

Supervisor: Prof. Angelo Carbone Co-Supervisor: Dott. Andrea Villa

Andrea Petrini

D^o MESON MIXING

- Mixing phenomenon in neutral mesons refers to their capability to fluctuate into their antiparticle.
- Transition probablity in D^0 ($\overline{u}c$) meson case $|D^0\rangle \rightarrow |\overline{D^0}\rangle$ is in fact different from zero.
- By the diagonalisation of the weak interaction Hamiltonian we can obtain $|D_L\rangle$ and $|D_H\rangle$ mass eigenstates.

$$|D_L\rangle = p |D^0\rangle + q |\overline{D^0}\rangle \qquad |D_H\rangle = p |D^0\rangle - q |\overline{D^0}\rangle$$

D^o MESON MIXING

• Their corresponding eigenvalues depends on mass $m_{H,L}$ and decay width $\Gamma_{H,L}$ values. Thanks to those values we can define adimentional mixing parameters:

$$\chi = \frac{\Delta m}{\Gamma}, \ \gamma = \frac{\Delta \Gamma}{2\Gamma}$$
 with $\Delta m = m_H - m_L, \ \Delta \Gamma = \Gamma_H - \Gamma_L, \ \Gamma = \frac{\Gamma_H + \Gamma_L}{2}$

- x and y are directly related to the physical quantities resposible for neutral meson mixing.
- Mixing occurs if either *x* or *y* is different from zero.

y_{CP} OBSERVABLE

• The parameter y_{CP} measured in this analysis quantifies the difference of the half life between CP even eigenstates and $K\pi$ eigenstates.

$$y_{CP}^{hh} = \frac{\tau_{K\pi}}{\tau_{hh}} - 1, \text{ with } h = (K,\pi)$$

• In the limit of CP conservation we expect $y_{CP} = y$.

Observable	Value (%)
y_{CP}	0.697 ± 0.028
x	0.407 ± 0.044
y	0.647 ± 0.024

D⁰ INVARIANT MASS FIT

- The data sample of D^0 meson coming from semileptonic B decays $(B \rightarrow D \mu \nu X)$ is divided in 3 decay channels: $D^0 \rightarrow K^+ K^-$, $D^0 \rightarrow \pi^+ \pi^-$ and $D^0 \rightarrow K^- \pi^+$.
- Every sample has been divided in 18 bin of D^0 decay time, from 0.15 ps to 1.95 ps.
- Fit function needed to extract the number of signal events:

$$PDF = \frac{N_{sig}}{N_{sig} + N_{bkg}} \left[\sum_{i=1}^{4} c_i \mathcal{G}_i(x|\mu_i, \sigma_i, s) \right] + \frac{N_{bkg}}{N_{sig} + N_{bkg}} \exp(\lambda x)$$

$$\mathcal{G}(x|\mu,\sigma,s) = \int \Theta(\mu-x')(\mu-x')^s \exp\left(-\frac{(x'-x)^2}{2\sigma^2}\right) dx'$$

- The components of the signal distributions have different μ_i and σ_i respectively shifted ($\mu_i = \mu_1 + \delta_i$) and scaled ($\sigma_i = k_i \sigma_1$).
- Some of the PDF parameters are estimated by the MC simulation and they're kept constant in the fit.

SIGNAL EVENTS HISTOGRAMS TAKEN FROM FIT

Number of signal events (units 10^6):

3.7 in the channel *KK*, 1.4 in the channel $\pi\pi$ and 36 in the channel $K\pi$.

FIT ON SIGNAL EVENTS RATIO

• y_{CP} final value is extracted from a fit on signal events ratio, with proper correction given by reconstruction efficiencies.

$$\frac{N(hh,t)}{N(K\pi,t)} = \frac{\varepsilon(hh,t)}{\varepsilon(K\pi,t)} \frac{\Gamma(hh,t)}{\Gamma(K\pi,t)}, \text{ with } h = (K,\pi) \xrightarrow{\stackrel{\circ}{\sigma} 1.03}_{1.02} \xrightarrow{\stackrel{\circ}$$

RESULTS

Parameters	Fit Values	
Tarameters	$KK/K\pi$	$\pi\pi/K\pi$
$\Delta_{\Gamma}[ps^{-1}]$	0.015 ± 0.002	0.0063 ± 0.0038
$\chi^2/{ m dof}$	14.4/16	20.5/16
$y_{CP}(\%)$	0.63 ± 0.10	0.26 ± 0.16

RESULTS

- Δ_{Γ} and y_{CP} central values are blind.
- y_{CP}^{KK} and $y_{CP}^{\pi\pi}$ obtained in the fit are compatible with each other within 2.0 standard deviations.

CONCLUSIONS

• y_{CP} measure has been made using data taken by LHCb in Run 2 at

 $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of $L = 6 f b^{-1}$.

• D^0 invariant mass fit has given the number of signal events.

• A fit on signal events ratio scaled with acceptances lead to the two blind values (with statistic uncertainty):

 $y_{CP}^{KK} = (0.63 \pm 0.10)\%$ $y_{CP}^{\pi\pi} = (0.26 \pm 0.16)\%$

 Once the analysis is complete, the two values will be combined with an expected improvement factor of 2 with respect to previous results with semileptonic decays

THANKS FOR YOUR ATTENTION