HS³ - A serialization standard for statistical models in high energy physics

Carsten Burgard¹, Cornelius Grunwald¹, <u>Robin Pelkner¹</u>, Oliver Schulz²

8th BCD ISHEP Cargèse School 29.03.2023

¹ TU Dortmund University, AG Kröninger ² Max Planck Institute for Physics, Munich

The open science approach

U technische universität dortmund

- open science: publish results and data
- statistical models are necessary:
 - validation and reproduction of results
 - reinterpretation and combination
 - publication and archiving
- 1st Workshop on Confidence Levels 2000:

Massimo Corradi

It seems to me that there is a general consensus that what is really meaningful for an experiment is *likelihood*, and almost everybody would agree on the prescription that experiments should give their likelihood function for these kinds of results. Does everybody agree on this statement, to publish likelihoods?

Louis Lyons

Any disagreement ? Carried unanimously. That's actually quite an achievement for this Workshop.

good scientific practice

Current status in HEP

- ROOT stores statistical models (RooWorkspace) in binary format (".root" files)
- pyhf stores HistFactory-Models in human-readable JSON-Files
 - already used in many analyses
 - BUT: restrained to HistFactory-like models
- there is other statistical software, models and tools, but no standardized format

technische universität

dortmund

HS³ - HEP Statistics Serialization Standard

idea: provide standardized format for statistical models:

- human-readable, in JSON format
- machine-readable for direct implementation of statistical models
- software-independent
- generic, mathematical definitions
- full compatibility with respect to RooWorkspace and pyhf

technische universität

dortmund

16. February 2023

1 Introduction

With the introduction of pyhf [3], a JSON format for likelihood serialization has been put forward. However, an interoperable format that encompasses likelihoods with a scope beyond stacks of binned histograms was sorely lacking. With the release of ROOT 6.26,000 [1] and the experimental RooJSONFActoryWSTool therein, this gap has now been filled.

This document sets out to document the syntax and features of the HEP Statistics Scrialization Standard (HS³) for likelihoods, as to be adopted by any HS³-compatible statistics framework. Please note that this document as well as the HS³ standard are still in development and can still undergo minor and major changes in the future. This document describes the syntax of version 0.2 of the draft.

1.1 How to read

In the context of this document, any $\rm JSON$ object is referred to as a component. A key-value-pair inside such a component is referred to as a component. If not explicitly stated otherwise, all components mentioned are mandatory.

The components located inside the top-level object are referred to as top-level-components.

https://github.com/hep-statistics-serialization-standard

Top-level elements

• HS³ includes everything needed for a complete representation of an analysis

• flat structure of elements each accessible on their own

• every element is completely optional depending on the model

• the elements can depend on each other

Distributions

J technische universität dortmund

• objects with unique name, type of distribution and respective parameters

2.1.1 Exp	onential distribution	"distrib	outions": [
Exponential distributions. The PDF is defined as		1	"name" : "signal",
	ExponentialPdf $(x, c) = \mathcal{N} \cdot \exp(c \cdot x),$		<pre>"type" : "gaussian_dist", "mean" : "param mean",</pre>
where \mathcal{N} is a normalisation constant that depends on the range and values of the arguments.			"sigma": 1.0,
			"x" : "mes"
name	custom string	},	
type	$exponential_dist$	{	"name" : "background",
с	number or name of the parameter used as coefficient c .		"type" : "exponential dist",
x	number or name of the variable x .		"c" : "param_c", "x" : "mes"

• further distributions include:

HistFactory channel, Gaussian, Poisson, Polynomial, Mixture Distribution, Product Distribution ... and growing! },

Current status

J technische universität dortmund

- Currently ongoing implementations in ROOT and Julia (BAT.jl) of HS³
- Idea: first round trip
- ongoing full harmonization with pyhf
- zfit: included in meetings and ongoing discussions

Conclusion and outlook

- HS³ is an evolving standardized way of distributing statistical models
- preliminary HS³ version implemented since ROOT 6.26
- release of this HS³ version in RooFit Update this summer
- currently working on roundtrip between ROOT & BAT.jl
- part of the IRIS-HEP Strategic Plan for the Next Phase of Software Upgrades for HL-LHC Physics
- first complete version by the end of 2023

U technische universität dortmund

signal with exponential background

background only fit

HS³ - Structure

technische universität dortmund

A more detailed view

technische universität dortmund

HS³ - Structure

technische universität dortmund

Bringing it together...

technische universität dortmund

Likelihoods

- multiple likelihoods can be defined for multiple analyses, e.g.
 - background only fit
 - background + signal fit

```
"likelihoods": [
        "name" : "main likelihood",
        "distributions": [
            "model"
        .
        "data": [
            "obsData"
        "name" : "bkg likelihood",
        "distributions": [
            "background"
        1,
        "data": [
            "obsData"
11
```

technische universität

dortmund

Bringing it together...

technische universität dortmund

Domains and parameter points

technische universität dortmund

domains: ranges of parameters

parameter points: estimates, parameter settings, best-fit values, starting values....

```
"parameter points":[
        "name" : "starting values",
        "parameters" : [
                 "name" : "coef sig",
                 "value" : 10
                 "name" : "coef bkg",
                 "value" : 10
             ł,
             . . . .
```

],

Bringing everything together

Analyses

- combines all previously defined elements
- allows to automate full analyses

```
"analyses": [
    {
        "name" : "primary_analysis",
        "likelihood" : "main_likelihood",
        "parameters_of_interest" : ["param_mean"],
        "parameter_domain" : "default_domain",
        "init_value" : "starting_values"
    },
```

Is that enough for every possible analysis?

- HS³ provides more options to define, e.g., auxiliary likelihoods, parameter estimates, and prior distributions for Bayesian analyses
- for more details see: <u>https://github.com/hep-statistics-serialization-standard</u>