Machine learning techniques for top-top event search with the ATLAS experiment at the LHC

Supervisor: Prof. Maximiliano Sioli

Co-supervisor: Dott.ssa Noemi Cavalli

Presented by: Virginia Mazza

Alma Mater Studiorum Università di Bologna — Virginia Mazza

29 March 2023

Introduction

It was analyzed the production process of **quark top** *same-sign* following protonproton collisions taking place in the Large Hadron Collider at CERN in Ginevra using data collected by the ATLAS detector.

- Process strongly suppressed by the Standard Model → BSM physics research
- Analysis conducted with an EFT-type approach
- The thesis work is part of an ongoing analysis, using an alternative approach for signal/background discrimination

Three sets of variables of different **reconstruction levels** were chosen to be presented to a **neural network** optimized for signal-from-background discrimination to verify its performance.

Standard Model (SM)

It describes almost all experimental observations:

- Twelve FUNDAMENTAL PARTICLES
 divided into bosons and fermions
- Three of the four FUNDAMENTAL FORCES present in nature (quantized field theories): electromagnetic, weak and strong (NO gravity)
- It leaves open some question marks, both on the experimental and theoretical side

Standard Model of Elementary Particles

Effective Field Theories (EFT) and SMEFT

Effective Field Theories (EFT)

- Approach to investigate «physics beyond the Standard Model», which applies to an already existing and verified model
- Understand the behavior of a theory at lower energies and then derive what is assumed to be a simpler model at higher energies

SMEFT

 $\mathcal{L}_{TOT} = \mathcal{L}_{SM} + \mathfrak{d}\mathcal{L}_{SM}$

Starting from the Lagrangian of the Standard Model, made up of operators generated by the 4-dimensional fermion and boson fields, it is shown that $\delta \mathcal{L}_{SM}$ considers already known fermions and bosons and constructs with them new **operators of dimension 6**, respecting the symmetries of the Standard Model.

ATLAS detector

Where it is

ATLAS is one of the four large detectors present at the LHC in CERN in Ginevra.

Components

- **1.** Internal detector: measures direction, momentum and charge of particles produced in collisions
- 2. Calorimeter: contains all particles except neutrinos and muons and measures their energy
- 3. Muon spectrometer: measures the momentum of muons
- **4. Magnet system**: deflects the trajectories of charged particles to measure their momentum and charge

Trigger and data acquisition

For each collision the goal is to count, track and characterize all the particles produced. Two trigger levels:

- 1. Hardware: calorimeter and muon spectrometer information, it decides which data to keep and sends them to the second level
- 2. Software: it examines, selects and sends data to an offline storage system

Artificial Neural Network

How it works

A network is made up of **nodes** (artificial neurons) whose connections are regulated by numbers called **weights** which activate them (positive value) or suppress them (negative value) through an **input function**.

An **activation function** and a **threshold value** compute the output value of the neuron: an **algorithm** is thus modeled to produce a result for each input.

Structure

Made up of different levels:

- 1. Input layer: receives information from the outside
- 2. Hidden layers: nodes receive information from input layer or other hidden layers and process them
- **3. Output level**: the final result of all data processing, can have one or more nodes based on the problem studied

Training

The network needs to be trained: new data are presented and for each training iteration the weights are modified so that it provides increasingly precise results.

Search for same-sign top quark signal with ATLAS

The process that produces quark top same-sign pairs starting from protons is:

 $pp \rightarrow tt \rightarrow W^+ bW^+ b \rightarrow l^+ \nu b l^+ \nu b$

where W^+ is the mediator of the weak interaction, b the bottom quark, l^+ a lepton (positron or muon) and v the neutrino (electronic or muonic).

The searched signal should have particular characteristics:

1. a pair of same-sign leptons

- 2. two *b***-jets** (it means adronic jets produced by the adronization of a bottom quark)
- 3. presence of MET (Missing Transverse Energy)

It is a "clean" signal, i.e. characterized by a very limited background, made up of events that could hide it for various reasons.

Choice of samples for analysis

Three sets of data have been proposed to the neural network:

- 1. high level (invariant masses, lepton angles, Ht and *b*-tagging)
- 2. strictly low-level (two-lepton and leading jet quadrivectors, number of jets and METs)
- 3. copy of the second case with the addition of two *b*-tagging variables (sumPsbtag and sumPsbtag77)

GOAL: understand how the neural network behaves when you give it low-level or high-level variables as input.

The neural network used was built using the keras and tensorflow python packages, it is composed of 5 hidden levels consisting of 128, 64, 32, 16 and 8 nodes respectively and has a single node in the output level since it is a classifier.

Comparisons between the different levels – Trend of the outputs of the NN

It is assumed that the second set of variables has a higher VV background (di-boson category) than the other two.

SIGNAL → similar behaviour

BACKGROUNDS \rightarrow similar trend, small difference in the last two columns of the histograms:

→ second and third case higher values assumed respectively by the VV and ttW backgrounds

 \rightarrow *di-boson* background smaller in the third case wrt the second one

Comparisons between the different levels – Output behaviours and ROC curves

Similar behaviours althought high level variables show a better performance wrt the ones of low level while the latter appear to be more performant if are added *b*-tagging variables to them.

Areas under ROC curves, computed for each dataset, have the values **0.971** in the first case, **0.960** in the second and **0.964** in the third.

Comparisons between the different levels – Variables' behaviour

The trends of the most important variables considered by the neural network for the analysis were compared: **HT_lep**, **DeltaR_min_lep_bjet77** and **DRII01** for **HIGH LEVEL**; **lep_Phi_1**, **lep_Phi_0** and **njets_OR** for the **LOW LEVEL**, even after the introduction of the two *b*-tagging variables.

HIGH LEVEL

The network exploits the strong discriminating power of the input variables.

Comparisons between the different levels – Variables' behaviour

The trends of the most important variables considered by the neural network for the analysis were compared: **HT_lep**, **DeltaR_min_lep_bjet77** and **DRII01** for **HIGH LEVEL**; **lep_Phi_1**, **lep_Phi_0** and **njets_OR** for the **LOW LEVEL**, even after the introduction of the two *b*-tagging variables.

LOW LEVEL

The network reconstructs and exploits the strong correlations existing between the low-level variables for signal and background discrimination.

Conclusions

A study on the performance of an artificial neural network was conducted in the context of the search for same-sign top quarks with the ATLAS experiment at the LHC.

- Use of an artificial neural network for signal/background discrimination
- Using three datasets with different levels of reconstruction
- Performance study for the various levels of reconstruction

Comparable results for the various levels of reconstruction: the neural network is able to exploit the correlations between the low-level variables, providing a high discriminating power between the signal and background hypotheses.

The results presented here are a starting point for a more in-depth study that can be used in the comprehensive analyses of the ATLAS collaboration.

Thanks for the attention