Precision HH predictions: QCD and EW corrections

NExT Workshop, Sussex

J. Davies

26th April, 2023

Introduction	QCD Corrections	EW Corrections	Conclusion and Outlook	Backup
0000	0000000	000000	0	0000

Higgs self coupling

Standard Model Higgs potential:

$$\mathcal{N}(H) = rac{1}{2}m_H^2H^2 + \lambda vH^3 + rac{\lambda}{4}H^4,$$

where $\lambda = m_H^2/(2v^2) \approx 0.13$.

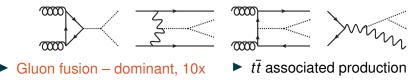
VBF

Want to measure λ , to determine if V(H) is consistent with nature.

• Challenging! Cross-section $\approx 10^{-3} \times H$ prod.

•
$$-3.3 < \lambda/\lambda_{SM} < 8.5$$

 λ appears in various production channels:



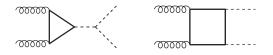
► H-strahlung

[CMS '21]

Introduction 0000	QCD Corrections	EW Corrections	Conclusion and Outlook	Backup
-				

Gluon Fusion

Leading order (1 loop) partonic amplitude:



 $\mathcal{M}^{\mu\nu} \sim \mathcal{A}_1^{\mu\nu}(\mathcal{F}_{\textit{tri}} + \mathcal{F}_{\textit{box1}}) + \mathcal{A}_2^{\mu\nu}(\mathcal{F}_{\textit{box2}})$

• \mathcal{F}_{tri} contains the dependence on λ at LO

Form factors:

LO: known exactly

[Glover, van der Bij '88]

- Beyond LO... no fully-exact (analytic) results to date
 - QCD: numerical evaluation, expansion in various kinematic limits
 - EW: first steps: HE expansion
 - (see also HTL considerations)

[Mühlleitner,Schlenk,Spira '22]

[Davies, Mishima, Schönwald, Steinhauser, Zhang '22]

Introduction	QCD Corrections	EW Corrections	Conclusion and Outlook	Backup
0000	0000000	000000	0	0000

gg ightarrow HH Beyond LO QCD

NLO QCD:

- large-m_t
- numeric
- ▶ large-*m*_t + threshold exp. Padé
- high-energy expansion
- ▶ small-*p*_T expansion
- small-t expansion
- NNLO QCD:
 - ► large-m_t virtuals [de Florian, Mazzitelli '13] [Grigo, Hoff, Steinhauser '15][Davies, Steinhauser '19]
 - ► HTL+numeric real ("FTapprox") [Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, Mazzitelli 18]
 - ► large-*m*t reals
 - small-t expansion ??
- N3LO QCD:
 - ► Wilson coefficient C_{HH}
 - HTL

[Dawson,Dittmaier,Spira '98] [Grigo,Hoff,Melnikov,Steinhauser '13]

[Borowka,Greiner,Heinrich,Jones,Kerner,Schlenk,Schubert,Zirke '16] [Baglio,Campanario,Glaus,Mühlleitner,Spira,Streicher '19]

[Gröber, Maier, Rauh '17]

[Davies, Mishima, Steinhauser, Wellmann '18,'19]

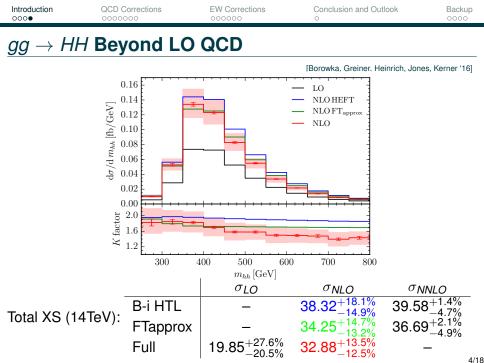
[Bonciani, Degrassi, Giardino, Gröber '18]

[Davies, Mishima, Schönwald, Steinhauser '23]

[Davies, Herren, Mishima, Steinhauser '19 '21]

[work in progress: Davies, Schönwald, Steinhauser]

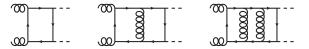
[Spira '16][Gerlach, Herren, Steinhauser '18]



Introduction	QCD Corrections	EW Corrections	Conclusion and Outlook	Backup 0000

QCD Corrections

Example diagrams at LO, NLO, NNLO:



Diagrams depend on ϵ , s, t, m_t , m_H :

- analytic result very complicated
- simplify: expand in certain kinematic limits

Here I will describe two expansions:

- high-energy: description for larger p_T values
- small-t: description for smaller p_T values

 $egin{aligned} s, |t| \gg m_t^2 \gg m_H^2 \ s, m_t^2 \gg |t|, m_H^2 \end{aligned}$

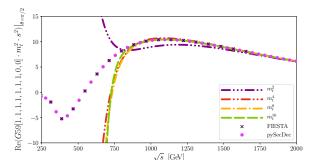
Introduction	QCD Corrections	EW Corrections	Conclusion and Outlook	Backup

High-energy expansion

- First, expand around $m_H \rightarrow 0$
 - removes dependence on m_H from the integrals
 - ► IBP-reduce to master integrals which depend on *ε*, *s*, *t*, *m_t*

Determine master integrals as an expansion around $m_t \rightarrow 0$:

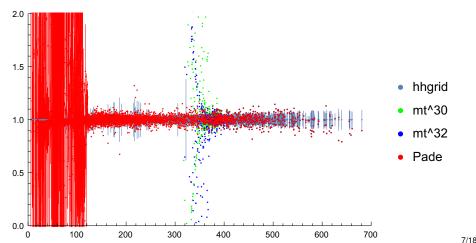
- use diff. eqns + BCs to obtain a deep expansion
- result: power series in m_t and $\log m_t$
- Padé approximants improve the region of validity of the series



Comparison with hhgrid:

[https://github.com/mppmu/hhgrid]

- interpolation grid of 6320 points evaluated by pySecDec
- grid points normalized to hhgrid vals., function of p_t:



Introduction	QCD Corrections	EW Corrections	Conclusion and Outlook	Backup

Small-*t* expansion

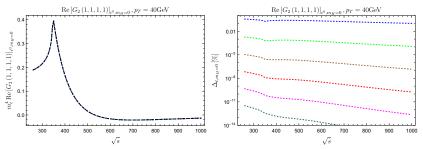
Again, first expand around $m_H \rightarrow 0$.

Then, two approaches (which give the same result at NLO):

- ► take the IBP-reduced amplitude of the HE expansion
 - expand around $t \rightarrow 0$ instead of $m_t \rightarrow 0$

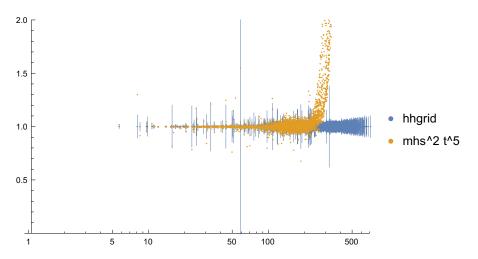
• expand un-reduced amplitude around $q_3 \rightarrow -q_1$ ($t \rightarrow 0$)

- ▶ IBP reduce integrals which depend only on ϵ , s, m_t
- compute resulting MIs as expansions around various s/m_t^2 values
- can be applied at NNLO



Comparison with hhgrid:

[https://github.com/mppmu/hhgrid]



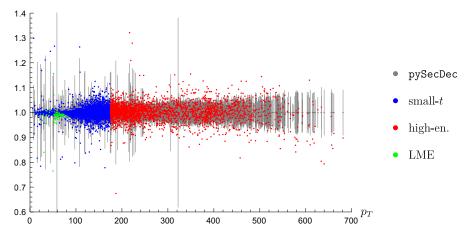
Introduction	QCD Corrections	EW Corrections	Conclusion and Outlook	Backup

Combination: "V_{fin}"

Comparison with hhgrid:

[https://github.com/mppmu/hhgrid]

- merge both results, switch at p_T = 175 GeV.
- both expansions implemented in C++: avg. 0.002s per point

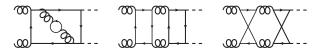


Small-*t* expansion: NNLO?

We would like to understand $gg \rightarrow HH$ at NNLO, due to the large NLO uncertainty from the top quark mass scheme and scale choice.

First steps: diagrams with light fermion loop, expand to $m_H^0 t^0$

[work in progress: Davies, Schönwald, Steinhauser]



- done: IBP reduction: 177 MIs
- check: LME of MIs, agrees with literature

[Davies, Steinhauser '19]

• todo: compute MIs as expansions around various s/m_t^2 values

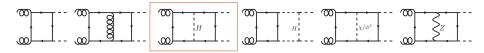
Introduction	QCD Corrections	EW Corrections	Conclusion and Outlook o	Backup 0000
	_			

EW Corrections

Since we look at NNLO QCD, we should also look at 2L EW corrections.

This is a much more difficult computation:

- 2L QCD: 118 Feynman diagrams
- 2L EW: 3810 Feynman diagrams



There are also more scales to deal with, compared to the QCD.

- **•** start with $\alpha_s \alpha_t^2$ diagrams with internally propagating Higgs
 - expansion parameter $\alpha_t = \alpha m_t^2 / (2s_W^2 m_W^2) \sim \alpha_s / 2$
 - only planar integrals in this subset [Davies, Mishima, Schönwald, Steinhauser, Zhang '22]

EW Corrections: High-energy expansion

Again, full diagrams depend on many variables:

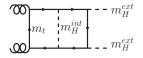
 \blacktriangleright ϵ, s, t, m_t, m_H

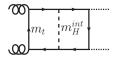
As before, expand around $m_H^{ext} = 0$:

• integral still depends on m_H^{int}

Expand in m_H^{int} also, two ways to do it:

$$\label{eq:basic} \begin{array}{l} \blacktriangleright \hspace{0.5mm} \text{B:} \hspace{0.5mm} \boldsymbol{s}, |t| \gg m_t^2 \sim m_H^{int^2} \gg m_H^{ext^2} \,, \\ \\ \blacktriangleright \hspace{0.5mm} \text{A:} \hspace{0.5mm} \boldsymbol{s}, |t| \gg m_t^2 \gg m_H^{int^2} \sim m_H^{ext^2} \,. \end{array}$$

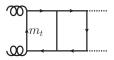




High-energy Expansion "B"

Option B: expand around $m_H^{int} \approx m_t$,

simple Taylor expansion, easy to implement



- Write Higgs propagator as: $\frac{1}{p^2 m_H^2} = \frac{1}{p^2 m_t^2(1 [2 \delta]\delta)}$
 - expand around $\delta \rightarrow 0$ where $\delta = 1 m_H/m_t \approx 0.28$.

This yields new integral families compared to the QCD computation:

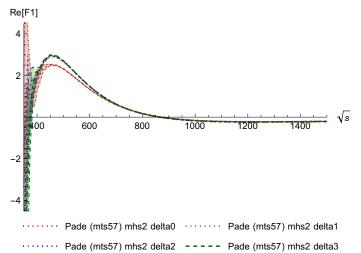
- all lines have the mass m_t ,
- ► IBP reduce and compute the MIs in the high-energy limit

Expand to $(m_H^{ext})^4$ and δ^3 .

Convergence of delta expansion ("B")

 $\text{Re}(F_{box1})$, fixed $\cos \theta = 0$, expansion "B" Padé (to $(m_H^2)^2 \delta^{\{0,1,2,3\}}$):

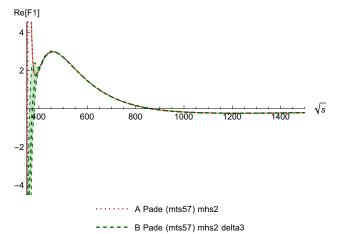
 $\blacktriangleright~\delta^2$ and δ^3 terms differ by at most 0.5% for $\sqrt{s} \geq$ 400GeV



Comparison of "A", "B" expansions

 $\text{Re}(F_{box1})$, fixed $\cos \theta = 0$, best "A" and "B" Padé

- "A", "B" differ by at most 2% for $\sqrt{s} \ge 400$ GeV,
- 0.1% for $\sqrt{s} \ge 500 \text{GeV}$



Introduction	QCD Corrections	EW Corrections	Conclusion and Outlook	Backup
0000	0000000	00000	0	0000

EW Corrections: next steps

High-energy: same idea, for remaining diagram classes:

Diagrams with more internal Higgs:

- delta expansion and IBP reduction done
- todo: compute master integrals

Diagrams with charged goldstone or *W* exchange:

- new integral topologies where top-quark loop doesn't close
- not yet studied

Small-t: not yet studied

Introduction	QCD Corrections	EW Corrections	Conclusion and Outlook	Backup
	-			

Conclusion

Multi-scale multi-loop integrals are hard.

expand!

Expansions give a good description for HH at NLO QCD:

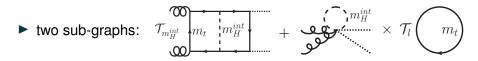
- high-energy + small-t covers whole phase space
- implemented in C++: to be made public

First steps:

- ▶ NNLO QCD: small-*t* expansion of light-fermion diagrams
 - to come: remaining diagrams
 - deeper expansion?
- EW: high-energy expansion of y_t^4 diagrams
 - to come: remaining diagrams
 - small-t expansion

High-Energy Expansion "A"

Option A: asymptotic expansion around $m_H^{int} = 0$:



The two-loop subgraph is a Taylor expansion of the Higgs propagator:

- ▶ results in integrals with a massless internal line, scales s, t, m_t .
- ► IBP reduce with FIRE and Kira [Smirnov '15] [Klappert,Lange,Maierhöfer,Usovitsch '21]
- these coincide with the QCD Master Integrals reuse the old results [Davies,Mishima,Steinhauser,Wellmann '18,'19]

The massive tadpoles are easily computed by MATAD. [Steinhauser '00]

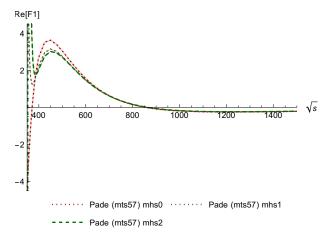
The asymp. expansion procedure is done by exp and FORM [Harlander,Seidelsticker,Steinhauser '97] [Ruijl,Ueda,Vermaseren '17]

We expand to quartic order: $(m_H^{int})^a (m_H^{ext})^b, \ 0 \le (a+b) \le 4.$

Convergence of asymptotic expansion ("A")

 $\operatorname{Re}(F_{box1})$, fixed $\cos \theta = 0$, expansion "A" Padé (to $(m_H^2)^{\{0,1,2\}}$):

• $(m_H^2)^1$ and $(m_H^2)^2$ terms differ by at most 5% for $\sqrt{s} \ge 400 {\rm GeV}$



Padé-Improved High-Energy Expansion

The MIs for both EW methods are computed as an exp. in $m_t \ll s$, |t|.

The expansions diverge for \sqrt{s} \sim 750GeV ("A"), \sqrt{s} \sim 1000GeV ("B").

The situation can be improved using Padé Approximants:

approximate a function using a rational polynomial:

$$f(x) \approx [n/m](x) = \frac{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n}{1 + b_1 x + b_2 x^2 + \dots + b_m x^m}$$

where a_i, b_j coefficients are fixed by the series coefficients of f(x).

We compute a set of various Padé Approximants:

- combine to give a central value and error estimates
- a deeper input expansion \rightarrow larger $n + m \rightarrow$ smaller error
- here, m_t^{120} exp. allows for very high-order Padé Approximants

High-Energy Expansion and Padé Approximation

 $\text{Re}(F_{box1})$, fixed $\cos \theta = 0$, expansion "B" (to $(m_H^2)^2 \delta^3(m_t^2)^{\{15,16,56,57\}}$):

• m_t expansion diverges (strongly) around $\sqrt{s} \sim 1000 {
m GeV}$

