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Reminder: probabilities
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Probabilities
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Ω

 

Frequentist: related to frequency of occurrence

Bayesian: degree of belief that A is true introduces concepts of prior 
and posterior probability

 

Knowledge on A increases using data

A

B
C
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Conditional probability
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A

B

 

Ω
Probability of A given that B is true:

But, similarly: 

Hence:
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Bayes theorem
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Thomas Bayes (?)

c. 1701 –1761

An Essay towards solving a Problem in the Doctrine of Chances. By the late Rev. 
Mr. Bayes, communicated by Mr. Price (1763)

“If there be two subsequent events, the probability of the second b/N and the 
probability of both together P/N, and it being first discovered that the second 
event has also happened, from hence I guess that the first event has also 
happened, the probability I am right is P/b.”

 

If the sample space Ω can be divided in disjoint subsets Ai
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Mandatory coin-flip example
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Example: 10 coins, 1 of which is unfair (two-sided tail): You flip a random 
coin and obtain tail. What is the probability that this is the unfair coin ?

A: event where the coin is unfair, B: event where the result is tail

You want P(A|B):

 

 where:

 

In Bayesian language: P(A) is the prior probability and P(A|B) the posterior
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Bayesian inference
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xkcd.com
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Frequentist vs Bayesian approaches
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Bayes theorem is not Bayesian per se, it is its interpretation 
that makes it Bayesian !

Frequentist
● Probabilities are related to frequencies of real or hypothetical events
● True parameters of the model: fixed and unknown 
● Estimate parameters (estimator) and uncertainties using likelihood

Bayesian
● Improve prior knowledge using data and Bayes theorem
● Estimate probability of true parameters: P(parameter | data)
● Fundamentally contrary to the frequentist philosophy !



Julien Donini

Frequentist vs Bayesian approaches
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Frequentist
● Probabilities are related to frequencies of real or hypothetical events
● True parameters of the model: fixed and unknown 
● Estimate parameters (estimator) and uncertainties using likelihood

Bayesian
● Improve prior knowledge using data and Bayes theorem
● Estimate probability of true parameters: P(parameter | data)
● Fundamentally contrary to the frequentist philosophy !

In simple problems, the two approaches can yield similar 
results. As data and models grow in complexity, however, 
the two approaches can diverge greatly.
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Bayes Theorem and statistical inference

11

 

Prior knowledge 
on theory

Marginal likelihood 

(a normalisation factor)

Likelihood of observing 
these data given a theory

Posterior 
knowledge on theory
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Example : coin flip (again)
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After n trials and k observation of heads what is the probability p of heads ?

p = 0.5 : a fair coin

p ≠ 0.5 : a tricky coin !

Let’s treat this problem using both frequentist and bayesian approches
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Coin flip: frequentist approach
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After n trials and k observation of heads what is the probability p of heads ?

For this we can use the Binomial probability law

● Estimator of p: 

● Standard deviation:  

Example: n=14 trial, k = 10 ‘head’ results

What is the compatibility of the result with the p=0.5 hypothesis ?

p-value = 9%

Significance: 1.3σ

In fact: rather compatible
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Coin flip: bayesian approach
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After n trials and k observation of heads what is the probability p of heads ?

Bayesian inference deduce probabilistic statements about the distribution of p.

==>  p is not a value, it's a distribution

The probability p, given the observed data, is obtained by Bayes theorem:
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Coin flip: bayesian approach
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After n trials and k observation of heads what is the probability p of heads ?

A very convenient prior for this scenario is the Beta distribution Beta(a,b)

In this case the posterior distribution can be calculated analytically :
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Coin flip: bayesian approach
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Let’s assume that we know nothing about p = uniform prior 

This corresponds to the Beta(a,b) distribution with a=1 and b=1 
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Coin flip: bayesian approach
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Example: n=14 trial, k = 10 ‘head’ results

The posterior distribution is then

with a=1 and b=1  

Interval containing 95% of the distribution:  (0.45, 0.88)



Julien Donini

Coin flip: bayesian approach
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Example: n=14 trial, k = 10 ‘head’ results

Different prior : centered on 0.5, Beta(a,b) distribution with a=10 and b=10  

Interval containing 95% of 
the distribution:  (0.42, 0.75)
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Coin flip: Bayes factor
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Which statistical model is better ? An answer is given by the Bayes factor 

The Bayes factor is the ratio of the marginal likelihoods of the two models

Marginal likelihood:

Bayes factor: 

A value of K > 1 means that Model
1
 is more strongly supported by the 

data under consideration than Model
2
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Coin flip: Bayes factor
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For the binomial model the Bayes factor is given by:

Comparing the ‘peaked’ prior model with the uniform prior model gives K = 1.2

The first model is more supported than the alternative hypothesis by the data.   
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Exemple: 2D counting experiment
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We have two sensors that measure events from different processes (decay rate, etc)

The number of counts for each process follows a Poisson distribution

Let’s see how the posterior distribution                        evolves with data



Julien Donini

Exemple: 2D counting experiment
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We assume two different priors for 
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Exemple: 2D counting experiment
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For each data point we update the posterior: here for N = 1 data

The ‘true’ value used to generate the data 
corresponds to 
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Exemple: 2D counting experiment
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For each data point we update the posterior: here for N = 5 data
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Exemple: 2D counting experiment
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For each data point we update the posterior: here for N = 100 data
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Variational Inference (VI)
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Variational Inference (VI)

How can we sample posterior densities p(θ|data) efficiently ?

Methods such as Markov Chain Monte Carlo (MCMC) do that but they scale 
poorly with data size and can become inefficient in very high dimensions.

Variational inference is an alternative approach: fitting an approximation

with a simple functional form, such as a normal distribution, and casting the 
inference task as an optimisation problem.
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Variational Inference (VI)

Variational inference is based on fitting an approximation q(θ) to the posterior 
by minimising the Kullback–Leibler (KL) divergence
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ELBO

Approximating q(θ) to the true posterior →  minimizing the KL divergence. 

However this is difficult as the evidence, or marginal likelihood, p(data) 
appears in the expression of KL making the calculation in general intractable. 

In practice the so-called Evidence Lower-BOund (ELBO) is used instead:

Indeed maximizing the ELBO is equivalent to minimizing the KL divergence
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Maximizing the ELBO

Maximizing the ELBO is equivalent to minimizing the KL divergence, as:

Optimising the ELBO serves a dual purpose: 

● q(θ) yields the best approximation of the posterior p(θ|data)

● The value provides an approximation (bound) on the marginal 

likelihood, which can be used for model comparison.
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ADVI

To approximate the posterior ( |data), parameters  describing the 𝑝 𝜃 𝜙

density ( ) are optimized using 𝑞 𝜃 automatic differentiation:

→ ADVI: Automatic Differentiation Variational Inference

     https://arxiv.org/abs/1603.00788 

See example 
notebook:

https://arxiv.org/abs/1603.00788
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Autoencoders and variational inference
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Autoencoders (AE)

Encoder Decoder

Input Output

NN trained to reproduce the input data using a constrained network.

Use cases: anomaly detection, data-compression, data generation

The network is constrained to learn important data features.
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Mandatory MNIST example

MNIST database : 60,000 training images and 10,000 testing images



Julien Donini 35

Autoencoders (AE)
[lilianweng.github.io]

Encoding x to latence space z: 
Decoding z to reconstructed space x’: 

Training: minimize MSE loss:

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html#denoising-autoencoder
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Mapping to latence space

Example for 2-dimension latence space:

[A. Van de Kleut]

https://avandekleut.github.io/vae/
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Generate new images ?

We can sample uniformly from the latent space and see how the decoder 
reconstructs inputs from arbitrary latent vectors.

Problems: gaps in the latence space, scaling to higher dim will be even worse
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Variational Autoencoders (VAE)

VAE [Kingma et al., 1312.6114] are probabilistic (deep) generative models.

For more information on VAE see these nice blogs: here, here and here. 

Input data is mapped to a 
multidimensional normal distribution

https://arxiv.org/abs/1312.6114
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
http://anotherdatum.com/vae.html
http://kvfrans.com/variational-autoencoders-explained/
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Variational Autoencoders (VAE)

Once trained only decoder is kept and new images are randomly generated !

Multidimensional normal 
distribution is randomly sampled
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Variational Autoencoders (VAE)

Inputs are mapped to a probability distribution over latent vectors

Encoding x to latence space z: 

Decoding z to reconstructed space x’: 
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The return of the KL divergence

The estimated posterior              should be very close to the real one 

We use Kullback-Leibler divergence to quantify the distance between these: 

q is specified as a standard normal distribution:

D
KL

 will penalize g
φ
 if it differs from q 
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VAE loss

one can show that the loss is:

For Variational Inference we have seen (page 30) that the evidence is such:

The right-handed term will constitue the loss of our NN during the training.

For

KL regularization Likelihood of 
reconstructed output

https://arxiv.org/abs/1907.08956)
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The reparametrization trick

How take derivatives with respect to the parameters of a stochastic variable ?

We can thus take gradients of functions involving z, f(z) with respect to the 
parameters of its distribution μ and σ.
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VAE loss

x

μ, σ

z

x

y
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VAE latent space

Compared to the AE, the range of values for latent vectors is much 
smaller, and more centralized. The distribution overall of q(z|x) 
appears to be much closer to a Gaussian distribution.
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VAE generated images

Reconstructed digits from the latent space:
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