
(F)SR

• Next, we consider
d

dt
(KG)SR ) 3Ḣ�̇+ 3H�̈ = �V

00
�̇, which leads to

"+ � ⇡ M
2

pl

V
00

V
⌘ ⌘v

Successful SR inflation occurs when {✏v, |⌘v|} ⌧ 1 :
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BAU  
(Baryon Asymmetry of the Universe),

Baryogenesis &  
Leptogenesis
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Thermal and Chemical Equilibrium Kolb & Turner: “The Early Universe”

& A. Riotto, hep-ph/9807454

! Equilibrium distribution of particule X at temperature TX , w. chemical potential µX & gX helicities:

f equ
X (!p;TX , µX)

.
=



e
+
µX

TX
−
√

!p2 +m2
X/TX −

+ 1





−1

− bosons

+ fermions

nX(T, µ)
.
=
∫

d3p
(2π)3 gXfX(!p;T, µ) → gX

[
0.12
0.09 T 3+

2
1 T 2µ/6

]

T # mX , µ (relativistic)

(particle number density) → gX
[
mXT
2π

]3/2
e(µ−mX )/T T $ mX , µ (non-relat.)

ρX(T, µ)
.
=
∫

. gXfX .
√

!p2 +m2
X →

0.3
0.25 gXT 4

rel. energy density

pX(T, µ)
.
=
∫

. gXfX .
"p2√

"p2+m2
X

→ 0.1
0.08 gXT 4

rel. partial pressure

→ sX(T, µ)
.
= 1

T (ρX + pX − µnX) →
0.4
0.35 gXT 3

rel. entropy density

! Entropy in comoving volume SX
.
= sXa3 is mostly:

! carried by relat. particles, ! constant, ! ∝ NX = nXa3, unless:

• µ/T large (degenerate gas) and/or

• NX varies violently ⇔ particle decay or creation (e.g. reheat after inflation)
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! Thermal equilibrium ⇔ TX fixed by rapid energy exchanges with other species

(elastic collisions e.g. X + Y → X′ + Y ′) tending to thermalize TX = TY = . . . T

counter-ex.: T0γ = 2.728± .002◦K > T0ν since: • ν’s & γ’s currently decoupled

!Exo! compute T0ν • e+e− annihilations reheat γ’s only

! Chemical equilibrium if inelastic collisions X + A " B + C are “fast” enough,

µX + µA ≡ µB + µC @ chemical equilibrium

constrains µX (chemical potential
.
= energy gain for NX → NX + 1;⇔ 〈NX〉)

!Exo! show in non rel. limit that therm. + chem. equil. imply:
nXnA

nBnC
∼ e−∆m/T

with ∆m = mX +mA −mB −mC (mass defect)

! Effective degrees of freedom g∗ : if TX %= TY ,

0.1 1 10 100

20

40

80

100

120

u, d, s, g

π

c
τ

b
W,Z

t

g ∗
(T

)
T (GeV)







ρR(T ) = 0.3 g∗(T ) T 4

sR(T ) = 0.4 gs∗(T ) T
3

with

g(s)∗ (T ) ≈
∑

B:mB<T

gB

(
TB

T

)4(3)

+
7

8

∑

F :mF<T

gF

(
TF

T

)4(3)

→ g∗(10MeV⇔ 3ν, γ, e±) = 10.75 ≈ gs∗
→ g∗(Tγ = 0.1MeV⇔ 3ν, γ) = 3.36 < gs∗ = 3.91

J.0rloff@BCD: June 20 2016 Baryo-, Lepto-genesis & "CP (Cosmo) / 6
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Boltzmann Equations

! Rules dynamics to/from equilibrium; ! Particle physics steps in!!!

1

a3
dNX

dt
=

dnX

dt
+ 3HnX =

∑

A,B,C

Coll(X + A " B + C)

Coll
.
=
∫
(

d3pXgX
(2π)32EX

)

︸ ︷︷ ︸
.
=dX

.dA.dB.dC.δ4.




fBfC(1

+
− fX)(1

+
− fA).|M(B + C → X + A)|2

−fXfA(1
+
− fB)(1

+
− fC).|M(X + A→ B + C)|2





≈
CP,f"1

∫

dX.dA.dB.dC.δ4(
∑

p).[ fBfC − fXfA
︸ ︷︷ ︸

≡0 @ chem. equil. (detailed balance)

].|M(X + A→ B + C)|2

≈
A,B,C@ equ.

∫

(2EXdX).(2EAdA).[f
equ
X f equ

A − fXf
equ
A ].σ(X + A→ B + C).v

≈ (nequ
X − nX). n

equ
A .〈σ(X + A→ B + C).v〉equ
︸ ︷︷ ︸

.
=ΓX average rate @ equil.

→
dnX

dt
+ 3HnX = ΓX(n

equ
X − nX) relaxation approx.

! Refinements: spatial inhomog. f(p, x); off-shell particles out of equil QFT!!!

J.0rloff@BCD: June 20 2016 Baryo-, Lepto-genesis & !CP (Cosmo) / 7
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X Decoupling

! ΓX < H : collisions negligibly slow w.r.t. expansion → decoupling temperature Td:

ΓX(Td) = H(Td) =
Rel.

1.6g1/2∗
T 2
d

mPl

! T ≤ Td : ΓX(T )
Rel.∼ T 3〈σv〉 drops faster than H(T )∼ T 2 → NX = nXa3 = const:

X
.
= relic

〈

hot if Td > mX ,

cold if Td < mX

YX
.
=

nX

stot
= cte adiabatic invariant as long as S = (sa3) = cte

⇔ ηX
.
= nX

nγ
= s

nγ
.YX ≈ 7.04 YX today; mesurable

! Relics examples !Exo! compute Tdγ,ν,N values

γ Γ(p+ + e− → H + γ) ≈ 0 pour np

nH
< 0.1 (ionisation fract.) ⇔ T < Tdγ ≈ 0.3eV

→ CMB = photo taken when universe was Tdγ/T0 = 1100× smaller

ν Γν(T )= nν .〈σ(ν + n→ p+ e).v〉

≈ T 3.G2
FT

2

→ Tdν = (1.6g1/2∗ /G2
FmPl)1/3≈ 1MeV

Nucleons ΓN= nN̄ .〈σ(N + N̄ → · · · ).v〉

≈ (mNT )3/2e−mN/T .m−2
π

→ TdN ≈ mN/42≈ 20MeV ; ln(mNmPl

m2
π

) ≈ 42

→ YN = YN̄ ≈ 10−20
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Baryon Asymmetry of the Universe (BAU): where has antimatter gone?

! On earth: matter (
.
= p+, e−, n) only → total asym. (except for breeding in accel.)

! Solar system: (∼ 10−5 pc; 1M") still matter only NASA survived (?!)

! Milky way (∼ 10 kpc; ∼ 1012M") cosmic rays, produced by SN in disk:

Q:
p̄

p
≈ 10−4 ?⇒

SN

SN
≈ 10−4?? A: NO!! ∃ : pprimary + pgas → 3p+ p̄ with

Φ(pprimary) well measured (flux, spectrum); n(pgas) constrained by γ′s from :

pprim + pgas → X + [π0 → 2γ(70MeV )]; seen p̄ works without SN → SN
SN < 10−4

better limits with D̄ et H̄e
3

Chardonnet astro-ph/9705110

→ no trace of cosmological anti-matter (though existed before annihilating...) How much expected?

! Def. asymmtry net baryonic # (NN −NN̄) = const in comoving vol. if B conserved

→ BAU
.
= YB

.
= NN−NN̄

S also; YB > 0⇔ YN > 10−20 > YN̄

YB value?→

J.0rloff@BCD: June 20 2016 Baryo-, Lepto-genesis & !CP (Cosmo) / 9
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BAU: Primordial Nucleosynthesis

! Entropic price for nucleon fusion depends

on baryon density & baryon/photon ratio:

η = nB−nB̄
nγ

auj.
≈ 7×

nB − nB̄

s
︸ ︷︷ ︸

.
=YB

! 4He, 6Li: pull η down (primordial??);

! D: cleaner, + sensitive, pull η up

! D/H, 4He/H measured by interstellar

clouds absorption of lines emitted by

quasar z = 0.1 → 3.5

Current total baryon asymmetry

⇔ sssmall initial asymmetry:

YB10
.
= 1010YB

today
≈ η10

7 % 0.9

= adiabatic invariant (except for entropy

production, eg. post-inflation reheat)

J.0rloff@BCD: June 20 2016 Baryo-, Lepto-genesis & !CP (Cosmo) / 10
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BAU: Cosmic Microwave Background (CMB)

Kamionkowski astro-ph/9904108

! Baryons self-gravity: mp+ ! me−

• enhances compression peaks (1st, 3rd) et

• decreases expansion expansion (2d)

! Baryons lower sound speed in plasma ⇒
increase peak separation

⇒ CMB feel (the amplitude, not the sign!)

|η10| = 274 Ωbh2

averaged on last scattering surface @ Tdγ

J.0rloff@BCD: June 20 2016 Baryo-, Lepto-genesis & !CP (Cosmo) / 11
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BAU through history

Steigman astro-ph/0202187

5 10
0

0.2

0.4

0.6

0.8

1

η10

L
ikelih

ood

Nucleosynthesis

CMB

SN1a

Planck 1σ ! T (Nucl)≈ 1MeV: η10 = 5.6± 0.5

(Deuterium only)

! T (CMB)≈ 0.1eV: η10 = 6.0± 0.6

Planck 2015: η10 = 6.0±0.06

! T (SN1a)≈ 0.1meV: η10 = 5.1± 1.6

Ωb =
nb

nDM

∣
∣
∣
X clus.

ΩDM,SN1a

⇒ nice convergence over 1010!!

Since, η = good adiabatic invariant;

before, hotter: use YB

J.0rloff@BCD: June 20 2016 Baryo-, Lepto-genesis & !CP (Cosmo) / 12
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Baryogenesis: the need for a dynamical mechanism?

! Initial conditions? OK, but YB ≈ 0.9× 10−10 ⇔ (T > 200 MeV ) quark-gluon plasma

with (10 000 000 014 q) pour (10 000 000 000 q̄) ⇒ too much fine-tuning! ⇔ 0.3 sec/lifetime!!!

! Spatial separation? ⇔ matter island in a large scale

symmetric universe? Must be formed at

Tsep > 20 MeV (before p+ p̄) annihilation

⇒ causal horizon H−1(Tsep) < H−1(20 MeV)

⇒ baryonic number in causal horizon:

B<0

B<0

B<0

B>0

Dγ

D
.
= 〈V ol/Area〉; V ol[B > 0] = V ol[B < 0]

Bcaus < YB sH−3|20 MeV ≈ 10−10(mPl/20 MeV)3

≈ 1052 ≈Mearth/mp

⇒ wayyy too small:

in fact, our matter island ≈ visible universe H−1
0

hard γ’s from p− p̄ annihilation at boundaries Cohen astro-ph/9707087
10

-6
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-5
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0

F
lu

x 
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 s
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-1

 s
r-1

]

1 10
Photon Energy [MeV]

 COMPTEL
 Schönfelder et al. (1980)
 Trombka et al. (1977)
 White et al. (1977)

D=20Mpc

D=1000Mpc

⇒ need for baryogenesis
.
= dynamical mechanism leading from YB = 0 to YB %= 0;

“explaining why there is something rather than nothing” after p− p̄ annihilations

J.0rloff@BCD: June 20 2016 Baryo-, Lepto-genesis & !CP (Baryo) / 13
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Baryogenesis: 3 Sakharov Conditions

1967: no !B, nor GUT; seeks link with Γp et K0 − K̄0 !CP (64!)

SC.I Out of Equilibrium otherwise

! nB =
∫

d3p(e−
√

p2+m2
B + 1)−1 = nB̄ mB = mB̄ by CPT

! if equilibrium ∀ processes,
−−→
rate =

←−−
rate⇒ no YB change micro-reversibility; c-ex: spont. B

SC.II C and CP Violation above TQCD ≈ 200 MeV: arrow: matter or anti-matter?

nB =
1

3
( nqL − nqL
︸ ︷︷ ︸

SU(2) doublets

+ nqR − nqR
︸ ︷︷ ︸

SU(2) singlets

)⇒







CP : qL ↔ qL; B ↔ −B broken by δCKM

C : qL ↔ qR; B ↔ −B max. broken, like P in SM

SC.III B violation processes violating B needed to go from YB = 0 to YB )= 0!

⇒ Baryogenesis clearly NEEDS particle physics!!!

× dark matter, energy,...

J.0rloff@BCD: June 20 2016 Baryo-, Lepto-genesis & !CP (Baryo) / 14
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GUT Prototype: Out of Equilibrium Decay of SU(5) Leptoquarks X

SC.I Assume a hot relic with TdX > MX ∼ 1015GeV;

when T "MX , ∃ X out of equilibrium, if long lived:

nX

nγ
=

nX̄

nγ
=

gX
gγ
∼ 1$

nX

nγ

∣
∣
∣
∣
equ

≈ e−MX/T

SC.III, II X decays violate B (& L) and CP:

B L BR

X → q̄q̄ −2/3 0 r

↘ ql 1/3 1 1− r

∆B = 1 ∆L = 1 : → SC.III

X̄ → qq 2/3 0 r̄ )= r → SC.II

↘ q̄l̄ −1/3 −1 1− r̄

→ after all (X, X̄) pairs decayed:
nB

nγ
= (r̄ − r).

nX

nγ

∣
∣
∣
∣
init

!Exo! show each CS is necessary

Problems:

(1) "CP too weak |r − r̄] < 10−15

(2) Baryo. after inflation

→ Treheat > 1015GeV → preheating

(3) ∆B = ∆L→ ∆(B − L) = 0→ anomalous processes erase the asym.

J.0rloff@BCD: June 20 2016 Baryo-, Lepto-genesis & "CP (Baryo) / 15



48

’85 Russian Revolution

V. Kuzmin, V. Rubakov, M. Shaposhnikov; Review: 9603208

(B + L) violation by SM anomalous processes is active above T > TEW ≈ 100GeV

⇒ B & L are not separately conserved; only (B − L) is!

Consequences

[1] GUT is no longer the simples source (or natural scale) of !B

[2] GUT [or too early] baryogenesis is erased if B − L ≡ 0 (c.f. SU(5))

[3] TEW ≈ 100GeV = last chance for baryogenesis ⇒ EW-scale is “natural”

[4] Opens “bottom-up” approach to baryogenesis:
start from tested physics (SM)=⇒ add extra ingredients if needed

[× Sakharov: JETP(67) p.24: invents model with B!, !CP for baryogenesis; p.27: implications on K0 − K̄0]

[5] K.R.S. → top 20 hit-parade citations...

J.0rloff@BCD: June 20 2016 Baryo-, Lepto-genesis & !CP (Baryo) / 16
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B Violation in the Standard Model

! Triangle anomaly for SU(2)L ’t Hooft PRL37,1(76)8 c.f. π0 → γγ:

∂µJ
µ
L

.
=

∑

i∈doublets

∂µ[ψ̄
i
Leiγ

µψi
L] = (

∑

i

ei)
g2W
16π2

FµνF̃
µν

eiγµ
1−γ5
2

gWWνγν
1−γ5
2

gWWργρ
1−γ5
2

i

! Instantons
.
= W fields solutions tunneling between degen. vacua: c.f. U(1)-problem, strong

!CP

Topological #N =

∫

d4x
g2W
32π2

FF̃ ⇔ ∆QL
.
= ∆[

∫

d3xJ0
L] = 2N

∑

i

ei

⇒change every left charge, e.g.

• QL = BL: ei ≡ 0 except euL = edL = 1
3 → ∆BL = ngenN ⇒!B exists in SM!

• QL = LL: ei ≡ 0 except eνL = eeL = 1→ ∆LL = ngenN ⇒ !L also, but no !B − L!

! Rate : Γtunnel ∝ e−cN/g2
(proton stable against tunnelling “under barrier”), but for finite T (or E):

Γclass.(T ) ∝

〈

e−10MW /T in EW broken phase when v = 〈h〉 (= 0

α5
WT 4 in unbroken phase v = 0 Kuzmin,Rubakov,Shaposhnikov 85

⇒ unsuppressed above phase transition ⇔ T >≈ 100GeV
J.0rloff@BCD: June 20 2016 Baryo-, Lepto-genesis & !CP (Baryo) / 17
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Charge Transport Mechanism: EW Baryogenesis Archetype
Cohen,Kaplan &

Nelson 91

! Non-equilibrium If 1st order phase trans., ∃ v "= 0 bubbles filling space

q̄R,inc

q̄L,refl
q̄trans

v = 0 v "= 0
⇒quarks shaken by bubble front

! !CP if reflection asymmetry, bubble front

separates opposite charges (no creation!)

∆CP (R→ L) = Tr
flavors

[r̄†r̄q̄R→q̄L − r†rqR→qL ]

= −∆CP (L→ R)

where r̄ij "= rij = reflection coeff.

= flavor matrix (e.g. r̄s̄R→d̄L
)

! !C,B! SU(2)L anomalous proceses eliminate q̄L excess (into lL) in v = 0 phase, but not

in broken phase where qL accumulate

⇒ YB,final = fdilut. ×∆CP ; f ∼< 1 "Exo" show conserv. C or P ⇒η ≡ 0

J.0rloff@BCD: June 20 2016 Baryo-, Lepto-genesis & !CP (Baryo) / 18
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1st SM failure: ∆CP ! 1010

∆CP , r computed in eff. Dirac equ. for “soft” quarks (p ! gsT ) in thermal plasma



i∂t − i

3sz∂z − ωL
1
2md

v(z)
v0

1
2md

v(z)
v0

i∂t − i
3sz∂z − ωR



 .






dLsL
bL
dRsR
bR




 = 0 ; v(z ! 0) = 0; v(z " 0) = vT !=0

[ω L
R

] =
2π

3
αsT

2

︸ ︷︷ ︸

SU(3)

+π
8αWT 2[ 3

0
︸︷︷︸

SU(2)

+ 1/9
4/9
︸ ︷︷ ︸

U(1)

tan2 θW + ( V †m2
uV

0
︸ ︷︷ ︸

h±

+ m2
d

︸︷︷︸

hO

)1/M2
W ] (plasma frequ.)

!CP : q̄ obey same equs. with VCKM → V ∗
CKM ⇒ Results :

! ∆CP ≈ 10−5
Farrar & Shaposhnikov 93 (" YB → OK dilution) but neglect collisions; including

Γ(q + g → q′ + g′) = Im(ωL,R) ∼ g2sT ≈ 20GeV the result is:

! ∆CP ≈ 10−22
Gavela,Hernandez,Orloff,Pène 93 (! YB → trop peu!!!)

Interpretation Quantum coherence necessary to exploit δCKM hard to maintain in

strongly interacting plasma ⇒violent GIM suppressions ∝ m6
bm

3
s/Γ

9

⇒baryogenesis requires other !CP than VCKM

J.0rloff@BCD: June 20 2016 Baryo-, Lepto-genesis & !CP (Baryo) / 19
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2d SM failure: non-equilibrium wants mh < 75GeV

V 1−loop
eff (v, T )

T"mi≈
∑

i

2
1

1
48m

2
i (v)T

2 − 1
0

1
12πm

3
i (v)T

−
+

1
64π2 (ln

T 2

µ2 + ci) + · · ·T−···

= A v2T 2 −B v3T +λv4

A: restores symmetry at high T (broken by term −µ2v2 à T = 0)

v

Veff T > Tc

T = Tc

T = 0
vc =

2B

λ
Tc ≈

m2
W

m2
h

gWTc

B: allows for 1st order transition: 2d min. at:

For hight mh, vc = v(Tc) decreases, weakening the phase trans. (quarks less reflected by the bubble

and eaten by anomalies); for mh > 75GeV, 1st order disappears.

mh|MS = 125GeV ⇒ CS.II unsatisfied

To save EW baryogenesis, need

! Extra bosons to increase B and reinforce the phase tr. strength

! !CP beyond CKM , or extremely low TEW to stop collisional GIM suppression Tranberg

0909.4199

J.0rloff@BCD: June 20 2016 Baryo-, Lepto-genesis & !CP (Baryo) / 20
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Bottom-up baryogenesis: SM→MSSM→ · · ·mν?

Before K.R.S.85, baryogenesis required !B GUT; after, TEW becomes

“last chance temperature” ⇒natural to start from there.

! Standard Model has B! (CS.III
√

), but:

• GIM suppresses !CP in plasma → YB10 ≈ 10−22 $$ 1 (CS.II too weak) Gavela 93

• Out of equil. shaking by EW transition too weak as mh = 125 GeV (CS.I too weak)

Shaposhnikov 91-95

! Min. Susy SM extra scalars can increase EWPT for light t̃R (CS.I ↗, Carena 96) but no

longer with current limits; !CP charginos without GIM suppr., but limited by

EDM(e−)Cline 0201286

! Neutrinos masses Fukugita,Yanagida 86: anomalous processes conserve BL −LL, but

transform (LL = −1, BL = 0) into (LL = −2/3, BL = 1/3)

⇒generating pure lepton asym. YLL
≈ −3 10−10 before TEWPT is enough

.
= Leptogenesis

Rem: need L! → mν Majorana OK, but mν Dirac (L!L) can work Murayama hep-ph/0206177,Lindner hep-ph/9907562

J.0rloff@BCD: June 20 2016 Baryo-, Lepto-genesis & !CP (Lepto) / 21
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Leptogénèse: !L, !CP

Each decay Ni generates lepton asym. CP δi (2 channels with != L → CS.III; provided Y != Y ∗ → XS.II):

→
∑

l Γ(Ni → l +H) − Γ(Ni → l +H†)

′′ + ′′
= δi =

Mi$Mj

≈ −
3

16π

Im(A2
ij)

Aii

Mi

Mj

avec Aij = (Y †Y )ij = U †
R.diag(mD

1,2,3)
2.UR a crucial matrix:

! Diag. terms: Γi ∝ AiiMi;

! Off-diag. terms carry CP asym.

Rem: If Mi ≈Mj, self-energies increase ∝ 1/(Mj −Mi) up to ∆M ≈ Γ

Pilaftsis hep-ph/9812256, Frere hep-ph/9901337

J.0rloff@BCD: June 20 2016 Baryo-, Lepto-genesis & !CP (Lepto) / 23

Generically WORKS, once r-handed neutrinos are added with any mass,  
but difficult to test; CP violation unrelated to quarks or neutrino oscillations



Dark Matter

55

Credits to Ibarra, Cargese School 2014



Dark matter needed!

56
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distancepc kpc Mpc Gpc

Solar

system Galaxies
Clusters 

of galaxies
Observable 

Universe

There is evidence for dark matter 
in a wide range of distance scales

ClusterGalaxy C(osmic)
M(icrowave)
B(ackground)
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CLUSTER
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1- Apply the virial theorem to determine the total mass of the Coma Cluster

For an isolated self-gravitating system,

2- Count the number of galaxies (1000) and calculate the average mass

CLUSTER
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GALAXY
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ExpectedExpected

GALAXY
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A modern technique: gravitational lensing
CLUSTER
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Abell 1689

CLUSTER
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Abell 1689

CLUSTER
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  Bullet Cluster (1E 0657-56)Optical ImageOptical Image

“A direct empirical proof of the existence of dark matter”

Clowe, et al.,  Astrophys.J.648:L109-L113,2006. 

CLUSTER
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  X-ray ImageX-ray Image

CLUSTER
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  Weak lensing ImageWeak lensing Image

CLUSTER
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  Composite ImageComposite Image

CLUSTER



Other examples since « The Bullet »
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Abell 520MACS J0025.4-1222 

CLUSTER



From Planck/CMB

70

  

http://lambda.gsfc.nasa.gov/education/cmb_plotter/

CMB

Replace DM 
by atoms:  
problem!!!

http://lambda.gsfc.nasa.gov/education/cmb_plotter/


71

  

What do we know 
about dark matter?



72

  

1) It is dark. No electric charge.

 If it has positive charge, it can form a bound state X+e-, an 
    “anomalously heavy hydrogen atom”.

 If it has negative charge, it can bind to nuclei, forming 
   “anomalously heavy isotopes”.

Perl et al.
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2) It is not made of baryons.

Primordial 

nucleosynthesis
Cosmic Microwave 

Background radiation

MACHOs (planets, brown dwarfs, etc.) are excluded

as the dominant component of dark matter.
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3) It was “slow” at the time of the formation of the
first structures.

Springel, Frenk, White

=cold
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To summarize, observations indicate that the dark matter is 

constituted by particles which have:

 No electric charge, no color.

 No baryon number.

 Low velocity at the time of structure formation.

 Lifetime longer than the age of the Universe.

Evid
ence 

for
 ph
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s 
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Cold Dark Matter:
WIMP
or not?

76



Thermal production and annihilation of CDM

77

Main results from this part

SM

SM

DM

DM

annihilation

sc
at

te
ri

n
g

Relic abundance of DM particles

Correct relic density if

(provided )

WIMP dark matter

production

~ weak 
interaction

DM

DM

SM

SM
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Direct Dark Matter Searches
40

Xenon nT Hot Off the Press for Moriond!

Science Run-0 Nuclear Recoil Search Data 

95.1 days exposure

(4.18 ± 0.13) ton Fiducial Volume 

Exposure: 1.1 tonne-year


LZ Results 
Science Run-0 Nuclear Recoil Search Data 

60 days exposure

(5.3 ± 0.2) ton Fiducial Volume 

Exposure: 0.9 tonne-year


Patrick Decowski Geertje Heuermann

Both are dual phase Xenon TPCs 

New for Moriond 

EW 2023

Detection Principle
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5

distinguishes Electron Recoils from Nuclear Recoils
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Direct Dark Matter Searches
41Patrick Decowski Geertje Heuermann

Xenon nT Background reduction: Careful 
screening, material selection and Continuous 
Radon Removal through distillation

LZ Continuous purification of Xe

Xenon nT Hot Off the Press for Moriond!

Science Run-0 Nuclear Recoil Search Data 

95.1 days exposure

(4.18 ± 0.13) ton Fiducial Volume 

Exposure: 1.1 tonne-year


LZ Results 
Science Run-0 Nuclear Recoil Search Data 

60 days exposure

(5.3 ± 0.2) ton Fiducial Volume 

Exposure: 0.9 tonne-year
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Direct Dark Matter Searches
42Patrick Decowski Geertje Heuermann

Xenon nT First results! 

LZ Achieved leading sensitivity

Xenon/DARWIN and Lux Zeppelin join forces 
for future project, however meanwhile…

Xenon nT Hot Off the Press for Moriond!

Science Run-0 Nuclear Recoil Search Data 

95.1 days exposure

(4.18 ± 0.13) ton Fiducial Volume 

Exposure: 1.1 tonne-year


LZ Results 
Science Run-0 Nuclear Recoil Search Data 

60 days exposure

(5.3 ± 0.2) ton Fiducial Volume 

Exposure: 0.9 tonne-year


New for Moriond 

EW 2023
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Direct Dark Matter Searches
43

Xenon nT Hot Off the Press for Moriond!

Science Run-0 Nuclear Recoil Search Data 

95.1 days exposure

(4.18 ± 0.13) ton Fiducial Volume 

Exposure: 1.1 tonne-year


LZ Results 
Science Run-0 Nuclear Recoil Search Data 

60 days exposure

(5.3 ± 0.2) ton Fiducial Volume 

Exposure: 1.1 tonne-year


Patrick Decowski Geertje Heuermann

Xenon nT First results! 

LZ Achieved leading sensitivity

Xenon/DARWIN and Lux Zeppelin join forces 
for future project, however meanwhile…


Still a lots of data to come!



WIMPS pros & cons
✦ Thermal production is independent of initial conditions
✦ Fits well in many BSM models (SUSY, extra-dimensions, …)
✦ Crossing symmetry offers checks other than gravitational: 

• Direct Detection of DM collisions on matter: XENON, L-Z… 
underground experiments

• Indirect Detection of annihilation products: positron, anti-proton, 
gamma… excesses in cosmic rays

• Collider signatures (missing energy events)
BUT: 
✦ excessive structure at small (1kpc) scales: over-densities, sub-

halos… (maybe cured by proper inclusion of baryons)
✦ maybe dark matter has dark interactions of its own 

e.g. dark photon

82
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Particular Focus: 
Darkly-Charged Dark Matter
y Simple idea: Assume dark matter charged under its own 

“electromagnetism”:  “dark light”
y Dark matter charge, U(1)

y Could be light and heavy (like proton and electron)
y Could be just heavy dark matter candidate (and antiparticle)

y Thought to be very constrained
y Even though NOT a WIMP

y Turns out can be weak scale mass with EM-type coupling
y Or if a fraction of dark matter can be even less constrained

Randall, EW19: Darkly charged DM

http://moriond.in2p3.fr/2019/EW/slides/4_Wednesday/2_afternoon/5_moriond2019randall.pdf
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Previous Constraints too Stonrg
y Galaxy ellipticity was strongest constraint
y Ellipticity tricky to calculate
y It’s a  function of radius
y And only one galaxy measured anyway
y Dwarf galaxy survival calculation different when 

massless mediator: strong internal interactions in 
dwarf

y Bullet cluster relies on initial distributions

Randall, EW19: Darkly charged DM

http://moriond.in2p3.fr/2019/EW/slides/4_Wednesday/2_afternoon/5_moriond2019randall.pdf
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Primordial Black Holes as the DM

Martti Raidal
NICPB, Tallinn

16.03.2018 Moriond EW 2018 1

Luca Marzola
Hardi Veermäe
Ville Vaskonen
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We still do not know the origin and 
properties of DM?

16.03.2018 Moriond EW 2018 2

Is the DM a manifestation of gravity?

Spin-2 oscillations
arXiv: 1708.04253
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PBHs – the oldest DM candidate

• Hawking (1971), Carr and Hawking (1974)
– Primordial fluctuation of order 0.1 enter Universe at 

radiation era and collapse to BHs

PBHs -- frozen radiation energy density

• Hawking radiation (1974) changed the picture
– Lower bound M > 10-16 M⦿, macroscopic objects

16.03.2018 Moriond EW 2018 3
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The PBH cosmology

• At large scale PBHs are an ideal collisionless DM 
candidate, all the success of ΛCDM persists

• Predicts deviations from WIMPs at small scales 
• Seeds for galaxies and SMBHs, core vs. cusp, dwarf profiles, 

too big to fail (no stars by slingshot effect)
• PBHs are the DM we want

• Provides new astrophysical probes of the DM
• Stochastic GWs, reionisation and CMB, lensing, anomalous 

stars in Gaia, mass and spin of BHs, CR anomalies by 
accretion, predictions for inflation etc

16.03.2018 Moriond EW 2018 4
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Before the LIGO GW discovery – PBHs 
are ruled out as the dominant DM

• The only positive claim made by MACHO: 
0.5M⦿ BHs observed. Later changed to

• The status before LIGO discovery of GWs was: 
the fraction of 1 M⦿ PBH DM strongly 
constrained by the CMB measurements

16.03.2018 Moriond EW 2018 5

<  0.2
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After LIGO:
10 M⦿PBH mass window opened

• Reanalysis of PBH accretion limits from CMB 
found ∼103 cosmology error in previous papers

• All constraints are for monochromatic mass
• Not realistic for any physical PBH creation mechanism

16.03.2018 Moriond EW 2018 7

PRL 116 (2016) 201301

arXiv: 1705.05567
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Hawking radiation has never been 
observed

• Quantum gravity effects are expected to be of order few

• Gravity theories beyond GR predict the existence of 
horizonless objects that mimic BHs (Exotic Compact Objects, 
ECOs)

• Their radiation rate might be exponentially suppressed 
compared to BHs

• All DM can be in light wormholes or other ECOs

16.03.2018 Moriond EW 2018 10

hep-ph/180207728
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All DM can be in light wormholes or 
other ECOs
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16.03.2018 Moriond EW 2018 11

hep-ph/180207728

New mass window:
Λ < MECO < 10-16 M⦿

1. Quantum Gravity effects:
T ∝ (M/Λ)#

2. THs beyond GR
T ∝ Exp(M/Λ)-1

Scale of gravity:
10 TeV < Λ < MP
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Conclusions
• PBHs may constitute a fraction of the DM

• Several bounds must be better understood
• Future observations (Gaia) must see the PBH effects in astrophysics

• Single field double inflation may produce light PBHs
• Unusual potentials, slow roll approximation is usually violated, 

precise computations are needed

• Stochastic GW bkg. offers most sensitive tests of PBHs
• Fits suggest: just a small fraction of DM in PBHs
• PBH DM can be excluded by non-observation of the GW 

background by LIGO and LISA

• However, all the DM can be in the form of light ECOs, 
requiring gravity theories beyond GR

16.03.2018 Moriond EW 2018 17

A fit to LIGO data assuming lognormal 
mass function for PBHs

• Just a small fraction                          of PBH DM 
is in binaries

16.03.2018 Moriond EW 2018 14
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General conclusions

Cosmology poses 4 known riddles to particle physics:
• Cold Dark Matter: may have strong connections to particle 

physics, but
• natural scale (TeV, eg SUSY) starts being covered: more exotic?
• maybe more than one particle needed for astrophysical problems

• Dark Energy (current dominant stock-holder of the Universe) 
& Inflation (for causality and initial perturbations): scalar field 
technology, not likely « showing soon at an accelerator near you »

• Baryogenesis: why is there (10-10) more matter than antimatter? 
Needs clear particle physics input (CP & B violation), e.g. right-
handed neutrinos (anyway probably needed for neutrino masses)

Rising Hubble tension: may need help from particle physics too

95



Notes & Links
Sean Carroll: Lecture Notes on GR
Baumann cosmology course
Ibarra lectures on Dark Matter @ Cargese 2014

Moriond EW Talks:
Witte’22: Solutions to the H0 tension
Randall’19: Darkly charged DM
Ezquiagada’18: GW170817 & dark energy
Raidal’18: GW probes of Primordial Black Holes and DM
Saviano’15: neutrinos in cosmology (N_eff)
Billard’15: neutrino bkgd for DM DD
Henrot-Versillé’15: Planck results
Salvio’15: scales & inflation
LUX’14: DM best limits
Hamann’14: nice inflation course
Perdereau’14: good intro on CMB with Planck and polarisation for tensor fluctuations
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http://arxiv.org/pdf/gr-qc/9712019.pdf
https://cmb.wintherscoming.no/pdfs/baumann.pdf
https://indico.cern.ch/event/282015/contribution/14/attachments/518377/715171/Ibarra_1.pdf
http://moriond.in2p3.fr/previousmeetings.html
https://moriond.in2p3.fr/2022/EW/slides/3/1/8_SWitte.pdf-short.pdf
http://moriond.in2p3.fr/2019/EW/slides/4_Wednesday/2_afternoon/5_moriond2019randall.pdf
https://indico.in2p3.fr/event/16579/contributions/61065/attachments/47356/59529/08_MoriondEW_Ezquiaga.pdf
https://indico.in2p3.fr/event/16579/contributions/60863/attachments/47319/59527/Raidal_PBHs_2018.pdf
https://indico.in2p3.fr/event/10819/session/1/contribution/48/material/slides/0.pdf
https://indico.in2p3.fr/event/10819/session/1/contribution/33/material/slides/0.pdf
https://indico.in2p3.fr/event/10819/session/1/contribution/3/material/slides/0.pdf
https://indico.in2p3.fr/event/10819/session/3/contribution/1/material/slides/0.pdf
https://indico.in2p3.fr/event/9116/session/5/contribution/183/material/slides/0.pdf
https://indico.in2p3.fr/event/9116/session/6/contribution/213/material/slides/0.pdf
https://indico.in2p3.fr/event/9116/session/6/contribution/178/material/slides/0.pdf
https://indico.in2p3.fr/event/9116/session/6/contribution/228/material/slides/0.pdf
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you were spared… 
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 tensions and  
(lack of) solutions
H0
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The H0 Tension
Samuel J. Witte

March, 2022
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The Hubble-Lemaître Law

v = H0 d

Hubble (1929)

Distance

Ve
lo
ci
ty
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The Hubble Constant

“Ultimate End-to-end Test for LCDM” — A. Riess (2019)

H0

Calibrate LCDM
[6 param. model]

Infer H0 from cosmological model

“Construct Distance Ladder”
Directly Measure
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The H0 Tension

SH0ES 
2021

Credit: NASA/ESA/WMAP/Planck/SHoES/DES 

∼ 5σ

Tension
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Verde et al., Nature 2019

SH0ES 2021 Late  
Universe

Early 
Universe

Tension
∼ 7σNot just a discrepancy between 

Planck & SH0ES!
No single systematic can resolve the tension!
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Novel Physics
Is LCDM Wrong?

How to we increase H0?

DA ∝

1

H0

∫ ttoday

trecom

dt
1

ρ(t)

rs ∝

∫
trecom

0

dt
cs(t)

ρ(t)

• Increase integral in angular 
diameter distance (DA)

“Late time solutions”

Modify energy density near today

• Decrease sound horizon (rs)

“Early time solutions”

Raise energy density near recombination

Shift recombination
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H0

Shöneberg, Franco Abellán, Perez Sánchez, SJW, Poulin, Lesgourgues
arXiv: 2107.10291 [to be published Physics Reports]

The H0 Olympics

1.) There exist literally 1,000s of proposed models (sadly not enough time to discuss them all)

Words of Caution!

2a.) Very difficult to resolve tension….
2.) LCDM works very well!

2b.) Fine-tuning is unavoidable….

[See Snowmass paper that just appeared arXiv: 2203.06142]
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Late-time solutions
& why they don’t really work…

DA ∝

1

H0

∫ ttoday

trecom

dt
1

ρ(t)

So we must modify early Universe cosmology

Exotic dark energy

CMB prediction

Redshift
Efstathiou (2021)
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Late-time solutions
& why they don’t really work…

DA ∝

1

H0

∫ ttoday

trecom

dt
1

ρ(t)

So we must modify early Universe cosmology

Supernovae constrain evolution in z ! 10
−2

SH0ES Data
SN Data

Exotic dark energy

CMB prediction

Redshift
Efstathiou (2021)
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Dark Radiation & …

2.0 2.5 3.0 3.5 4.0

Neff

60

65

70

75

H
0
[k
m
s−

1
M
p
c−

1
]

Riess et al. (2018)

Planck(2018)

• Self-interacting Dark Radiation

• ~eV Scale Majoron

Bashinsky & Seljak (2004), Lesgourgues et al. (2013), Follin et al. (2105)… 

Escudero & SJW (2020, 2021)

Dark radiation clusters on small scales & 
reduced neutrino drag

∼ 3.3σ

∼ 2.9σ

Neutrinos undergo out-of-equilibrium 
thermalization with majoron, damp free 
streaming

Connection to low-scale 
leptogenesis and neutrino masses

“Dark radiation &…” models easy to motivate, but require systematics in CMB EE data to really 
work…
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Early Dark Energy
Poulin et al (2018, 2019), Agrawal et al (2019),  Smith et al (2019)…

f ∼ 0.1Mp

(timing coincidence)

(sufficient amplitude)

∼ 1.6σ

V (φ) = m2f2 [1− cos(φ/f)]n

n ≥ 3 (rapid decay)

Shöneberg et al. (2021), Hill et al. (2021), Poulin et al. (2021), Smith et al. 
(2022)

ACT DR4 shows slight preference for 
EDE…. [∼ 2− 3σ]

• New Early Dark Energy
Second scalar field triggers instantaneous first 
order phase transition at recombination
Niedermann & Sloth (2020, 2021)

Early dark energy is among the most successful proposals, but very difficult to motivate…

m ∼ 10
−27

eV
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Modified Recombination

Image Credit: J. Chluba

• Varying Electron Mass

• Baryon Clumping 
[Primordial Magnetic Fields]

Shift energy levels, push 
recombination earlier ∼ 3σ

∼ 1.9σ+ΩK [Curvature]

Clumped baryons push 
recombination earlier ∼ 3.5σ

Hart & Chluba (2018, 2020)

Sekiguchi  & Takahashi  (2021)

Modified recombination interesting new idea, but is typically difficult to motivate and (with 
perhaps one exception) not as successful

Jedamzik & Saveliv (2020)

Io
ni
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tio

n 
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n
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Take Home Message

Planck SH0ES

1.) The H0 tension has reached a critical 
point at which it can no longer be ignored

3.) Solutions are both fine-tuned and 
contrived (should we care?)

4.) Most (all?) “solutions” are not really 
solutions…

2.) Most successful proposals require new 
physics at / very near recombination

Shöneberg et al. (2021)

Are we ok with “new physics + systematics / large 
statistical fluctuations”?

Mb
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End

“I give 2-to-1 odds that the Hubble tension is resolved without adding 
something new to ΛCDM; take heart, 33% for something new is a really 

bullish prediction” — Michael Turner (2022)



Extra slides on  tensionH0
My pick of Sam Witte’s backup slides
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Cosmological Crisis
Systematics?

Early Universe Late Universe
• Planck data not required!

• CMB data not required!

• Can we live in giant void?

• Are there distance-correlated 
systematics in supernovae data?

• Systematics in SH0ES pipeline?

WMAP, ACT, SPT

BAO + BBN

See e.g. Di Valentino et al (2021)

Wojtak et al. (2014), Odderskov et al (2015), Wu & 
Huterer (2017)…

Jones et al (2018)

Di Valentino et al. 2019

No single systematic can resolve the tension!



115March, 2022 The H0 TensionRencontres de Moriond [Electroweak] !22

SH0ES Collaboration 

-Use geometric ‘anchor’ to calibrate cepheid period-luminosity relation

-Use cepheids to calibrate type-Ia SN brightness (standard candle - ish)

-Use brightness of far type-Ia SN to extract H0

Three Steps to the Hubble Constant

Earth

Cepheids
within the

Large
 Magellanic

Cloud

Galaxies
hosting

Cepheids
and Type Ia
supernovas

Light red-shifted (stretched by expansion of space)

Distant galaxies
in the expanding
universe hosting

Type Ia supernovas

180,000 24 –100 million 100 million–1 billion

LIGHT-YEARS

Riess et al (2019)

Goal: obtain distance measure to type-Ia SN

vr = H0 d+ vpec(Spectroscopy) (Small if far enough away…)

SH0ES
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1.) Anchor cepheids

2.) Calibrate type-Ia SN

3.) Extract distance measure

Riess et al (1604.01424)

SH0ES
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Thanks to Miguel Escudero for plot!

Conventional high-scale seesaw

Low scale leptogenesis

Primordial Neff



Gravitational waves
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Harmonic coordinates
Under a coordinate transformation, the metric transforms as a (0,2)-
tensor:

or for 

Harmonic coordinates are defined to satisfy the 4 equations:

→ for scalars, covariant & ordinary D’Alembertian coincide:

Each coordinate satisfies the harmonic equation                ,  
and is defined up to a harmonic function:

119

g0µ⌫ =
@x↵

@x0µ
@x�

@x0⌫ g↵�

x0µ = xµ + ✏⇠µ(x)
g
0
µ⌫ = gµ⌫ � ✏(@µ⇠⌫ + @⌫⇠µ) +O(✏2)

gµ⌫(x)��
µ⌫(x) = 0

xµ , x0µ = xµ + �µ

⇤�
.
= gµ⌫DµD⌫� = gµ⌫(@µ@⌫�� ��

µ⌫@��) = gµ⌫@µ@⌫�

⇤� = 0



Weak field wave solutions

In harmonic coordinates,                                           leaving 10 - 4 = 6 
components, obeying (in vacuum) :

Exercise: for                                     use the harmonic condition  
                                           to express         in terms of spatial 
components, and make them vanish using the harmonic transformations

Show that the 2 remaining independent components are

and that they are left invariant by a180° rotation around z-axis (spin 2).

120

For gµ⌫(x) = ⌘µ⌫ + hµ⌫(x) with hµ⌫ ;h
.
= ⌘µ⌫hµ⌫ ⌧ 1 :
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⇤hµ⌫ = 0 ! hµ⌫(x) = Cµ⌫e
ikµx

µ

kµ = !(1, 0, 0, 1)
k⌫Cµ⌫ � kµC/2 = 0 C0µ
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µ
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(
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GWs in a nutshell

18/03/2016 51ST RENCONTRES DE MORIOND - A. ROCCHI 2

Emitted from accelerating mass distributions (quadrupole mass moment – no dipole 
radiation)

GWs carry direct information about the relativistic motion of bulk matter

Gravitational waves are dynamic fluctuations in the 
fabric of space-time, propagating at the speed of 
light

Predicted by Einstein 100 years ago; first 
indirect confirmation by Hulse & Taylor (Nobel 
Prize in 1993) 01
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Interferometric detectors of gravitational 
waves • The description of interaction between 

detector and GW is coordinate dependent
• Physical effect is not.
• Intuitive picture (𝜆𝜆𝐺𝐺𝐺𝐺 ≫ 𝐿𝐿)
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Advanced detectors
• Larger beams (× 2.5)
• Heavier mirrors (× 2)
• Optical quality improved 

(residual rugosity < 0.5 nm)
• Improved coating 

• absorption < 0.5 ppm
• scattering < 10 ppm

• Larger Finesse (× 3)
• Thermal control of optical aberrations
• Diffused light mitigation
• Improved vacuum 

(× 10−2 , 1 × 10−9 mbar)
• Laser 200W
• Signal recycling
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GW150914: the signal

18/03/2016 51ST RENCONTRES DE MORIOND - A. ROCCHI 9

• Top row left – Hanford    
• Top row right – Livingston  
• Time difference ~ 6.9 ms

with Livingston first

• Second row – calculated 
GW strain using 
Numerical Relativity** 
(EOBNR and IMRPhenom) 
and reconstructed 
waveforms (shaded)

• Third Row – residuals

** Talk by A. Nagar, right after this



Estimated source parameters

18/03/2016 51ST RENCONTRES DE MORIOND - A. ROCCHI 11

Median values with 90% credible intervals, including 
statistical errors from averaging the results of different 
waveform models. Masses are given in the source frame: to 
convert in the detector frame multiply by (1+z). The source 
redshift assumes standard cosmology:  DLÎ z  assuming 
LCDM with H0 = 67.9 km s-1 Mpc-1 and Wm = 0.306 

Total energy radiated in gravitational waves is 3.0 ± 0.5 M☉ c2.  
The system reached a peak luminosity ~3.6 x 1056 erg, and the 
spin of the final black hole < 0.7

125
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GW150914: the source analysis

18/03/2016 51ST RENCONTRES DE MORIOND - A. ROCCHI 10

NS-NS binary excluded

Binary system BH-NS?
If so, MBH very large (~3000 M☉) ⇒
Coalescence happens at lower frequencies
NS-BH binary excluded

Hz 7522/2Hz 150 maxmax � � � SSZ ff Kepl

Binary system BH-BH, similar masses;

km 350
3
1

2 |
»
»
¼

º

«
«
¬

ª
 

Kepl

GMR
Z

km 2102
2 | 
c
GMRSchwarz

2 BHs (~ 30 M☉ each) colliding at c/2
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GW170814

• «Still» a BBH 
coalescence. 
• Three detectors 

detection:
• Localization
• Polarization

Phys. Rev. Lett. 119, 141101 (2017)
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GW170817

C
re

di
t: 

M
et

zg
er

Phys. Rev. Lett. 119, 161101 (2017) 
Astrophys. J. Lett. 848, L13 (2017)
Astrophys. J. Lett. 848, L12 (2017)
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SNR 32.4
PFA=1/80000 yr-1

DL=85-160 Mly

• GRB170817A: matter is 
present

• Mass consistent with binary 
NS

• Deformability

Parameter estimation

Phys. Rev. Lett. 119, 161101 (2017)
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Nuclear matter EOS

Phys. Rev. Lett. 111, 071101

High deformability

Low deformability
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Hubble parameter

Nature 551, 85 (2017)
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Yang et al. 
2017

Coulter et al. 
2017

Tanvir et al. 2017

Accavi et al. 2017Allam et al. 
2017

Lipunov et al. 
2017

Counterparts

Astrophys. J. Lett. 848, L12 (2017)



What when #events 4→N >>1 ? 
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Stochastic background

PU
LS

AR

CMB 
Large 
Angle

LI
GO

 (V
IR

GO
)

BBN
CMB+LSS

AD
VA

NC
ED

ET

INFLATION

LI
SA

PLANCK

Phys. Rev. X 6, 011035 (2016)

CS

Preheating

Pre-BB

• Upper limits and GW observations set 
constraints in very different frequency bands

• Still no detections
• Interseting upper limits (improving)
• Interesting perspectives
• Future:

• Anisotropies
• Astrophysical SB
• Correlations
• …….



134jose.ezquiaga@uam.es Rencontres de Moriond EW18

GW astronomy can probe the Dark Universe

Dark Matter Dark Energy

E.g. PBH in Critical Higgs Inflation

[See next talk about PBH DM] [This talk]

Quest for fundamental nature of DE

           Neutron Star Binaries
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• GW propagation in GR+FRW and how to do cosmology

• A redshift measurement 
breaks the degeneracy

h00
ij + 2Hh0

ij + c2k2hij = 0

hGW =
M5/3

z f2/3

dgwL
F (angles) cos�(⌘) d

gw
L = (1 + z)

Z z

0

c

H(z)
dz

z ⌧ 1 ) d
gw
L =

cz

H0
+ · · ·

H0 = 70.0+12.0
�8.0 km s�1Mpc�1

[Nature 551, 85–88 (2017)]
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• Modified propagation and how to test DE

h00
ij + (2 + ⌫)Hh0

ij + (c2gk
2 + a2m2)hij = 0

↵T = c2g � 1

• I will focus on phase effects (do not 
depend on binary)

hGW ⇠ hGR e�
1
2

R
⌫Hd⌘

| {z }
E↵ect amplitude

eik
R
(↵

T
+a2m2/k2)1/2d⌘

| {z }
E↵ect phase

[LIGO Living Rev.Rel. 19 (2017)]

• Propagation effects are accumulative 
and thus can dominate

What DE models modify GW propagation?
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• Simplest modification of GR:

Dark energy with a scalar field  
+ ɸ

scalar

• Archetypical examples are Brans-Dicke and quintessence

L =
1

16⇡G(�)
R� 1

2
(@�)2 � V (�)
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Dark energy: scalar field  

• Modern theories described by Horndeski theory (2nd order EoM)

contains k-essence, f(R), KGB, covariant Galileon, Gauss-Bonnet…

+ ɸ
scalar

• Archetypical examples are 

L =
1

16⇡G(�)
R� 1

2
(@�)2 � V (�)

• Simplest modification of GR:

LH = G2 +G3⇤�+G4R�G4,X{rr�}2 +G5 Gµ⌫�
;µ⌫ �G5,X{rr�}3

• At the linear level and over FRW backgrounds [Bellini and Sawicki 2014]

ḧij + (3 + ↵M )Hḣij + (1 + ↵T )k
2
hij = 0

↵K ��̈+ 3H↵B �̈+ · · · = 0

Gi(�,�Dµ�Dµ�| {z }
X

)
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GW170817: first binary neutron star merger detected!

[Credit: Fermi] [Credit: LIGO]

Both the GWs and the sGRB arrived almost simultaneously 

�t = 1.74± 0.05 s

after traveling approx. 100 million light years                  .(40+8
�14 Mpc)

�3 · 10�15  cg/c� 1  7 · 10�16
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Anomalous GW speed
[Bettoni, JME, Hinterbichler, Zumalacárregui’16]

• At small scales for arbitrary backgrounds

L / hµ⌫G↵�@↵@�h
µ⌫ = hµ⌫(C⇤+W↵�@↵@�)h

µ⌫

t

r��))
�

}�t
gµ⌫qµq⌫ = 0

Gµ⌫kµk⌫ = 0

• If            no possible multi-messenger events cg 6= c

Time delay between GW and counterpart becomes cosmological! 
cg/c� 1 ⇠ 0.01 and D ⇠ 100Mpc ) �t ⇠ 107 years

Conditions anomalous GW speed

i) Non-trivial scalar field configuration 
  Dark energy  �̇ ⇠ H0

ii) Derivative coupling to the curvature 
  Modified gravity  W↵� ⇠ @↵�@��
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Dead Ends after GW170817
• Constraint from GW170817 

↵T = c2g � 1

[JME+Zumalacárregui’17]
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