Optimisation of Decay Selections $\Lambda_b^0 \rightarrow pK^- \in \Lambda_b^0 \rightarrow p\pi^$ for CP Asymmetry Measument

Marco Caporale

Alma Mater Studiorum - Università di Bologna

29 March 2023

 $\Lambda_b^0 \to p K^-$, $\Lambda_b^0 \to p \pi^-$

• CP symmetry \rightarrow Invariance of interactions under C (charge conjugation) and P (parity) transformations

 $\Lambda_b^0 \to p K^-, \Lambda_b^0 \to p \pi^-$

- CP symmetry \rightarrow Invariance of interactions under C (charge conjugation) and P (parity) transformations
- $\bullet \ \mathcal{CP}$ violation observed only in weak interaction

< ロ > < 同 > < 三 > < 三 > < 回 > < 回 > < ○

- CP symmetry \rightarrow Invariance of interactions under C (charge conjugation) and P (parity) transformations
- $\bullet \ \mathcal{CP}$ violation observed only in weak interaction
- Violation introduced by CKM matrix complex phase δ , only possible for >2 quark generations Cabibbo mixing

$$V_{CKM} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

 $\Lambda_b^0 \to p K^-, \Lambda_b^0 \to p \pi^-$

- CP symmetry \rightarrow Invariance of interactions under C (charge conjugation) and P (parity) transformations
- $\bullet \ \mathcal{CP}$ violation observed only in weak interaction
- Violation introduced by CKM matrix complex phase δ , only possible for >2 quark generations Cabibbo mixing

$$V_{CKM} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13} e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13} e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13} e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13} e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

• Violation given by δ is not sufficient to explain observed matter-antimatter asymmetry of the Universe

- CP symmetry \rightarrow Invariance of interactions under C (charge conjugation) and P (parity) transformations
- $\bullet \ \mathcal{CP}$ violation observed only in weak interaction
- Violation introduced by CKM matrix complex phase δ , only possible for >2 quark generations Cabibbo mixing

$$V_{CKM} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13} e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13} e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13} e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13} e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

- Violation given by δ is not sufficient to explain observed matter-antimatter asymmetry of the Universe
- \bullet Research of new \mathcal{CP} violation sources \rightarrow Physics beyond Standard Model

Principal diagrams for charmless 2-bodies decays of Λ_b^0

 $\Lambda_b^0 \to p K^-, \Lambda_b^0 \to p \pi^-$

Principal diagrams for charmless 2-bodies decays of Λ_b^0

• "Tree" topologies

3/15

Principal diagrams for charmless 2-bodies decays of Λ_b^0

- "Tree" topologies
- "Penguin" topologies

 $\Lambda_b^0 \to p K^-, \Lambda_b^0 \to p \pi^-$

Principal diagrams for charmless 2-bodies decays of Λ_b^0

• "Tree" topologies

• "Penguin" topologies \rightarrow possible traces of New Physics

Principal diagrams for charmless 2-bodies decays of Λ_b^0

• "Tree" topologies

• "Penguin" topologies \rightarrow possible traces of New Physics

New Physics \rightarrow may be observable via \mathcal{CP} violation

		· · · · · · · · · · · · · · · · · · ·	$\equiv \psi (\psi)$
Marco Caporale (UniBo)	$\Lambda^0_b \to p K^-, \Lambda^0_b \to p \pi^-$	29 March 2023	3 / 15

Principal diagrams for charmless 2-bodies decays of Λ_b^0

• "Tree" topologies

• "Penguin" topologies \rightarrow possible traces of New Physics

New Physics \rightarrow may be observable via \mathcal{CP} violation

CP violation already observed in decays of B^0, B^0_s mesons Similar transitions $\rightarrow CP$ violation for Λ^0_b ?

Marco Caporale (UniBo)

CDF measurements¹(3 fb⁻¹ @ \sqrt{s} =1.96 TeV):

•
$$\mathcal{A}_{CP}^{pK} = (-10 \pm 8 \pm 4)\%$$

• $\mathcal{A}_{CP}^{p\pi} = (-6 \pm 7 \pm 3)\%$

$$\mathcal{A_{CP}} = rac{|\mathcal{A}|^2 - |ar{\mathcal{A}}|^2}{|\mathcal{A}|^2 + |ar{\mathcal{A}}|^2}$$

¹CDF Coll., Physical Review Letters, 113 (2014) 4/15

Marco Caporale (UniBo)

 $\Lambda_b^0 \to p K^-, \Lambda_b^0 \to p \pi^-$

CDF measurements¹(3 fb⁻¹ @ $\sqrt{s} = 1.96$ TeV):

•
$$\mathcal{A}_{CP}^{pK} = (-10 \pm 8 \pm 4)\%$$

• $\mathcal{A}_{CP}^{p\pi} = (-6 \pm 7 \pm 3)\%$
Most precise measurement \rightarrow LHCb (Run 1)²
(1 fb⁻¹ @ $\sqrt{s} = 7$ TeV and 2 fb⁻¹ @ $\sqrt{s} = 8$ TeV):
• $\mathcal{A}_{CP}^{pK} = (-2.0 \pm 1.3 \pm 1.9)\%$
• $\mathcal{A}_{CP}^{p\pi} = (-3.5 \pm 1.7 \pm 2.0)\%$

$$\mathcal{A_{CP}}=rac{|\mathcal{A}|^2-|ar{\mathcal{A}}|^2}{|\mathcal{A}|^2+|ar{\mathcal{A}}|^2}$$

Marco Caporale (UniBo)

 $\Lambda_b^0
ightarrow pK^-$, $\Lambda_b^0
ightarrow p\pi^-$

ELE DOG

CDF measurements¹(3 fb⁻¹ @ $\sqrt{s} = 1.96$ TeV):

•
$$\mathcal{A}_{CP}^{pK} = (-10 \pm 8 \pm 4)\%$$

• $\mathcal{A}_{CP}^{p\pi} = (-6 \pm 7 \pm 3)\%$
Most precise measurement \rightarrow LHCb (Run 1)²
(1 fb⁻¹ @ $\sqrt{s} = 7$ TeV and 2 fb⁻¹ @ $\sqrt{s} = 8$ TeV):
• $\mathcal{A}_{CP}^{pK} = (-2.0 \pm 1.3 \pm 1.9)\%$
• $\mathcal{A}_{CP}^{p\pi} = (-3.5 \pm 1.7 \pm 2.0)\%$

 $\mathcal{A_{CP}} = rac{|\mathcal{A}|^2 - |ar{\mathcal{A}}|^2}{|\mathcal{A}|^2 + |ar{\mathcal{A}}|^2}$

No \mathcal{CP} violation observed

Marco Caporale (UniBo)

 $\Lambda_b^0 \to p K^-, \Lambda_b^0 \to p \pi^-$

CDF measurements¹(3 fb⁻¹ @ $\sqrt{s} = 1.96$ TeV):

•
$$\mathcal{A}_{C\mathcal{P}}^{pK} = (-10 \pm 8 \pm 4)\%$$

• $\mathcal{A}_{C\mathcal{P}}^{p\pi} = (-6 \pm 7 \pm 3)\%$
Most precise measurement \rightarrow LHCb (Run 1)²
(1 fb⁻¹ @ $\sqrt{s} = 7$ TeV and 2 fb⁻¹ @ $\sqrt{s} = 8$ TeV):
• $\mathcal{A}_{C\mathcal{P}}^{pK} = (-2.0 \pm 1.3 \pm 1.9)\%$
• $\mathcal{A}_{C\mathcal{P}}^{p\pi} = (-3.5 \pm 1.7 \pm 2.0)\%$

No \mathcal{CP} violation observed

Run 2 data (LHCb, 6 fb⁻¹ @ $\sqrt{s} = 13$ TeV)(+ Run 1 review) Bigger data sample + Selection optimisation \rightarrow Reduction of statistical uncertainty

¹CDF Coll., Physical Review Letters, 113 (2014) ²LHCb Collaboration, Physics Letters B, 787 (2018) ← □ → ← □ → ← □ → ← □ → ← □ → → □ → □ → → □ → → □ → → □ → → □

Marco Caporale (UniBo)

 $\Lambda_b^0 \to p K^-, \Lambda_b^0 \to p \pi^-$

4/15

 $\mathcal{A}_{\mathcal{CP}} = rac{|\mathcal{A}|^2 - |ar{\mathcal{A}}|^2}{|\mathcal{A}|^2 + |ar{\mathcal{A}}|^2}$

Analysis Strategy

Experimental observable \mathcal{A}_{RAW}

$$\mathcal{A}_{RAW}^{f} = \frac{N(\Lambda_{b}^{0} \rightarrow f) - N(\bar{\Lambda_{b}^{0}} \rightarrow \bar{f})}{N(\Lambda_{b}^{0} \rightarrow f) + N(\bar{\Lambda_{b}^{0}} \rightarrow \bar{f})}, \ f = pK^{-}, p\pi^{-}$$

 $\Lambda_b^0 \to p K^-, \Lambda_b^0 \to p \pi^-$

Experimental observable \mathcal{A}_{RAW}

$$\mathcal{A}_{RAW}^{f} = \frac{N(\Lambda_{b}^{0} \rightarrow f) - N(\bar{\Lambda_{b}^{0}} \rightarrow \bar{f})}{N(\Lambda_{b}^{0} \rightarrow f) + N(\bar{\Lambda_{b}^{0}} \rightarrow \bar{f})}, \ f = pK^{-}, p\pi^{-}$$

Some of various contributions:

- $\mathcal{A}_{\mathcal{CP}}$ (what we want to measure)
- $\mathcal{A}_P \ \Lambda_b^0 / \bar{\Lambda_b^0}$ production asymmetry
- $\mathcal{A}_D^{h^{\pm}}$ Final states $(p, \bar{p}; K^+, K^-; \pi^+, \pi^-)$ detection asymmetry
- \mathcal{A}_{PID} Particle IDentification (PID) asymmetry
- $\mathcal{A}_{trigger}$ Trigger (hardware and software) asymmetry

Experimental observable \mathcal{A}_{RAW}

$$\mathcal{A}_{RAW}^{f} = \frac{N(\Lambda_{b}^{0} \rightarrow f) - N(\bar{\Lambda_{b}^{0}} \rightarrow \bar{f})}{N(\Lambda_{b}^{0} \rightarrow f) + N(\bar{\Lambda_{b}^{0}} \rightarrow \bar{f})}, \ f = pK^{-}, p\pi^{-}$$

Some of various contributions:

- $\mathcal{A}_{\mathcal{CP}}$ (what we want to measure)
- $\mathcal{A}_P \ \Lambda_b^0 / \bar{\Lambda_b^0}$ production asymmetry
- $\mathcal{A}_D^{h^{\pm}}$ Final states $(p, \bar{p}; K^+, K^-; \pi^+, \pi^-)$ detection asymmetry
- \mathcal{A}_{PID} Particle IDentification (PID) asymmetry
- $\mathcal{A}_{trigger}$ Trigger (hardware and software) asymmetry

$$\mathcal{A}_{RAW}^{ph^-} = \mathcal{A}_{C\mathcal{P}}^{ph^-} + \mathcal{A}_D^p + \mathcal{A}_D^{h^-} + \mathcal{A}_{PID}^{ph^-} + \mathcal{A}_P^{\Lambda_D^0} + \mathcal{A}_{trigger}^{ph^-}, \ h^- = K^-, \pi^-$$

→ ◎ ▶ ★ ■ ▶ ★ ■ ▶ ● 里 ■ ● ○ ○ ○

Reduce non-signal events via the use of:

 $\Lambda_b^0 \to p K^-, \Lambda_b^0 \to p \pi^-$

Reduce non-signal events via the use of:

- BDT (Boosted Decision Tree) classifier
 - Separate signal and combinatorial background via the use of kinematic and geometric variables

 $\Lambda_b^0 \to p K^-$, $\Lambda_b^0 \to p \pi^-$

Reduce non-signal events via the use of:

- BDT (Boosted Decision Tree) classifier
 - Separate signal and combinatorial background via the use of kinematic and geometric variables
- PID (Particle IDentification) variables
 - Identify possible final states $(p, \bar{p}; K^+, K^-; \pi^+, \pi^-)$
 - Reduce contribution of cross-feed decays

Optimisation of BDT and PID variables Investigation of cuts in a 5-dimensional space (1 BDT + 4 PID) \rightarrow Best precision on A_{RAW}

◆□▶ < □▶ < 三▶ < 三▶ < □▶ < □▶</p>

• Normalisation fit of the sample selected via the BDT and PID configuration, no distinction of \mathcal{CP} conjugate final states

- Normalisation fit of the sample selected via the BDT and PID configuration, no distinction of \mathcal{CP} conjugate final states
- Fit result is used for generating 10 toy pseudoexperiments, with distinction of final states and their CP-conjugates (CP asymmetry set to zero during generation)

↓ ∃ | = | = \0 0 0

- Normalisation fit of the sample selected via the BDT and PID configuration, no distinction of \mathcal{CP} conjugate final states
- Fit result is used for generating 10 toy pseudoexperiments, with distinction of final states and their CP-conjugates (CP asymmetry set to zero during generation)
- Pseudoexperiments are fit in order to find the configuration with the lowest average statistical uncertainty on A_{RAW} (same statistical uncertainty on A_{CP})

4 ∃ ► ∃ = < < < </p>

- Normalisation fit of the sample selected via the BDT and PID configuration, no distinction of \mathcal{CP} conjugate final states
- Fit result is used for generating 10 toy pseudoexperiments, with distinction of final states and their CP-conjugates (CP asymmetry set to zero during generation)
- Pseudoexperiments are fit in order to find the configuration with the lowest average statistical uncertainty on A_{RAW} (same statistical uncertainty on A_{CP})
- Simultaneous fit to the 8 possible two-body final states with the optimal cuts, leading to the final A_{RAW} measurement

pK Normalisation Fit

Fit components:

- Signal $(\Lambda_b^0 \to pK)$
- 3 bodies
- Combinatorial bkg
- Cross-feed (misID)

8/15

$p\pi$ Normalisation Fit

Fit components

- Signal $(\Lambda_b^0 \to p\pi)$
- 3 bodies
- Combinatorial bkg
- Cross-feed (misID)

Marco Caporale (UniBo)

$$\sigma(\mathcal{A}_{RAW}^{pK})=0.76\%$$

pprox 22000 signal events (Run 1 \rightarrow pprox 9000)

Marco Caporale (UniBo)

 $\Lambda_b^0 \to p K^-, \Lambda_b^0 \to p \pi^-$

29 March 2023

= nac

12 / 15

$p\pi$ Spectrum Fit

 $\Lambda_b^0 \to p K^-, \Lambda_b^0 \to p \pi^-$

29 March 2023 13 / 15

Optimisation of events selection $\Lambda_b^0 \rightarrow pK$, $p\pi$ decays for Run 2 CP asymmetry measurements at LHCb Results:

Optimisation of events selection $\Lambda_b^0 \to pK, p\pi$ decays for Run 2 CP asymmetry measurements at LHCb Results:

$$\sigma(\mathcal{A}^{pK}_{\mathcal{CP}})^{stat}_{Run1}=1.3\%$$

 $\Lambda_b^0 \to p K^-$, $\Lambda_b^0 \to p \pi^-$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のの⊙

Optimisation of events selection $\Lambda_b^0 \to pK, p\pi$ decays for Run 2 CP asymmetry measurements at LHCb Results:

$$\sigma(\mathcal{A}_{C\mathcal{P}}^{pK})_{Run1}^{stat} = 1.3\%
ightarrow \sigma(\mathcal{A}_{C\mathcal{P}}^{pK})_{Run2}^{stat} = 0.76\%$$

 $\Lambda_b^0 \to p K^-$, $\Lambda_b^0 \to p \pi^-$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

Optimisation of events selection $\Lambda_b^0 \to pK, p\pi$ decays for Run 2 CP asymmetry measurements at LHCb Results:

$$\sigma(\mathcal{A}_{C\mathcal{P}}^{pK})_{Run1}^{stat} = 1.3\% \rightarrow \sigma(\mathcal{A}_{C\mathcal{P}}^{pK})_{Run2}^{stat} = 0.76\%$$

$$\sigma(\mathcal{A}_{C\mathcal{P}}^{p\pi})_{Run1}^{stat} = 1.7\%$$

 $\Lambda_b^0 \to p K^-$, $\Lambda_b^0 \to p \pi^-$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のの⊙

Optimisation of events selection $\Lambda_b^0 \to pK, p\pi$ decays for Run 2 CP asymmetry measurements at LHCb Results:

$$\sigma(\mathcal{A}_{C\mathcal{P}}^{pK})_{Run1}^{stat} = 1.3\% \to \sigma(\mathcal{A}_{C\mathcal{P}}^{pK})_{Run2}^{stat} = 0.76\%$$

$$\sigma(\mathcal{A}_{C\mathcal{P}}^{p\pi})_{Run1}^{stat} = 1.7\% \to \sigma(\mathcal{A}_{C\mathcal{P}}^{p\pi})_{Run2}^{stat} = 0.95\%$$

 $\Lambda_b^0 \to p K^-$, $\Lambda_b^0 \to p \pi^-$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のの⊙

Optimisation of events selection $\Lambda_b^0 \rightarrow pK, p\pi$ decays for Run 2 CP asymmetry measurements at LHCb Results:

$$\sigma(\mathcal{A}_{C\mathcal{P}}^{pK})_{Run1}^{stat} = 1.3\% \rightarrow \sigma(\mathcal{A}_{C\mathcal{P}}^{pK})_{Run2}^{stat} = 0.76\%$$

$$\sigma(\mathcal{A}_{C\mathcal{P}}^{p\pi})_{Run1}^{stat} = 1.7\% \rightarrow \sigma(\mathcal{A}_{C\mathcal{P}}^{p\pi})_{Run2}^{stat} = 0.95\%$$

- \bullet Improvement by a factor \approx 2, in line with prediction
- Complete analysis for $\mathcal{A_{CP}}$ in the two decay channels still in progress (LHCb group)
 - \bullet Determine all missing contributions to $\mathcal{A_{CP}}$
 - Measurements of systematic effects and related uncertainties
 - (Review of Run 1 measurement)

14 / 15

Thank you for your attention.

Full text available at https://amslaurea.unibo.it/26551/

Marco Caporale (UniBo)

 $\Lambda_b^0 \to p K^-, \Lambda_b^0 \to p \pi^-$

29 March 2023 15 / 15

●▶ ▲ 글 ▶ 글 글 → 의 ④

Extra

 $\Lambda_b^0 \to p K^-, \Lambda_b^0 \to p \pi^-$

もうてい 正則 ふかく キャット きょう

Investigated Cuts

Selection	n A ($\Lambda_b^0 \to pK$), 2940 combinations	
Variable		Explored values	
$\Delta \log \mathcal{L}_{p-\pi}(p)$	>	1, 3, 5, 7, 9, 11, 13	
$\Delta \log \mathcal{L}_{p-K}(p)$	>	1, 3, 5, 7, 9	
$\Delta \log \mathcal{L}_{K-\pi}(K)$	>	1, 3, 5, 7	
$\Delta \log \mathcal{L}_{K-p}(K)$	>	$-\Delta \log \mathcal{L}_{p-K}(p) ightarrow -1$ (step-size: 2)	
BDT	>	-0.04 ightarrow 0.2 (step-size: 0.04)	

	- (.)	
Selection	Β (Λ	$p_b^0 \rightarrow p\pi$), 3920 combinations
Variable		Explored cuts
$\Delta \log \mathcal{L}_{p-\pi}(p)$	>	1, 3, 5, 7, 9, 11, 13
$\Delta \log \mathcal{L}_{p-K}(p)$	>	1, 3, 5, 7, 9
$\Delta \log \mathcal{L}_{K-\pi}(\pi)$	<	-1, -3, -5, -7
$\Delta \log \mathcal{L}_{p-\pi}(\pi)$	<	$1 \rightarrow \Delta \log \mathcal{L}_{p-\pi}(p)$ (step-size: 2)
BDT	>	$0 \rightarrow 0.24$ (step-size: 0.04)
		(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(

Marco Caporale (UniBo)

29 March 2023

Considered contributions:

- Signal
- Cross-feed backgrounds
- Partially reconstructed background (3 bodies)
- Combinatorial background

Signal

$$g(m) = c_1 G(m; \mu = m_{\Lambda_b^0}, \lambda) + c_2 \mathcal{J}(m; \mu = m_{\Lambda_b^0}, \lambda, \gamma, \delta)$$

Marco Caporale (UniBo)

 $\Lambda_b^0 \to p K^-, \Lambda_b^0 \to p \pi^-$

29 March 2023 4 / 10

▲ 분 ▶ 분 | ■
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ● </l

э

One of the particles of the final state is wrongly identified

•
$$\Lambda_b^0
ightarrow pK^- (\bar{\Lambda_b^0}
ightarrow \bar{p}K^+)$$
 channel:
• $\Lambda_b^0
ightarrow p\pi^- (\bar{\Lambda_b^0}
ightarrow \bar{p}\pi^+)$,
• $\bar{B^0}
ightarrow K^-\pi^+ (B^0
ightarrow K^+\pi^-)$ reconstructed as $K^-p (K^+\bar{p})$,
• $B_s^0
ightarrow K^+K^-$ reconstructed as pK^- or $\bar{p}K^+$.
• $\Lambda_b^0
ightarrow p\pi^- (\bar{\Lambda_b^0}
ightarrow \bar{p}\pi^+)$ channel:
• $\Lambda_b^0
ightarrow pK^- (\bar{\Lambda_b^0}
ightarrow \bar{p}K^+)$,
• $B^0
ightarrow K^+\pi^- (\bar{B^0}
ightarrow K^-\pi^+)$ reconstructed as $p\pi^- (\bar{p}\pi^+)$,
• $B^0
ightarrow \pi^+\pi^-$ reconstructed as $p\pi^-$ or $\bar{p}\pi^+$.

Constraint on the cross-feed yield to reference yield

$$N_i = N_j \cdot \frac{\Gamma(i)}{\Gamma(j)} \frac{f_i}{f_j} \frac{\varepsilon_i}{\varepsilon_j}$$

Marco Caporale (UniBo)

 $\Lambda_b^0 \to p K^-, \Lambda_b^0 \to p \pi^-$

▲ 王 ▶ 王 = • • • • • • •

Partially Reconstructed Background (3 Bodies)

Obtained with RapidSim (https://github.com/gcowan/RapidSim)

- Negligible PID dependence
- BDT cut variation leads to relevant shape variations

Marco Caporale (UniBo)

 $\Lambda_b^0 \to p K^-, \Lambda_b^0 \to p \pi^-$

Combinatorial Background

$$f(m) = C(1 + \tanh(b \cdot (m - s)))e^{-k \cdot m}$$

• Using b = 0 for $\Lambda_b^0 \to p\pi$ (pure exponential background)

 $\Lambda_b^0 \to p K^-, \Lambda_b^0 \to p \pi^-$

Optimal Selections

Selection /	Α (Λ	$p_b^0 ightarrow pK)$
Variable		Optimal value
$\Delta \log \mathcal{L}_{p-\pi}(p)$	>	11
$\Delta \log \mathcal{L}_{p-K}(p)$	>	3
$\Delta \log \mathcal{L}_{K-\pi}(K)$	>	1
$\Delta \log \mathcal{L}_{K-p}(K)$	>	-3
BDT	>	0.08

Selection	В (Л	$(b_b^0 o p\pi)$	•	
Variable		Optimal value	•	
$\Delta \log \mathcal{L}_{p-\pi}(p)$	>	9	•	
$\Delta \log \mathcal{L}_{p-K}(p)$	>	5		
$\Delta \log \mathcal{L}_{\mathcal{K}-\pi}(\pi)$	<	-1		
$\Delta \log \mathcal{L}_{p-\pi}(\pi)$	<	5		
BDT	>	0.12		
		(二)		

Marco Caporale (UniBo)

 $\Lambda_b^0 \to p K^-, \Lambda_b^0 \to p \pi^-$

29 March 2023

Pseudoexperiment *pK*

pk_0.08_11.3.1.-3

- 一司

∃ ▶ Ξ|= りへ○

 $\Lambda_b^0 \to p K^-$, $\Lambda_b^0 \to p \pi^-$

Marco Caporale (UniBo)

Pseudoexperiment $p\pi$

ppi_0.12_9.5.-1.5

- 一司

1 = 1 - 0 Q (P

 $\Lambda_b^0 \to p K^-, \Lambda_b^0 \to p \pi^-$

Marco Caporale (UniBo)