

V⁰ production in Run 3 at LHCb

Noah Behling 8th BCD ISHEP Cargèse School, 29.03.2023

V^0 particles

- Long-lived neutral particles weakly decaying into two charged hadrons
- Displaced decay topology

→
$$\tau(V^0) \approx \mathcal{O}(10^{-11} - 10^{-10} \text{ s}) \text{ vs. } \tau(B^0) \approx \mathcal{O}(10^{-12} \text{ s})$$

- Huge cross-sections ($\mathcal{O}(1b)$ vs. $\sigma(b) \approx \mathcal{O}(100 \,\mu b)$) • $K_S^0 \rightarrow \pi^+ \pi^- (\Gamma_i/\Gamma \approx 69.2 \,\%)$
 - $\Lambda^0 \rightarrow p\pi^- + c.c. \left({\Gamma_i / \Gamma} \approx 63.9 \% \right)$

R. B. Leighton, S. D. Wanlass, and C. D. Anderson, The decay of V⁰ particles, Phys. Rev. **89**, 148 (1953)

technische universität

dortmund

$K_{\rm S}^{0} \left\{ \begin{array}{c} d \\ \overline{s} \\ W^{+} \\ \overline{d} \end{array} \right\} \pi^{-1} \\ W^{+} \\ \overline{d} \\ \overline{d}$

The LHCb detector

- LHCb has undergone major upgrades for Run 3 data taking
 - New tracking detectors
 - Upgraded RICH detectors
 - Upgraded electronics
 - Software-only trigger
 - → Detector performance needs to be evaluated step by step
- V⁰ measurement can be done without particle identification
- Measure cross-section ratios to not depend on luminosity measurement

$$R(\overline{\Lambda}^{0}, K_{S}^{0}) = \frac{\sigma(\overline{\Lambda}^{0} \to \overline{p}\pi^{+})}{\sigma(K_{S}^{0} \to \pi^{+}\pi^{-})} = \frac{N(\overline{\Lambda}^{0} \to \overline{p}\pi^{+})\epsilon_{K_{S}^{0} \to \pi^{+}\pi^{-}}\mathcal{B}(K_{S}^{0} \to \pi^{+}\pi^{-})}{N(K_{S}^{0} \to \pi^{+}\pi^{-})\epsilon_{\overline{\Lambda}^{0} \to \overline{p}\pi^{+}}\mathcal{B}(\overline{\Lambda}^{0} \to \overline{p}\pi^{+})}$$

U technische universität dortmund

The LHCb detector

- LHCb has undergone major upgrades for 3 data taking
 - New tracking detectors
 - Upgraded RICH detectors
 - Upgraded electronics
 - Software-only trigger
 - → Detector performance needs to be evaluated step by step
- V⁰ measurement can be done without particle identification
- Measure cross-section ratios to not depend on luminosity measurement

$$R(\overline{\Lambda}^{0}, K_{S}^{0}) = \frac{\sigma(\overline{\Lambda}^{0} \to \overline{p}\pi^{+})}{\sigma(K_{S}^{0} \to \pi^{+}\pi^{-})} = \frac{N(\overline{\Lambda}^{0} \to \overline{p}\pi^{+})\epsilon_{K_{S}^{0} \to \pi^{+}\pi^{-}}\mathcal{B}(K_{S}^{0} \to \pi^{+}\pi^{-})}{N(K_{S}^{0} \to \pi^{+}\pi^{-})\epsilon_{\overline{\Lambda}^{0} \to \overline{p}\pi^{+}}\mathcal{B}(\overline{\Lambda}^{0} \to \overline{p}\pi^{+})}$$

technische universität dortmund

Noah Behling | 8th BCD ISHEP 29.03.23 | V0 production

<u>LHCb</u>

ГНС

Strangeness enhancement

U technische universität dortmund

*V*⁰s in the detector

technische universität

dortmund

- Build pairs of all tracks that originate in the VELO and leave hits in all tracking detectors
- Add π/p mass hypothesis to tracks and require invariant mass to be within 50 MeV/ c^2 of K_S^0/Λ^0 mass
- Suppress combinatorial background by applying a cut on the Fisher discriminant

 $\mathcal{F}_{\rm IP} = \log_{10}({\rm IP}(h^+)) + \log_{10}({\rm IP}(h^{(\prime)-})) - \log_{10}({\rm IP}(V^0))$

- Optimial \mathcal{F}_{IP} cuts determined in Run 2 analysis $\mathcal{F}_{IP}(K_S^0/\Lambda^0) > 2.6/1.5$
- Additional cut IP(Λ^0) < 0.13 to suppress contribution from hyperon decays (e.g. $\Xi^- \rightarrow \Lambda^0 \pi^-$)

First *V*⁰ plots – Run 256145

U technische universität dortmund

Summary and outlook

- Study of V⁰ production offers a simple way to study LHCb detector performance in Run 3
- Analysis pipeline is adjustable to measure absolute cross-sections once precise luminosity measurements are available
- Binning in multiplicity allows to validate observation of strangeness enhancement in high charged-track-density events first observed by the ALICE experiment
 - → Possible explanation for muon puzzle in astroparticle physics