

NEUTRINO MASS HIERARCHY MEASUREMENT WITH DUNE

In collaboration with: prof.Marumi Kado

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

NEUTRINO IN THE STANDARD MODEL

Two notable facts about neutrino

From massless Dirac's equation energy solutions

Neutrino are emitted with negative helicity

Antineutrino are emitted with positive helicity

Direction of the motion

NEUTRINO ≠ **ANTINEUTRINO**

From the V-A structure of the CC processes

$$J_{CC}^{\mu} = \overline{u_1} \gamma^{\mu} \frac{1}{2} (1 - \gamma^5) u_2$$

ONLY ν_L AND $\overline{\nu_R}$ ENTER IN WEAK INTERACTIONS

Extract only the *left –handed* component of fermions and *right-handed* component of anti-fermions

DIRAC OR MAJORANA NEUTRINO?

In SM particles can de described either by Dirac or Weyl's equation but massive neutrinos can't:

- Weyl's equation describes massless fermion
- Dirac's equation need 4 states $(f_L, f_R, \overline{f_L}, \overline{f_R})$ to explain mass of any particles \rightarrow neutrino has only non zero two spinor's components ν_L and $\overline{\nu_R}$

1937 Italian physicist E.Majorana debuted another theory: could Neutrino and Antineutrino be the same particle $v_i = \overline{v_i}$?

DIRAC FERMIONS

 $v_i \neq \overline{v}_i$

same mass but different lepton number $L(v_i) = -L(\overline{v_i}) = 1$ and the particles will be described as a quadruplet.

MAJORANA FERMIONS

 $v_i = \overline{v_i}$

No lepton number conservation and distinction between particle and antiparticle. Neutrino is described by only two spin states.

STANDARD MODEL

Three flavour eigenstates $v_e \, v_\mu \, v_ au$

One zero-mass state $m_v \simeq 0$

Does conserve familiy's leptonic number $L\alpha$ ($\alpha = e, \mu, \tau$)

OSCILLATION THEORY

Three flavour eigenstates $v_e v_\mu v_\tau$

Three mass eigenstates v_1 v_2 v_3

Does NOT conserve family leptonic number $L\alpha$ ($\alpha = e, \mu, \tau$)

Experimental observation of flavour changing in propagating neutrino can only be explained by assuming different neutrino mass eigenstates

Neutrino with a definite flavour can be expressed as a linear combination of the three mass eigenstate and viceverse

$$|\boldsymbol{v}_{\alpha}\rangle = \sum_{i} U_{\alpha,i}^{*} |\boldsymbol{v}_{i}\rangle \qquad \alpha = e, \mu, \tau \quad \text{FLAVOUR}$$

$$|\boldsymbol{v}_i\rangle = \sum_{\alpha} U_{\alpha,i} |\boldsymbol{v}_{\alpha}\rangle$$
 $i = 1, 2, 3$ MASS

 $U_{\alpha,i}$ PMNS mixing matrix Unitary matrix that assumes 3x3 form for three neutrino families \rightarrow 9 degrees of freedom

DIRAC NEUTRINOS

 θ_{12} θ_{12} θ_{23} three mixing angles δ_{CP} one phase related to the CP symmetry violation

MAJORANA NEUTRINOS

 θ_{12} θ_{12} θ_{23} three mixing angles

 $\delta_{\alpha} \ \delta_{\beta} \ \delta_{\gamma}$ three phases related to the

CP symmetry violation

Using Dirac parametrization for the PMNS matrix

- $\theta_{12} \ \theta_{12} \ \theta_{23}$ three mixing angles $\theta_{12} \ \theta_{12} \ \theta_{23} \in [0, \pi]$
- δ_{CP} one phase related to the CP symmetry violation $\in [0, 2\pi]$

(observation of oscillation does not distinguish between Majorana and Dirac neutrino!)

$$U_{\alpha,i} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\underbrace{\mathsf{Atmospheric}}_{v_{\mu} \to v_{\tau}} \underbrace{\mathsf{Accelerated}}_{v_{\mu} \to v_{e}} \underbrace{\mathsf{Solar}}_{v_{e} \to v_{\alpha}}$$

With sij = sin θ ij, cij = cos θ ij, ij = 12, 13, 23

Parameter	Normal ordering	Inverted ordering
$\theta_{12}/^{\circ}$	$33.45_{-0.75}^{+0.77}$	$33.45_{-0.75}^{+0.78}$
$ heta_{23}/^{\circ}$	$42.1^{+1.1}_{-0.9}$	$49.0\substack{+0.9 \\ -1.3}$
$ heta_{13}/^{\circ}$	$8.62\substack{+0.12 \\ -0.12}$	$8.61\substack{+0.14 \\ -0.12}$
$\delta_{CP}/^{\circ}$	230^{+36}_{-25}	278^{+22}_{-30}

Respect to CKM matrix parameters the mixing is enhanced

The octant for θ_{23} it has not been determined yet

Currently values for δ_{CP} are in favor of the CP symmetry violation

 $\begin{array}{c|c} e \\ \mu \\ \tau \end{array}$

 v_2

 v_3

 v_1

Neutrino oscillation occur with a non zero probability that a neutrino with initial flavour α could be detected after a distance L with a different flavour $\beta \neq \alpha$.

- Each neutrino propagates as a plane wave with different phases for each mass state $\lambda = h/p_i$
- Ultra relativistic particle approssimation $|p_i| \simeq E \frac{m_i^2}{2E} \simeq E$

PROBABILITY OF OSCILLATION

$$P_{\alpha \to \beta} = \sum_{i} \left| U_{\alpha,i} \right|^{2} \left| U_{\beta,i} \right|^{2} + 2Re \sum_{i>j} U_{\alpha,i}^{*} U_{\beta,i} U_{\alpha,j} U_{\beta,j}^{*} e^{-\frac{\Delta m_{ij}^{2}L}{2E}}$$

$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

Observation of a flavour's transition implies the existance of different non zero mass states

MASS HIERACHY

- $P_{\alpha \to \beta} \propto \Delta m_{ij}^2$ does not give any information about the absolute mass values!
- Any massive state has different probabilities to interact as a neutrino with a given flavour

• The measureable quantity is $\Delta m_{ij}^2 \rightarrow \text{studies on solar and atmospheric neutrinos first measured}$ SOLAR (Δm_{12}^2) $v_e \rightarrow v_\mu v_\tau$ Homestake, Kamiokande, SAGE, SNO, GALLEX, Borexino ATMOSPHERIC (Δm_{23}^2) $v_\mu \rightarrow v_\tau$ Super-Kamiokande, K2K, MINOS, OPERa, IceCube

MASS HIERACHY

Parameter	NO	IO
$ \Delta m^2_{12} [10^{-5} eV^2]$	7.42 ± 0.21	7.42 ± 0.21
$ \Delta m^2_{23} [10^{-3} eV^2]$	2.51 ± 0.27	2.49 ± 0.28
$ \Delta m^2_{31} [eV^2]$	$O(10^{-3})$	$O(10^{-3})$

Eigenvalues m_1^2 and m_2^2 are similar while m_3^2 is more separated from the others

$$\left|\Delta m^2_{12}\right| \ll \left|\Delta m^2_{23}\right|$$

What is the sing of Δm_{31}^2 ?

Possible configurations that arise from the sing of Δm_{31}^2 are known as *hierarchies* (or ordering)

NORMAL $m_1 < m_2 < m_3$ $sgn(\Delta m_{31}^2) = +1$ INVERTED $m_3 < m_1 < m_2$ $sgn(\Delta m_{31}^2) = -1$

- Neutrino interaction with matter can modifies the probability of oscillation
- Propagation is alterated due to the elastic scatterin event with the medium's particles

$$H \to H_{effecctive} = H + V_{MSW}$$

NEUTRAL CURRENT WEAK INTERACTION (CN) Cross section is independent from the leptonic family, all the three flavour can exchange $Z^0 \rightarrow V = 0$

$$\Delta m^2 \rightarrow \Delta m_M^2$$
 Increase for v_e
Decrease for $\overline{v_e}$

CHARGED CURRENT WEAK INTERACTION (CN)

Only electron neutrino are involved in this processes inducing an additional phase in the Hamiltonian

$$W^{\pm} \rightarrow V_{MSW} = \pm \sqrt{2} \ G_F N_e$$

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Matter effect modifies the probability of oscillation

$$\mathcal{P}_{\alpha \to \beta}(L, E) = |\Psi_{e,\beta}|^2 = \sin^2 2\theta_M \sin^2 \left(\frac{\Delta m_M^2 L}{4E}\right)$$
$$\Delta m_M^2 = \Delta m^2 \sqrt{(\cos 2\theta - A)^2 + (\sin 2\theta)^2} \qquad \text{where } A = \underbrace{\pm}^{2\sqrt{2}} \frac{2\sqrt{2}}{\Delta m^2} G_F N_A$$

 $\tan 2\theta_M = \frac{\sin 2\theta}{\cos 2\theta - A}$

depends on neutrino (+) or antineutrino (-) so it is sensible to $sgn(\Delta m_{ii}^2) \rightarrow allows$ to discriminate the mass hierarchy !

$$\frac{P_{\upsilon_{\alpha} \to \upsilon_{\beta}}}{P_{\overline{\upsilon_{\alpha}} \to \overline{\upsilon_{\beta}}}} \begin{cases} > 1 \text{ NORMAL (NH)} \\ < 1 \text{ INVERTED (IH)} \end{cases}$$

• Becomes more important increasing the ratio

between E and $L \rightarrow Long$ -Baseline $\frac{L}{E} \simeq 10^{-3} \frac{Km}{GeV}$

 At fixed parameters <u>results for neutrino and</u> antineutrino are opposite

How to measure $sgn(\Delta m_{13}^2)$

• Particular values of N_e allows resonant transition between neutrino with different flavour \rightarrow the effect is maximized for the condition:

$$N_e^{Resonance} = \Delta m_i^2 \frac{\cos 2\theta_{ij}}{2\sqrt{2} G_F E_v} \rightarrow \theta_M = \frac{\pi}{4}$$
 MAXIMAL MIXING

• Using different effects between neutrino and neutrino due to the presence of matter is an efficient tool for the ordering discrimination

$$\frac{P_{\upsilon_{\alpha} \to \upsilon_{\beta}}}{P_{\overline{\upsilon_{\alpha}} \to \overline{\upsilon_{\beta}}}} \begin{cases} > 1 & \text{NORMAL (NH)} \\ < 1 & \text{INVERTED (IH)} \end{cases}$$

Example: appereance events for transition $v_{\mu} \rightarrow v_{e}$ and $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ (with neutrino beam)

One of the best ways to use the MSW effect in Earth matter such as in a long baseline neutrino experiment

Observation by MINOS an electrons electron produced by a muon neutrino beam allows the determination of θ_{13}

$$P_{\nu\mu\longrightarrow\nu_e} = \sin^2\theta_{23}\sin^22\theta_{13}\sin^2\frac{\Delta m_{23}^2L}{4E_\nu}$$

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

DUNE

Deep Underground Neutrino Experiment

- Determine the correct mass hierarchy (confidence >5 σ)
- Measuing δ_{CP} to verify CP violation
- Even more precise measurements of the other parameters
- Atmospheric neutrino
- Nuclear decays
- Supernovae neutrinos

DUNE

Deep Underground Neutrino Experiment

ACCELERATOR An effective way to access neutrino oscillation is by making intense <u>neutrino beams</u> using particle accelerators

Disappereance channels $\longrightarrow |\Delta m_{31}^2| and \sin^2(2\theta_{23})$ Appereance channels $\Delta m_{31}^2 \theta_{23} \theta_{13} \delta_{CP}$ $\mathcal{P}(\nu_{\mu} \rightarrow \nu_{e}) = \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \left(1.27\Delta m_{23}^2 \frac{L}{E}\right)$

 $p+C
ightarrow \pi^+ + \pi^- + n$ $\pi^+
ightarrow \mu^+ + v_\mu$ $v_e + {}^{40}Ar
ightarrow {}^{40}K^* + e^-$

Forward Horn Current (FHC) mode produces a predominantly v_{μ} beam Reverse Horn Current" (RHC) mode produces predominantly $\overline{v_{\mu}}$

DUNE The Near Detector

- Higher number of interactions with pure neutrino beam
- Information about the intial beam composition
- Smaller sistematic errors on the final measures
- 600 m away from the Fermilab base
- ArgonCube Liquid Argon detector.
- Array of 5x7 ArgonCube modules (5 along and 7 transverse to the beam direction) sharing a common cryostat
- Minimal amount of inactive material

DUNE Far Detector

- More chances to interact with matter
- Enhancement of oscillation probability
- $\frac{L}{E} \simeq 10^{-3} \frac{Km}{GeV}$
- 1300 km far from Fermilab
- 1.5 km underground
- 4 modules, filled with liquid Argon at -184 each with a total (fiducial) mass of 17 kt (10 kt)

$$v_e + {}^{40}Ar \rightarrow {}^{40}K^* + e^-$$

$$m{v}_{\mu}+{}^{40}Ar
ightar
ightarrow {}^{40}K^{*}+\mu^{-}$$

DUNE Deep Underground Neutrino Experiment

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

CONCLUSION

Still a lot of questions!

- What is the right mechanism through wich neutrino acquire their mass?
- Are neutrino Majorana or Dirac fermions?
- Do they violate CP symmetry?

- Could be the explanation of the discrepancies between matter and antimatter in our universe?
- Are new beyond Standard Model thories necessary? (YES!)

8th BCD ISHEP Cargèse School

University of Bologna a.a 2022-2023

Ajó THANKS FOR YOUR ATTENTION!

Giulia Lupi

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA