METHOD FOR NUCLEAR FRAGMENTS IDENTIFICATION IN FOOT EXPERIMENT

Presented by:

Giacomo Santoni

BCD school - 29/03/2023

HADRONTHERAPY

- ${}^{12}C$ ions or protons instead of electromagnetic radiation.
- More precise therapy $\longrightarrow Bragg Peak$.
- Not complete knowledge of nuclear fragmentation processes and need of a Standard Treatment Protocol.

FOOT EXPERIMENT

- Goal: differential cross section for fragments production.
- Use of *inverse kinematics*.

FragmentatiOn Of Target

EXPERIMENTAL APPARATUS

- Heavy fragments setup.
- Pre-target region.
- Tracking zone.
- Final region.

DATA ANALYSIS

Analysis done on simulated data from ¹⁶O @ 200 MeV/u vs C_2H_4 interaction, and the resolutions applied to the kinematical quantities of the evaluated fragments are the following:

- *p* momentum resolution: $R_p = 4\%$;
- E_{cal} deposited energy in calorimeter resolution: $R_{E_{cal}} = 1.5\%$;
- *TOF* time of flight: $R_{tof} = f(Z) = 70 \text{ ps} ({}^{12}C);$
- ΔE_{scint} deposited energy in scintillator resolution: $R_{\Delta E_{\text{scint}}} = f(E)$.

Giacomo Santoni

Fragment	^{1}H	⁴ He	^{7}Li	⁹ Be	¹¹ B	^{12}C	^{14}N	^{16}O
Z expected	1	2	3	4	5	6	7	8
Z reco	(1.02 ± 0.06)	(2.03 ± 0.07)	(3.05 ± 0.10)	(4.07 ± 0.12)	(5.10 ± 0.14)	(6.14 ± 0.17)	(7.2 ± 0.2)	(8.2 ± 0.2)

BCD school - 29/03/2023

MASS NUMBER A_2

• Obtained through:

$$A_2 = \frac{E_k}{Uc^2(\gamma - 1)}$$

• Pre Bragg Peak-tail due to an underestimation of E_k .

Permanent Magnets Plastic Scint. dE/dX & TOF Start Counter Target Silicon Strip Detector Beam Monitor Drift Chamber Silicon Pixel trackers BGO Calorimeter

BCD school - 29/03/2023

MASS NUMBER A3

• Obtained through:

$$A_3 = \frac{p^2 c^2 - E_k^2}{2Uc^2 E_k}$$

• Post Bragg Peak tail due to an underestimation of *E_k*.

Giacomo Santoni

A PERCENTAGE RESOLUTION

- A₁ resolution (*p*, *TOF*): about 5%.
- A_2 resolution (E_k , TOF): between 4-5%.
- A_3 resolution (p, E_k) : about 10%.
- It gets better for heavier fragments.

TOF SYSTEMATIC STUDY

• *TOF* resolution parametrized as:

 $R_{tof} = A + \frac{B}{Z}$

- Analysis repeated with different R_{tof} , changing A e B:
 - s_1 : A = 40, B = 60, R_{tof} = 50 ps (¹²*C*);
 - s_2 : A = 48, B = 72, R_{tof} = 60 ps (¹²C);
 - s_3 A = 56, B = 84, R_{tof} = 70 ps (¹²C);
 - s_4 : A = 80, B = 120, R_{tof} = 100 ps (¹²C).

TOF SYSTEMATIC STUDY

A1 resolution for C

there is a 20% improvement in A reconstruction for ${}^{1}H$.

there is a 10% improvement in A reconstruction for ${}^{12}C$.

CONCLUSIONS

- I've studied a method for nuclear fragments identification produced in nuclear interactions.
- I've performed an analysis of simulated data. The algorithms used can be applied to real data acquired in July 2021 at GSI.
- In July 2021 42 million events were acquired at GSI, the analysis is still running and the results will be compared with the ones of this work.

THANKS FOR YOUR ATTENTION.