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Introduction

Machine learning is statistics + algorithms + computing power

HEP: used since the 80’s : old style NN, then Boosted Decision Trees “era”

Modern Machine learning since about 10 years

→ Breakthrough ideas supported by statisticians, computer scientists, etc

→ Increasing computing power to run efficiently complex algorithms

Powerful tool which enables us to do better but also new kinds of physics
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Deep Learning in HEP

2014 Kaggle Higgs Challenge (https://www.kaggle.com/c/higgs-boson) 

● Improve measurements of Higgs decaying to pair of tau leptons

● 1800 participating teams (physicists, statisticians, computer scientists). 

Solution Score

Gabor Melis (DNN pooling) 3.806

MultiBoost 3.405

TMVA boosted trees 3.200

Naive Bayesian classifier 2.060

1D cut-based selection 1.535

Winning solution performance equivalent to having 6 times more data ! 

https://www.kaggle.com/c/higgs-boson
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Outline

Part1: Modern ML for HEP

● Introduction to ML

● Example of advanced methods

● Differentiable programming

Part 2: Neural Networks and variational inference
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“Classical” ML

y(x,w) = t

Data

Output parameters

Target
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Training Neural Networks

Data

(features x)

Objective

(target t)

y = f(x, W)

f : non-linear functions

W : parameters (weights)

Cost function
“how close is the network output 

to the objective ?”
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Training Neural Networks

Update of weights W

Data

(features x)

Objective

(target t)
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Gradient descent

Gradient descent

Start from initial set of weights w and subtract gradient of    iteratively: 

k: iteration, η: learning speed

Repeat until convergence.

w
1

w
2

start

convergence
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Modern ML

y(x,w) 

Data

Output parameters

Data X drawn from some 
unknown distribution p(x)

Learn p(x)
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Learn p(x)

Learn p(x) itself  → density estimation, eg Normalizing Flows

Conditional densities p(x | y) → conditional density estimation

Sampling from p(x) → generative modeling, eg GANs, VAEs, ...

Ratios of densities p
1
(x)/p

2
(x) → classification, eg CNNs, RNNs, GNNs, ...
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A Living Review of ML for HEP

Huge collection of references : https://iml-wg.github.io/HEPML-LivingReview/

Covered topics
● ML reviews: modern, historical, ...
● Classification: jet images, graphs, flavor tagging, …
● Regression: calibration, parameter estimation, matrix element, ...
● Generative models/density estimation: GAN, normalizing flows, …
● Anomaly detection: BSM searches, hardware faults, real time detection...
● Simulation-based Inference: parameter estimation, unfolding, ...
● Uncertainty Quantification: interpretation, mitigation, estimation, ...
● ...

Many more “Proof-of-concept” than applications “in production”

https://iml-wg.github.io/HEPML-LivingReview/


Julien Donini – UCA/LPC 12

examples

Flavor tagging

BSM searches
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Flavor-tagging

Goal: Discriminate b-jets from c-jets, light-jets, tau

B-tagging algorithms utilize the long lifetime and displaced decays of b-
hadrons to look for secondary vertices and displaced tracks
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Flavor-tagging: Baseline Algorithms

[slide M. Kagan]
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Flavor-tagging: Recurrent NN

Recurent NN (sentence classification, NLP, …)
● Treat tracks as a sequence, ordered by impact parameter significance



Julien Donini - UCA/LPC 16

 High-Level Taggers 

 https://arxiv.org/abs/2211.16345 

https://arxiv.org/abs/2211.16345
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Improved algorithms: Deep Sets

The Deep Sets architecture treats each tracks as a set without any 
specific order = maintain benefit of RNN without requiring ordering

 https://cds.cern.ch/record/2718948 

Faster training and improved performances (~ factor 2 bkgd rejection).

https://cds.cern.ch/record/2718948
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Improved algorithms: GNN

GNN* directly operates on tracks to perform b-tagging. It also performs 
vertexing and track classification, removing the need for low-level algorithms

* GNN ?? Read e.g. here https://arxiv.org/abs/2007.13681  

https://arxiv.org/abs/2007.13681
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Improved algorithms: GNN

 https://cds.cern.ch/record/2811135 

The model combines jet- and track-level information into a combined input, It is then fed into a 
per-track initialisation network, which outputs a latent representation of each track. These 
representations are used to populate the node features of a fully connected graph network. 

After the graph network, the resulting node representations are used to predict the jet 
flavour, the track origins, and the track-pair vertex compatibility.

https://cds.cern.ch/record/2811135
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Improved algorithms: GNN

Performance improvement: factor 2-3 with respect to DL1+RNN

Story not over: other algorithmic improvements planned: 
GNN with transformers/attention, etc.
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BSM Searches

https://arxiv.org/abs/2112.03769 

https://arxiv.org/abs/2112.03769
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Anomaly detection as BSM Searches

Search for unknown signal (=anomaly) in data 

Derive background model directly from data

Select region of phase-space potentially enriched in signal

Scan multiple signatures and variables

 Searches for two-body resonances (arXiv:1907.06659)
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ML for BSM Searches

https://arxiv.org/abs/2101.08320 

https://arxiv.org/abs/2105.14027 

Two open-dataset challenges fostered many novel ideas for anomaly detection 

https://arxiv.org/abs/2101.08320
https://arxiv.org/abs/2105.14027
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ML for BSM Searches

[slide D. Shih]
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ML for BSM Searches

Adversarial auto-encoder (L. Valsin et al.)

Probabilistic auto-encoder (I. Dinu)

Work documented in community paper Rep. Prog. Phys. 84 124201
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ML for BSM Searches

[slide D. Shih]

Proof-of-concept are becoming actual LHC searches: 
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Automatic differentiation
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Remember this slide ?

Update of weights W

Data

(features x)

Objective

(target t)
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Loss functions

Examples:

Mean square error

Cross entropy

The loss measures how close the network output is to the objective

NN output Target 
value 

Training events 

The loss must be minimized → we need to compute its gradient

But y itself is a function of functions, with a lot of non-linearities → complex !
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Example NN with 2 layers
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Input data

NN output

Use chain rule to compute 
derivatives of the loss
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Automatic differentiation

Automatic (algorithmic) differentiation (AD)

● Numerical derivative evaluations rather than derivative expressions

● Composition of operations for which derivatives are known

● No need to rearrange the code in a closed-form expression

● Accurate at machine precision 

For each function a computational graph is constructed

→ evaluation of the function (forward pass)

→ calculation of gradient (backward pass)
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Computational graph (example)

(see: https://pytorch.org/blog/overview-of-pytorch-autograd-engine/)

Forward pass

Backward pass

https://pytorch.org/blog/overview-of-pytorch-autograd-engine/
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Backpropagation

Example

Reverse mode example, evaluated at (x
1
, x

2
) = (2, 5). Both        and          are computed 

on the same reverse pass starting from the output 

[1502.05767]

Propagates derivatives 
backwards from output

2

5

ln

sin

+

-

https://arxiv.org/abs/1502.05767
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Can we push this idea further ?

Automatic differentiation is used to optimize complex networks

Could we use it to optimize complex problems ?



Julien Donini – UCA/LPC 35

Yes: differentiable programming

 Gradient-based optimization methods

➔Code composed of differentiable and parameterized building blocks

➔Software optimized via automatic differentiation

(2018)
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ML for Precision Measurements

Inference Aware Neural Optimization
● Include nuisance parameters in the loss function and directly minimize 

precision of parameters of interest (e.g. signal strenght measurement)

Profiled likelihood around the expectation value for the parameter of interest 
for inference-aware models and cross-entropy loss based models. 

[1806.04743, de Castro, Dorigo]

https://arxiv.org/abs/1806.04743
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INFERNO Algorithm

NN output summary statistics from input data

Loss function: uncertainty on parameter of interest (U)

Obtained by computing full hessian of the Likelihood with 
respect to all nuisance parameters
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INFERNO Algorithm

For a detailed explanation of the algorithm see G. Strong blog post

https://gilesstrong.github.io/website/statistics/hep/inferno/2020/12/04/inferno-1.html
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ML for Instrumentation

Can automatic differentiation be applied to detector optimization ?
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Optimization of Detector Design

Design of detectors traditionally relies on individual optimization of subdetector
● Track first, destroy later 

● First detect ionization tracks in tracker, then measure energy deposits from 
destructive interaction with thick calorimeters

● Per-subdetector optimization
● subdetector-specific figures of merit (e.g. momentum resolution)

● Impact on physics goals typically considered in a second step

Optimization of a joint problem ≠ different from individual optimization
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ML for Detector Optimization

Data 
(particles)

...  Parameters of interest 
(physics)

Differentiable simulated 
detector modules

Data NN output 

Minimization of objective function through automatic differentiation
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ML for Detector Optimization

Data 
(particles)

...  Parameters of interest

Differentiable simulated 
detector modules

What if simulator is not differentiable ? Try differentiable surrogate models

Differentiable



Julien Donini – UCA/LPC 44

Muon shielding in SHIP
Minimize muon background fluxes in the SHIP steel magnet by varying its geometry

 

Local generative surrogate solution is shorter and has lower mass than other 
proposal, hence improving efficacity of the experiment and reducing its cost

Geometry of the magnet  
42 parameters to optimize

Evolution of 6 parameters 
during optimization

[2002.04632]

https://ship.web.cern.ch/
https://arxiv.org/abs/2002.04632


Machine-Learning Optimized 
Design of Experiments

MODE Collaboration 
https://mode-collaboration.github.io

A. G. Baydin5, A. Belias10, A. Boldyrev4, K. Cranmer8, P. de Castro Manzano1, T. Dorigo1,14, C. 
Delaere2, D. Derkach4, J. Donini3, F. Fanzago1, A. Giammanco2, C. Glaser11, L. Heinrich12, J. 
Kieseler7, C. Krause13, M. Lagrange2, M. Lamparth12, G. Louppe6, L. Layer1, F. Nardi3,14, P. 
Martinez Ruiz del Arbol9, F. Ratnikov4, P. Stowell15, G. Strong1, M. Tosi1,14, A. Ustyuzhanin4, P. 
Vischia2, H. Yarar1 ,H. Zaraket16

1 INFN, Italy
2 Université Catholique de Louvain, Belgium
3 Université Clermont Auvergne, France
4 Laboratory for big data analysis of the HSE, Russia 
5 University of Oxford
6 Université de Liege
7 CERN
8 New York University

9 IFCA, Spain
10 GSI, Germany
11 Uppsala Universitet, Sweden
12 TU Munchen, Germany
13 Rutgers University, US
14 Università di Padova, Italy
15 Durham University, UK
16 Lebanese University, Lebanon

Sponsored by

https://mode-collaboration.github.io/
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Differentiable programming for muography

[images : A. Giammanco]

Tomography: exploit atmospheric muon flux to map the interior of objects  

Muon absorption Muon scattering

https://indico.cern.ch/event/1022938/sessions/407048/attachments/2305245/3921785/muography-mode-workshop2021-summary.pdf
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Muon tomography

Volume with unknown composition sandwiched between detectors

Infer X
0
 (radiation length) of volume by measuring muon scattering

How should detectors be positionned for best performances ?
● i.e Muon detection accuracy, resolution on X

0, ...

● But also: cost, size, ...
[see G. Strong talk]

https://indico.cern.ch/event/1022938/contributions/4487336/attachments/2304133/3919739/GSTD_ModeWS_06-09-21.pdf
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TomOpt: Tomography Optimization

Volume of unknown density (e.g. one 
including a high-Z block of 0.5x0.1x0.1 m3 
somewhere inside a 0.6x1x1m3 of low-Z 
material)

The system «learns» how to compromise 
cost and precision to optimize the 
inference on the Z map, and where 
detector elements are less useful

Python package for differential optimisation of muon-tomography detectors
G.Strong, T.Dorigo, F.Fanzago, A.Giammanco, M.Lagrange, M.Lamparth, F.Nardi, and P.Vischia 

Muon scan of volume of unknown density 
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TomOpt: Tomography Optimization

Result of a run of 100 epochs 
training, followed by a prediction 
with 100k muons

Shows training of a differentiable 
model of a schematic muon 
tomography apparatus.

The loss is a combination of 
detector cost (itself a function of 
sensors efficiency and resolution) 
and RMSE on rad length estimate

Still a long way to go..., but an 
important milestone

49

Above, top to bottom: loss, loss composition, 
resolution map, and efficiency map of 
detection elements after minimization.

[code and results Giles Strong]
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Conclusion

Modern ML is not doing what we did before, but more quickly. It is really 
doing physics that could not be possible otherwise.

Huge potential for new physics searches, triggering, fast simulation, 
instrumentation, theory, etc.

Very active field in HEP in recent years with lots of ideas and developments. 

Exciting opportunities for (young) physicists !
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Backup material
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Surrogates for differentiability

[slides G. Baydin]

https://indico.cern.ch/event/1022938/contributions/4487279/attachments/2303715/3918954/differentiable-programming-and-design-optimization%20%281%29.pdf
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Surrogates for differentiability
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ML for Detector Optimization

Data 
(particles)

...  Parameters of interest

Differentiable simulated 
detector modules

What if simulator is not differentiable ? Try differentiable surrogate models

Black-Box Optimization with Local Generative Surrogates, S. Shirobokov, V. Belavin, 
M. Kagan, A. Ustyuzhanin, A. G. Baydin, https://arxiv.org/abs/2002.04632 

https://arxiv.org/abs/2002.04632
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GNN for HEP

[arXiv:2007.13681]
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GNN for HEP

[arXiv:2007.13681]

A graph can be represented by, G = (u, V, E), with N
v
 vertices and N

e 
edges. The u 

represents graph-level attributes. The set of nodes is V and the set of edges is E.
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