Flavour Physics part 2:

Test the Standard Model with meson decays

Content

New physics search: The "Heisenberg way"

• Rare decays: $b \rightarrow s l^+l^-$

Lepton flavor saga

- Lepton Flavor Violation
- Lepton Flavour Universality e/µ
- Lepton Flavour Universality μ/τ

Johannes Albrecht 28. March 2023

Open questions of the SM

- Cosmological observations: dark matter
 & matter-antimatter asymmetry
- Hierarchy of masses & couplings

Extended theories come with new heavy particles

How can we discover these extensions?

tul

Einstein and Heisenberg

Einstein: $E = m c^2$

Typical collider

→ Limited by collider energy → LHC: O(1TeV)

 \rightarrow No increase in energy until ~2050

Heisenberg: $\Delta E \cdot \Delta t \ge \hbar/2$

Use quantum fluctuations

→ Limited only in precision → Model dependent O(100)TeV

 \rightarrow A lot of precision data coming (HL-LHC, Belle 2, CERN BDF, ...)

28.03.2023

Johannes Albrecht

3/82

Expected and unexpected discoveries

The Standard Model of particle physics

Years from concept to discovery

Leptons Bosons Quarks

Theorised/explained Discovered

Flavour physics across the world

Flavor at electron and proton colliders

- Defined initial state:
 - Low trigger bias
 - Full event reconstruction, low multiplicity
 - Allows selection of inclusive and invisible decays
 - Experimentally: $e^- \cong \mu^-$
- Excellent for decays with difficult signatures, CP tests
 - $\quad B^{-} \rightarrow \tau^{-} \nu, \ B \rightarrow K^{*} \nu \nu \ , \ ..$
 - τ^- decays (LFV)

- Complex hadronic environment
- Very big bb & cc (and τ⁺τ⁻)
 production rate
 - Specialized on (very) rare and clean final states
 → then cleaner than e⁺e⁻
 - Leading for all charged decays $B \rightarrow \mu^{+}\mu^{-}, B \rightarrow K^{*}\mu^{+}\mu^{-}, D \rightarrow K^{+}\pi^{-}$
- Trigger and reconstruction are significant challenges, specially for ATLAS/CMS

Anomalies

So far no clear 5σ sigma deviation

Falsifying anomalies is prime task for flavour-physicists

Anomalies: fingerprint

Anomalies part 1:

Testing $b \rightarrow s \ell^+ \ell^$ transitions

<u>Content</u>

- New physics search: The "Heisenberg way"
- Rare decays: $b \rightarrow s \ l^+l^-$
- Lepton flavor saga
 - Lepton Flavor Violation
 - Lepton Flavour Universality e/µ
 - Lepton Flavour Universality μ/τ

 $b \rightarrow s \ell \ell$ decays in the SM

tul

<u>b \rightarrow s $\mu^+\mu^-$ base diagram</u>

- Purely leptonic
 - "add nothing"
- Semileptonic
 - add d quark as spectator $\rightarrow B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - add s quark as spectator $\rightarrow B_s \rightarrow \phi \mu^+ \mu^-$
 - add u quark as spectator $\rightarrow B^+ \rightarrow K^+ \mu^+ \mu^-$

Theory prediction: Standard Model

decay	SM
$B_s \rightarrow \mu^+ \mu^-$	3.5±0.3 x 10 ⁻⁹
$B^0 \rightarrow \mu^+ \mu^-$	1.1±0.1 x 10 ⁻¹⁰

SM: Buras, Isidori et al: EPJC72(2012) 2172 Mixing effects: Fleischer et al, PRL109(2012)041801

Left handed couplings → helicity suppressed

Discovery channel for New Phenomena

→ Very sensitive to an extended scalar sector (e.g. extended Higgs sectors, SUSY, etc.)

28.03.2023

2010: nothing

28.03.2023

Invariant mass in signal region (high BDT) If there is a signal, we should see a peak

Invariant mass in signal region (high BDT) If there is a signal, we should see a peak

+2011: maybe?? But not significant enough for any claims

28.03.2023

Johannes Albrecht

17/82 **LHCb**

Golden channel: $B_{s,d} \rightarrow \mu^+ \mu^-$ from LHCb ..

Recent LHCb measurement [PRL 128 (2022) 041801] [PRD 105 (2022) 012010] $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.09^{+0.46+0.15}_{-0.43-0.11}) \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.2^{+0.8}_{-0.7} \pm 0.1) \times 10^{-10} \quad (\mathcal{B} < 2.6 \times 10^{-10} \text{ @ } 95\% \text{ CL})$

- New precise CMS measurement moves average further to SM [CMS-PAS-BPH-21-006] $\mathcal{B}(B_s^0 \to \mu^+\mu^-) = (3.83^{+0.38}_{-0.36}(\text{stat})^{+0.19}_{-0.16}(\text{syst})^{+0.14}_{-0.13}(f_s/f_u)) \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+\mu^-) = (0.37^{+0.75}_{-0.67}, 0.09) \times 10^{-10}$ ($\mathcal{B} < 1.9 \times 10^{-10}$ @ 95% CL)
- Precision approaches 10%
- Upcoming milestones: B_d discovery, B_s lifetime and electron modes

Rare menu

<u>b \rightarrow s $\mu^+\mu^-$ base diagram</u>

- Purely leptonic
 - "add nothing"

Semileptonic

- add d quark as spectator $\rightarrow B^0 \rightarrow K^{*0} \mu^+ \mu^-$
- add s quark as spectator $\rightarrow B_s \rightarrow \phi \mu^+ \mu^-$
- add u quark as spectator $\rightarrow B^+ \rightarrow K^+ \mu^+ \mu^-$

Angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Observables depend on $B \rightarrow K^*$ form factors and on short distance physics

28.03.2023

Angular analysis of $B^0 \,{\to}\, K^{*0}\,\mu^+\mu^-$

- LHCb published the first full angular analysis of the decay
 - Unbinned maximum likelihood fit to $K\pi\mu\mu$ mass and three decay angles
 - Simultaneously fit $K\pi$ mass to constrain s-wave configuration
 - Efficiency modelled in four dimensions

JHEP02(2016)104

Results

References:

LHCb [JHEP 02 (2016) 104], CMS [PLB 753 (2016) 424] BaBar [arXiv:1508.07960] CDF [PRL 108 (2012) 081807] Belle [PRL 103 (2009) 171801].

Results

• Situation unclear. Clean up by smarter observables

 $P_i^{(i)}$ basis Reparameterise the fit to obtain optimised observables: form factor uncertainties cancel at first order

JHEP 12 (2014) 125, JHEP 09 (2010) 089

$$P_{4,5,8}' = \frac{S_{4,5,8}}{\sqrt{F_{\rm L}(1 - F_{\rm L})}}$$

 Full Run 1 analysis confirms effect Run 2 update coming

Situation unclear.... If real, expect discrepancies in other $b \rightarrow s$ decays ...

28.03.2023

Puzzling deviations: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

- LHCb analysis finds global 3.3σ tension
 - [LHCb, PRL 125 (2020) 011802] consistent with
 [Belle, PRL 118 (2017) 111801] [CMS, PLB 781 (2018) 517]
 [ATLAS, JHEP 10 (2018) 047]
- More data needed to clarify picture
 - LHCb update underway

Puzzling deviations: $B^+ \rightarrow K^{*+} \mu^+ \mu^-$

- Recent LHCb measurement using Run 1+2 data [PRL 126 (2021) 161802]
- Global tension corresponding to 3.1 σ , consistent with $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Other $b \rightarrow s \ \mu^+\mu^-$ decays

- Decay modes with same effective Feynman diagram accessible
 - \rightarrow different spectator quarks
- Test for same new effects

 → expect suppressed
 branching fractions

 μ

$b \rightarrow s \ell^+ \ell^-$ branching fraction measuremeths

$b \rightarrow s \ell^+ \ell^-$ branching fraction measurements

 Recent developments on non-local corrections [JHEP 09 (2022) 133] and new results from Lattice QCD [HPQCD, arXiv:2207.13371]

Branching fractions of $b \rightarrow s \ \mu^+\mu^-$

- Analysis of large class of $b \rightarrow s, d \mu^+\mu^-$ decays
 - Several tensions seen, but individual significance is moderate
 - Tendency to undershoot prediction of differential x-sections
 - → intriguing hint or theoretical issue in prediction?

→ Can these be consistently described (by NP) ?

28.03.2023

Effective field theories - 1

Effective field theories - 2

 $b \to s \ell \ell$ transitions described model-independently in effective theory

Effective couplings in $b \to s\ell\ell$ transitions			
Wilson coefficient		Operator	
γ -penguin	$\mathcal{C}_7^{(\prime)}$	$\frac{e}{g^2}m_b(\bar{s}\sigma_{\mu\nu}P_{R(L)}b)F^{\mu\nu}$	
ew. penguin	$\mathcal{C}_9^{(\prime)}$	$\frac{e^2}{g^2}(\bar{s}\gamma_\mu P_{L(R)}b)(\bar{\mu}\gamma^\mu\mu)$	
	$\mathcal{C}_{10}^{(\prime)}$	$\frac{e^2}{g^2}(\bar{s}\gamma_\mu P_{L(R)}b)(\bar{\mu}\gamma^\mu\gamma_5\mu)$	
scalar	$\mathcal{C}_{S}^{(\prime)}$	$\frac{e^2}{16\pi^2}m_b(\bar{s}P_{R(L)}b)(\bar{\mu}\mu)$	
pseudoscalar	$\mathcal{C}_P^{(\prime)}$	$\frac{e^2}{16\pi^2}m_b(\bar{s}P_{R(L)}b)(\bar{\mu}\gamma_5\mu)$	

Effective field theories - 3

Different $q^2 = m^2(\ell^+\ell^-)$ regions probe different operator combinations

Branching fractions of $b \rightarrow s \ \mu^+\mu^-$

- Analysis of large class of $b \to s, d \ \mu^+\mu^- \text{decays}$
 - Several tensions seen, but individual significance is moderate
 - Tendency to undershoot prediction of differential x-sections
 - → intriguing hint or theoretical issue in prediction?

\rightarrow Can these be consistently described (by NP) ?

28.03.2023

Analysis in effective field theory

SM tension: Depending on details, 3-5σ significance

One symbol summary

<u>Content</u>

- New physics search: The "Heisenberg way"
- Rare decays: $b \rightarrow s \ l^+l^-$
- Lepton flavor saga
 - Lepton Flavor Violation
 - Lepton Flavour Universality e/µ
 - Lepton Flavour Universality μ/τ

Lepton Flavor is violated!

Models	References	$\tau ightarrow \mu\gamma$
SM + v mixing	Lee, Shrock, PRD 16 (1977) 1444 Cheng, Li, PRD 45 (1980) 1908	10 ⁻⁵⁴ -10 ⁻⁴⁰

... however, which zero do you know that well?

Models	References	$\tau ightarrow \mu\gamma$		
SM + v mixing	Lee, Shrock, PRD 16 (1977) 1444 Cheng, Li, PRD 45 (1980) 1908	10 ⁻⁵⁴ -10 ⁻⁴⁰		
SUSY + Higgs	Dedes, Ellis, Raidal, PLB 549 (2002) 159 Brignole, Rossi, PLB 566 (2003) 517	10 ⁻¹⁰		
SM + Maj v _R	Cvetic, Dib, Kim, Kim, PRD 66 (2002) 034008	10 ⁻⁹		
Non-universal Z'	Yue, Zhang, Liu, PLB 547 (2002) 252	10 ⁻⁹		
mSUGRA + Seesaw	Ellis et al. EPJ C14 (2002) 319 Antusch et al. JHEP 11 (2006) 090	10 ⁻⁸ - 10 ⁻¹²		
SUSY SO(10)	Masiero, Vempati, Vives, NPB 649 (2003) 189 Fukuyama et al. EPJ C56 (2008) 125	10 ⁻⁸ - 10 ⁻¹⁰		
MLFV	Cirigliano, Grinstein, NPB 752 (2006) 18	10 ⁻⁸		
Little Higgs	Goto et al, PRD 83 (2011) 053011 Rai Choudhury et al. PRD 75 (2007) 055011	10 ⁻⁸ - 10 ⁻¹¹		
Lepton Flavour Violation in Tau Lepton decays - Jorge Portolés, CPAN 2010				

Different NP, different channels

loop diagrams $\mu^- \rightarrow e^- \gamma$

- Supersymmetry
- Little Higgs Models
- Seesaw Models
- GUT models (Leptoquarks)
- many other models

tree diagram $\mu^- \rightarrow e^- e^+ e^-$

- Higgs Triplet Model
- New Heavy Vector bosons (Z')
- Extra Dimensions (KK towers)

Most models "naturally" induce lepton flavor violation!

Lesson: which process is best to find LFV (first) depends on the model

Most sensitive: Lepton decays

28.03.2023

Johannes Albrecht

44/82 *LHCb*

Searches for tau LFV

90% CL upper limits on τ LFV decays

.. And charm

LHCb-PAPER-2020-007

Preliminary

Т

 10^{-5}

¥−−−+

 10^{-6}

×

<u>⊢</u>*

*----

×

28.03.2023

<u>Content</u>

- New physics search: The "Heisenberg way"
- Rare decays: $b \rightarrow s l^+l^-$
- Lepton flavor saga
 - Lepton Flavor Violation
 - Lepton Flavour Universality e/µ

Lepton Flavour Universality μ/τ

Flavour changing currents: Leptons

- Couplings of W[±] and Z⁰ are equal for all lepton families
- Confirmed many times, e.g. in lepton decays

 g_{τ} : "weak coupling constant for taus"

Decay rates	Measured ratio	
$\mu^+\!\rightarrow e^+\nu_e\overline{\nu}_\mu\;\;\text{und}\;\tau^+\!\rightarrow e^+\nu_e\overline{\nu}_\tau$	$g_{\tau} / g_{\mu} = 0.999 \pm 0.003$	
$\tau^+\!\rightarrow e^+\nu_e\overline{\nu}_\tau \text{ und } \tau^+\!\rightarrow \mu^+\nu_\mu\overline{\nu}_\tau$	$g_{\mu} / g_e = 1.001 \pm 0.004$	
$\pi^+\!\rightarrow e^+\nu_e$ und $\pi^+\!\rightarrow \mu^+\nu_\mu$	$g_{\mu} / g_e = 1.001 \pm 0.002$	

- Similar precision confirmation with in $Z^0 \rightarrow e^+e^-$, $Z^0 \rightarrow \mu^+\mu^-$, $Z^0 \rightarrow \tau^+\tau^-$
- Standard model: All leptons carry same weak
 → Lepton-Flavour Universality

In the SM, leptons couple universally to W[±] and Z⁰
 → test this in ratios of semileptonic decays

• Ratios differ from unity only by phase space

 LHCb saw low values in LFU tests of R_K and R_{K*}

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathcal{B}(B \to K^{(*)}e^+e^-)} \stackrel{\text{SM}}{=} 1.0$$

 Very low hadronic uncertainties, electroweak corrections O(1%) EPJC76(2016)440

- Any significant deviation from 1 is a clear sign for New Physics
- Observed anomalies make a "natural pattern" with $b \rightarrow s \ell^+ \ell^-$ anomalies
 - From P'₅ and reduced branching fractions in the muon modes, one can expect $R_{K(*)}$ reduced by ~25%
 - Electron modes compatible with SM

28.03.2023

Johannes Albrecht

54/82

Experimental challenges

Experimental Challenges for electron modes:

- I Low e trigger efficiencies due to higher thresholds compared to muons
- Electrons strongly emit Bremsstrahlung traversing material
- S Contribution from several background sources, bkg. modeling critical

Experimental challenge: 1. Electron trigger

- Trigger signatures for muon and electron modes very different
- Lower L0 $p_{\rm T}$ thresholds for muons $(1.5-1.8 \,\text{GeV}/c)$ compared to electrons $(2.5-3.0 \,\text{GeV}) \rightarrow$ challenging for e^+e^- modes
- Combine exclusive trigger categories to improve ϵ for electron modes:
 - Trigger on rest of event (independent of signal)
 - 2 Trigger on e/μ from signal

Experimental challenge: 2. Bremsstrahlung

- Correct electron momentum by adding matching photons ($E_{\rm T} > 75 \, {\rm MeV}/c^2$) reconstructed in the ECAL
- Bremsstrahlung recovery $\sim 50\%$ efficient, well simulated
- Bremsstrahlung reconstruction impacts momentum resolution \rightarrow higher background pollution and more sensitive to bkg. modeling

Experimental challenge: 3. Background suppression

- Combinatorial: multivariate classifier using kinematic quantities and vertex quality information
- Partially reconstructed: multivariate classifier in electron mode and corrected mass exploiting PV/SV reconstruction
- Misidentification: Lepton and hadron particle identification Residual backgrounds from misidentification explicitly modeled [see backup]

Muon mode fit

Electron mode fits

- Brems. tails from J/ψ entering rare modes constrained in sim. fit
- Partially reconstructed bgk. from $K^{*0}e^+e^-$ constrained in $K^+e^+e^-$

Cross checks

Both $r_{J/\psi}$ and $R_{\psi(2S)}$ compatible with unity at better than $2\,\sigma$

tul

Measurement

- Most precise test of Lepton Flavour Universality in $b \rightarrow s\ell^+\ell^-$ transitions
- Supersedes previous results
- Compatible with the SM at 0.2σ using a simple χ^2 test
- Statistical uncertainty dominates

Shift wrt previous

- ◆ Different PID cut used → Allowed σ_{stat} : ±0.033
- Mis-ID rate from $D^{*-} \to D^0(K\pi)\pi$
- ✤ With new(previous) analysis requirements

		_			
	Sample	$\pi ightarrow e$	$K \rightarrow e$		
$(11{+}12)$	Run 1	1.78(1.70)%	0.69 (1.24) %		
(15 + 16)	${ m Run}2{ m p1}$	0.83(1.51)%	0.18(1.25)%		
(17 + 18)	${ m Run} 2{ m P2}$	0.80(1.50)%	0.16(1.23)%		
single-misID		× 1 (Run1) × 2 (Run2)	× 2 (Run × 7 (Run	1) 2)	
double-misID		\times 1 ² (Run1) \times 2 ² (Run2)) $\times 2^2$ (Run) $\times 7^2$ (Run	n1) n 2)	
\cdot Shift due to contamination at looser working					
point: +0.064					
Shift due to not inclusion of background in					
mass fit: $+0.038$					

Adds linearly

Summary LFU Electrons Vs Muons

SYMPATHY CARDS FOR SCIENTISTS

Content

- New physics search: The "Heisenberg way"
- Rare decays: $b \rightarrow s \ l^+l^-$
- Lepton flavor saga
 - Lepton Flavor Violation
 - Lepton Flavour Universality e/µ

- Lepton Flavour Universality μ/τ

Lepton flavour universality in $b \rightarrow c$

• Surprises possible in tree-level analyses

- $B^0 \rightarrow D^{(*)} \ell \nu$ Measures ratio τ^- / μ^-
 - Multiple experiments: Belle, Babar, LHCb
 - Multiple D-modes: D, D*
 - Multiple tau final states: μ - ν , 1-prong, 3 prong
- Challenging Analyses
 - Missing neutrino, complex backgrounds (e.g. $B \rightarrow D^{**} \mu$)

$$R_{D^*} = \frac{BR(B^0 \to D^{*+} \tau^- \overline{v})}{BR(B^0 \to D^{*+} \mu^- \overline{v})}$$

Signal and normalization

Signal and normalization ... and backgrounds

Backgrounds

$$\overline{B} \to D^{**}(\to D^{(*)}\pi^{-}) l^{-}\nu \qquad \overline{B} \to D^{**}(\to D^{(*)}\pi^{-}\pi^{+}) l^{-}\nu \qquad \overline{B} \to D^{(*)}D(\to l^{-}X)K$$

$$Light D^{**} \in [D_1, D_2^*, D_1', D_0^{*\pi^+} K^{-}]$$

$$\frac{p}{PV} p \qquad p^{*+} p^{$$

Hadron colliders: challenges

Fit for signal: $D^0 \mu^-$

28.03.2023

Johannes Albrecht

інсь гнср 71/82

WA: $3.3\sigma \rightarrow 3.2\sigma$ wrt SM

Johannes Albrecht

72/82 *LHcb*
Alternative way to measure the same

28.03.2023

Summary $b \rightarrow c I nu$

WA: $3.2\sigma \rightarrow 3\sigma$ wrt SM

When will we know more?

State of the art

A look to the future

Johannes Albrec

77/82

LHC long term plan

	Integrated luminosity			
	LHCb	GPD		
Run 1	3	25		
Run 2	9	100		
Run 3	23	300		
Run 4	50	+300+/a		
Run 5,6	300+	+300+/a		

A new player coming up: Belle 2

- Physics run of Belle 2 started
 - First results envisaged for LP2019
 - Significant luminosity ~2022

G. Mohanty, Moriond EW 2019

.. More realistically (?)

28.03.2023

- We don't know if the flavour anomalies are a fluctuation or a revolution
- Intense experimental program ongoing verify anomalies
- Coming decades will be dominated by Heisenberg

New Physics Quizz

28.03.2023

Experimental environment: e⁺e⁻

Lepton collider (collision of pointlike objects)

[Karl Jakobs]

Y (4S) resonance

Kinematics at e⁺e⁻ Colliders

 $\Delta t = \Delta z / \beta \gamma c$

Belle ~200 μm Belle II ~130 μm LHCb ~1cm

Decay time resolution

LHCb, arXiv:1405.7808[hep-ex] Performance of vertex locator $B_{s} \rightarrow J/\psi \varphi$

Belle II, B. Oberhof, CKM 2018 $B \to J/\psi K_s$

B-meson mass resolution

Belle, 711/fb PRL 108 (2012) 171802 arXiv:1201.4643 [hep-ex]

FWHM ~2-3 MeV

LHCb, 3/fb JHEP 11 (2017) 170 arXiv:1709.03944 [hep-ex]

FWHM ~10 MeV

Note: resolutions not mentioned in the papers (not part of systematics)

Experimental environment: pp (or pp̄)

Lepton collider (collision of pointlike objects)

Hadron collider (collision of extended objects)

[Karl Jakobs]

Proton Collisions

- Protons are complicated objects
 - Valence & sea quarks, gluons
- Available energy of "proton" collision depends on partons

 $s' = x_1 \cdot x_2 \cdot s$

x_i = Bjorken x (fractional momentum) of parton

- Energy of particular collision unknown, but distributions known
 - hadron colliders "scan" a wide energy range
 - Average s' ~ 0.1 s
 - Dominant process @ LHC: gluon fusion

Looking forward for beauty & charm

- Proton collisions at 7-13TeV:
 huge heavy flavour production cross sections
 - In LHCb acceptance: 75kHz bb and 1.5MHz cc \overline{c}
 - $\sim 1/10$ events contains b or c signal

Looking forward for beauty & charm

- Proton collisions at 7-13TeV:
 huge heavy flavour production cross sections
 - In LHCb acceptance: 75kHz bb and 1.5MHz cc \overline{c}
 - $\sim 1/10$ events contains b or c signal
- ATLAS & CMS get more b produced, but less specific detector...

28.03.2023

Keys for flavour-physics I: Data

Full dataset: ATLAS = CMS = 10 * LHCb

Keys for flavour-physics II: mass resolution

Keys for flavour-physics III: IP and vertex resolution

Primary vertex resolutions (25 tracks):

	LHCb [µm]	ATLAS [µm]	CMS [µm]
σ(x)	15.8	60	20-40
σ(y)	15.2	60	20-40
σ(z)	76	100	40-60

Keys for flavour-physics IV: Particle Identification

Keys for flavour-physics IV: Particle Identification

 The LHCb experiment is equipped with two Cherenkov detectors

28.03.2023

tul

Production Rates

	BaBar / Belle (ee)	CDF / D0 (pp)	ATLAS / CMS (pp)	LHCb (pp)
√s [GeV]	10.58 (Y(4S))	1980	7000 / 8000	7000 / 8000
BB production	coherent BB state	Incoherent BB state		
σ _{bb} [μb] in acceptance	0.0011	6.3	75	94
L [fb ⁻¹]	550 / ~1000	~10	150	9
bb pairs in acceptance [10 ¹¹]	0.01	0.6	~200	~15
Cc pairs in acceptance [10 ¹¹]	~0.01		4000	300

What does 1/ab mean? N(bb) = Lumi * x-section

28.03.2023

Johannes Albrecht

