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WHAT IS MACHINE LEARNING?
▸ Science and art of learning automatically from data and experience 

 
 
 
 
 
 
 

▸ Large overlap with data mining: 

▸ ML focuses on algorithms,  
DM on discovering patterns

Also, a lot of calculus, linear 
algebra, statistics, group theory, …
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SUPERVISED LEARNING
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▸ Learn a function  from an input space  (observations) to an output 
space Y (targets), using a set of labeled examples . 

▸ Example 1: Predict stellar radius given stellar mass

f : X → Y X
(x1, y1), (x2, y2), …, (xN, yN)
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SUPERVISED LEARNING
▸ Learn a function  from an input space  (observations) to an output 

space Y (targets), using a set of labeled examples . 

▸ Example 2: Classify images of  
neutrino interactions

f : X → Y X
(x1, y1), (x2, y2), …, (xN, yN)

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072053  doi :10.1088/1742-6596/898/7/072053

Figure 1. NOvA characteristic data events. Side views of 3x11 meter sections of the detector.

The color of the hits indicates deposited charge (measured in ADC counts). The neutrino neutral

current interactions (bottom), as well as the charged current interactions for electron (middle)

and muon (top) flavor are each the main signal on NOvA’s neutral current, ⌫e appearance and

⌫µ disappearance analyses, respectively. This makes the classification of these events the crucial

first step for these analyses.

for our first analyses[1, 2] was done in two main steps. First, reconstruction algorithms make

a geometrical separation of each particle’s contribution to the event. Then, identification

algorithms extract physics information, i.e. dE/dx and projected trajectory, from each particle’s

contribution (given as a cluster of hits) and attempt to identify the leptonic component of the

interaction
1
by using neural networks trained on these features.

2. The CVN Convolutional Neural Network

2.1. Advantages of Convolutional Neural Networks

Deep learning algorithms[7] have been successful in tasks like image recognition[6, 9]. These

networks–and in particular convolutional neural networks (CNNs)–present several advantages

with respect to the traditional identification methods described in Section 1. Not only do

traditional algorithms rely heavily on the e�ciency of the geometric separation of the compo-

nents, they are also limited in that the features they employ for identification are only those

1 As seen in Figure 1 the outgoing lepton carries the same flavor as the original neutrino by lepton conservation.

arXiv:1604.01444
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SUPERVISED LEARNING
▸ Learn a function  from an input space  (observations) to an output 

space Y (targets), using a set of labeled examples . 

▸ Example 3: Reduce noise in a time-series trace to identify a gravitational wave 
signal

f : X → Y X
(x1, y1), (x2, y2), …, (xN, yN)

3

FIG. 1. Sample signal injected into real LIGO noise.
The red time-series is an example of the input to our Deep
Filtering algorithm. It contains a hidden BBH GW signal
(blue) from our test set which was superimposed in real LIGO
noise from the test set and whitened. For this injection, the opti-
mal matched-filter SNR = 7.5 (peak power of this signal is 0.65
times the power of background noise). The component masses
of the merging BHs are 57MØ and 33MØ. The presence of
this signal was detected directly from the (red) time-series in-
put with over 99% sensitivity and the source’s parameters were
estimated with a mean relative error less than 10%.

glitches, since it is well known that the PSD of LIGO is
highly non-stationary, varying widely with time. There-
fore, if Deep Filtering performs well on these test
sets, it would also perform well on data from future time
periods, without being re-trained.

Next, we superimposed different realizations of noise
randomly sampled from the training set of real LIGO
noise from the two events GW151226 and LVT151012
and injected signals over multiple iterations, thus am-
plifying the size of the training datasets. The power of
the noise was adjusted according to the desired optimal
matched-filter Signal-to-Noise Ratio (SNR [43]) for each
training round. The inputs were then whitened with the
average PSD of the real noise measured at that time-
period. We also scaled and mixed different samples of
LIGO noise together to artificially produce more training
data and various levels of Gaussian noise was also added
to augment the training process. However, the testing
results were measured using only pure LIGO noise not
used in training with true GW signals or with signals in-
jected from the unaltered test sets (see Fig. 1).

We used similar hyperparameters to our original
CNNs [39] with a slightly deeper architecture. There
were 4 convolution layers with the filter sizes to 64,
128, 256, and 512 respectively and 2 fully connected
layers with sizes 128 and 64. The standard ReLU ac-
tivation function, max(0, x), was used throughout as the
non-linearity between layers. We used kernel sizes of 16,
16, 16, and 32 for the convolutional layers and 4 for all

FIG. 2. Spectrograms of real LIGO noise test samples. We
used signals injected into real data from the LIGO detectors in
this article, ensuring that the training and testing sets did not
contain noise from the same events. These are some random
examples of real glitches that were present in our test set of
LIGO noise. The Deep Filtering method takes the 1D
strain directly as input and is able to correctly classify glitches
as noise and detect true GW signals as well as simulated GW
signals injected into these highly non-stationary non-Gaussian
data streams, with similar sensitivity compared to matched-
filtering.

the (max) pooling layers. Stride was chosen to be 1 for
all the convolution layers and 4 for all the pooling lay-
ers. We observed that using dilations [44] of 1, 2, 2, and
2 in the corresponding convolution layers improved the
performance. The final layout of our predictor CNN is
shown in Fig. 3.

We had originally optimized this CNN architecture to
deal with only Gaussian noise having a flat PSD. How-
ever, we later found that this model also obtained the
best performance with noise having the colored PSD of
LIGO, among all the models we tested. This indicates
that our architecture is robust to a wide range of noise
distributions. Furthermore, pre-training the CNNs on
Gaussian noise (transfer learning) before fine-tuning on
the limited amount of real noise prevented over-fitting,
i.e., memorizing only the training data without generaliz-
ing to new inputs. We used the Wolfram Language neural
network functionality, based on the open-source MXNet
framework [45], that uses the cuDNN library [46] for ac-
celerating the training with NVIDIA GPUs. The learning
algorithm was again set to ADAM [47] and other details
were the same as before [39].

For training, we used the curriculum learning strategy
in our first article [39] to improve the performance and
reduce training times of the CNNs while retaining perfor-
mance at very high SNR. By starting off training inputs
having high SNR (∏ 100) and then gradually increasing
the noise in each subsequent training session until a final

arXiv:1711.03121
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SUPERVISED LEARNING

→

E
px
py
pz

, q, type, ppileup, …

arXiv:2101.08578

▸ Learn a function  from an input space  (observations) to an output 
space Y (targets), using a set of labeled examples . 

▸ Example 4: Estimate particle momentum, charge, type, etc. from detector hits

f : X → Y X
(x1, y1), (x2, y2), …, (xN, yN)
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MACHINE LEARNING APPROACH
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▸ Collect a labeled training set (supervision) 

▸ Often requires simulation where the “ground truth” is known 

▸ Train a model using a learning algorithm (find patterns in the data) 
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▸ Linear model: 
 

 

▸ How do we select the parameters w?  

▸ We want  
 

▸ Squared loss:  
 
(Least squares) 

f(x |w) = w⊺x (w ∈ ℝD+1)

yi ≈ f(xi |w)

L(y, y′ ) = (y − y′ )2

LINEAR REGRESSION
lo

g1
0(

R/
R☉

)

-1.4
-1.05
-0.7

-0.35
0

0.35
0.7

1.05
1.4

log10(M/M☉)

-1.5 -1 -0.5 0 0.5 1 1.5 2

Learning objective: arg min
w

N

∑
i=1

L(yi, f(xi |w)) = arg min
w

N

∑
i=1

(yi − w⊺xi)2

Error

xi

yi

f(xi |w)
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▸ In supervised learning, we want to optimize the objective 
 

 

▸ For linear regression, there is a closed-form solution, but in general? 

▸ We need an optimization algorithm to find the optimal (or just “good”) w

l(w) =
N

∑
i=1

L(yi, f(xi |w))

OPTIMIZING THE LEARNING OBJECTIVE 11



▸ Set  to some values (e.g.,  or some random value) 

▸ At iteration , 

▸ Compute the gradient : direction of steepest increase of  at 
 

▸ Take a small step in the opposite direction:  
 

w(t = 0) w(0) = 0

t

∇wl(w(t)) l(w)
w(t)

w(t + 1) = w(t) − η∇wl(w(t))

GRADIENT DESCENT

Step size / learning rate
l(w)

w(0) w(1)
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▸ Fitting the training dataset perfectly (error = 0) does not necessarily mean the 
model will work well on new test data!

BUT DOES YOUR MODEL GENERALIZE?
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Linear fit: ok on both training and testing
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Polynomial fit (degree 4): excellent on 
training, bad on testing
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BIAS-VARIANCE TRADEOFF
▸ If  is the squared loss, we can decompose the expected test error: 

 

 

 

▸ where  is the average prediction of our model over different 
possible training datasets 

▸ Variance: difference in predictions when training on different datasets 

▸ Bias: difference from ground truth 

L

𝔼 [LP( f(x |wS)] = 𝔼S𝔼(x,y)∼P(x,y) [L(y, f(x |wS))]
= 𝔼(x,y)∼P(x,y) [𝔼S [( f(x |wS) − F(x))2] + (F(x) − y)2]

F(x) = 𝔼S [f(x |wS)]

Variance (Squared) bias
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OVERFITTING VS. UNDERFITTING
▸ Overfitting implies high variance (unstable 

model class)  

▸ Variance increases with model 
complexity 

▸ Variance decreases with more training 
data 

▸ Underfitting implies high bias 

▸ Even with no variance, model class has 
high error 

▸ Underfitting happens whenever model 
complexity is too low
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Degree 5

Degree 0
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GETTING MORE OUT OF LINEAR MODELS
▸ Replace our input vector  with some  to make our model more expressive 

▸ For example, if  then our model becomes: 
 

x ϕ(x)

ϕ(x) = (1,x, x2)

f(x |w) = w⊺ϕ(x) = w0 + w1x + w2x2

• The model is still linear in the 
parameters ! 


• More expressive than a line
, so the fit is better  

(i.e., training error is lower)

w

w0 + w1x

features / embedding of x
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LINEAR MODELS: WORKHORSE OF MACHINE LEARNING 
▸ Linear models on top of good features can 

yield excellent results 

▸ More complex model classes (e.g., neural 
networks) have linear models as their basic 
building block 

▸ NNs are “automatic featurizers”

Linear model: f(x |w) = w⊺x

x

w

f(x |w)

Neural network: linear model after 
inputs are mapped to features 

through a nonlinear transformation 
f(x |w1, w2) = w⊺

2σ(w⊺
1x)

w1 w2

x f(x |w1, w2)

17



MODEL SELECTION
▸ We only have a finite training dataset 

▸ We cannot measure the true test error 

▸ Simple model classes underfit 

▸ Complex model classes overfit 
 
(but not so straightforward for deep neural networks!) 
 

▸ Goal: Select the model class with the lowest test error

Bias-variance tradeoff

18



VALIDATION SET

▸ Split the original dataset into a training and validation set 

▸ Train model on the training set 

▸ Evaluate on the validation set to estimate the test error 

▸ Select the model class that gives the lowest estimated error 

▸ Optionally, re-train the selected model class on the whole dataset (training + 
validation) 

▸ Issue: we would like both training and validation sets to be as large as possible 
(so that the estimate is better), but they must not overlap!

Original dataset

19



-FOLD CROSS-VALIDATIONk

▸ Split the original dataset into  equal parts (e.g, ) 

▸ Train on the  parts and validate on the remaining one 
 

▸ Repeat for every choice of the  parts and average the validation errors 
 
 
 

▸ Advantage: use all data as validation to improve the estimate of the test error, 
at the cost of more computation (  trainings) 

k k = 5

k − 1

k − 1

k

Original dataset

20



SUPERVISED LEARNING PIPELINE
▸ Training dataset:  where  and  

▸ Model / hypothesis class:  (linear models) 

▸ Loss function:  (squared loss)  

▸ Optimization algorithm to minimize the learning objective:  
 

 

▸ Cross validation and model selection:  

▸ Testing and deployment

S = {(x1, y1), . . . , (xN, yN)} x ∈ ℝD y ∈ ℝ

f(x |w) = w⊺x

L(y, y′ ) = (y − y′ )2

arg min
w

N

∑
i=1

L(yi, f(xi |w))

or  instead of ϕ(x) x

Important: if a testing set is available, never use it to make decisions on the model!

21
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REPRESENTATIONS  ⟷  INDUCTIVE BIAS ⟷  ALGORITHMS
▸ High-level (expert) variables 

▸ Ordered list of particles 

▸ Images 

▸ Set of particles 

▸ Graph of particles 

▸ Lorentz scalars/vectors

▸ Shallow neural network, boosted 
decision tree, … 

▸ 1D convolutional neural network, 
recurrent neural network 

▸ 2D convolutional neural network 

▸ Deep set (energy flow network) 

▸ Graph neural network 

▸ Lorentz-equivariant network

23
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COLLISION EVENT

9Jesse Thaler (MIT) — The Hidden Geometry of Particle Collisions
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T E H MCollider Event
Collection of points in (momentum) space

▸ After “particle-flow reconstruction,”  can think of event as a collection of points in 
momentum space 

▸ For jets (localized  
clusters of particles),  
dimensionality 

 
▸ Variable jet length  

requires: 
▸ Preprocessing into  

another rep. (tab. data, 
 jet images, …) 

▸ Truncation to fixed size  
▸ Graph NN

(Nparticles ∼ 100, 4 + M)
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▸ Tabular data: use physics knowledge to preprocess  
jet information into a set of high-level features 

▸ Substructure variable:  
▸ jet mass 

▸ energy correlation  functions, e.g. Nβ=1
2 = 2e

β=1
3 /(1e

β=1
3 )2

TABULAR DATA: JET SUBSTRUCTURE VARIABLES
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• N2
1 is defined in terms of 

generalized energy correlation 
functions 
 

 

• behaves similar to two-prong 
tagger N-subjettiness ratio τ21  

• more stable vs jet mass and pT 

• Decorrelated version N2
1,DDT
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Figure 3: (a) Schematic of a 1-prong jet, showing the dominant soft (green) and collinear

(blue) radiation, as well as the characteristic scales zs and ✓cc. (b) Schematic of a 2-

prong jet, showing the dominant soft (green), collinear (blue), and collinear-soft (orange)

radiation, as well as the characteristic scales, zs, ✓cc, zcs, and ✓12.

ment itself allows for a powerful understanding of the jet’s energy and angular structure.

Arguments along these lines are ubiquitous in the e↵ective field theory (EFT) community.

For example, in Soft Collinear E↵ective Theory (SCET) [108–111], they are used to identify

the appropriate EFT modes required to describe a particular set of measurements.

In the context of power counting, soft and collinear emissions are defined by their

parametric scalings. A soft emission, denoted by s, is defined by

zs ⌧ 1 , ✓sx ⇠ 1 . (2.12)

Here, zs is the momentum fraction, as defined in Eq. (2.2), and ✓sx is the angle to any

other particle x in the jet, including other soft particles. The scaling ✓sx ⇠ 1 means that

✓sx is not assigned any parametric scaling associated with the measurement. A collinear

emission, denoted by c, is defined by

zc ⇠ 1 , ✓cc ⌧ 1 , ✓cs ⇠ 1 . (2.13)

Here, ✓cc is the angle between two collinear particles, while ✓cs is the angle between a

collinear particle and a soft particle. In an EFT context, overlaps between soft and collinear

regions are systematically removed using the zero-bin procedure [112], but this is not

relevant for the arguments here. The soft and collinear modes are illustrated in Fig. 3a

and their scalings are summaried in Table 1a.

We now use the simple example of e2 to demonstrate how an applied measurement

sets the scaling of soft and collinear radiation.7 The analysis of more general observables

7In this analysis, we do not consider the scale set by the jet radius, R. For R ⌧ 1, the jet radius must

also be considered in the power counting and the scale R appears in perturbative calculations. For recent

work on the resummation of logarithms associated with this scale, see Refs. [113–116].
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In particular, three dimensionless ratios, corresponding to the three variants of the 3-point cor-420
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Their performance were studied in simulation [49], before and after grooming. From these422

studies we conclude that N2 with b = 1 is the variable which provides the most discrimination423

power and shows similar discrimination power as t21424

The N2 observable has one clear advantage over t21, besides being theoretically well defined,425

and that is its stability against jet mass and pT.426

Because we want to preserve a smoothly falling jet mass distribution as a function of pT, it is427

natural to determine a substructure variable’s stability as a function of the QCD scaling variable428

r = log(m2
SD/p2

T). Since the QCD (quark or gluon-initated) jet mass scales with pT, decorrelat-429

ing a given substructure variable as a function of r and pT is a well-bounded procedure.430

The decorrelation procedure applied is derived for a specific background efficiency point. The431

procedure is described in great detail in this document [49].432

Given this map of the N1
2 as a function of r, at certain fixed background efficiency eQCD, we433

define a transformation which fixes the background efficiency at eQCD. The background effi-434

ciency point has been chosen following the optimization described in sec. 4 for tDDT
21 which435

corresponds to eQCD = 26%.436

The 2D map is shown in Fig. 22 for eQCD = 26%. Therefore, the transformation is defined as:

N1,DDT
2 = N1

2 � N1
2 (cut at 26%) (12)

Using this transformation map, we can show now the correlation between N1,DDT
2 and r. We437

see this in Fig. 21 where now by definition the background is flat at 26% at a cut value of438

N1,DDT
2 = 0.439

In Fig. 23 the jet N1,DDT
2 distribution is shown for the pT leading jet for simulated signal (left)440

and background (right) events.441
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DECISION TREES
S/B

52/48

B
4/37

S/B
48/11

S/B
9/10

S
39/1

S
7/1

B
2/9

PMT Hits?
< 100 ≥ 100

Energy?
< 0.2 GeV ≥ 0.2 GeV

Radius?
< 500 cm ≥ 500 cm

▸ Leaf nodes classify events as either 
signal ( ) or background ( )νe νμ

 CCQE νe

νen → pe−

 CCQE νμ

νμn → pμ−

MiniBooNE: 1520 photomultiplier signals

Goal: separate  and eventsνe νμ

Branch node  
(further branching)

Root node

Leaf nodes  
(no further branching)
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Decision Trees vs Linear Models

• Decision Trees are NON-LINEAR Models!

• Example:

12

No Linear Model 
Can Achieve 0 Error

Simple Decision Tree
Can Achieve 0 Error

x1>0

1x1>1

1 0

DECISION TREES VS. LINEAR MODELS
▸ Decision trees are nonlinear models! 

▸ Examples: No linear model  
can achieve 0 error

Simple decision tree 
can achieve 0 error

Decision Trees vs Linear Models

• Decision Trees are NON-LINEAR Models!

• Example:
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• Example:
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No Linear Model 
Can Achieve 0 Error

Simple Decision Tree
Can Achieve 0 Error

x1>0

1x2>0

0 1

28



DECISION TREES VS. LINEAR MODELS
▸ Decision trees are axis-aligned! 

▸ Example:
Simple linear SVM can 
easily find max margin

Decision trees require 
complex axis-aligned 

partitioning

Decision Trees vs Linear Models

• Decision Trees are AXIS-ALIGNED!
– Cannot easily model diagonal boundaries

• Example:

13

Simple Linear SVM can 
Easily Find Max Margin

Decision Trees Require
Complex Axis-Aligned 
Partitioning

Wasted 
Boundary

29



BAGGING VS. BOOSTING
▸ Bagging: reduce variance of weak learners 

▸ Boosting: reduce bias of weak learners

30



▸ 1st place in Kaggle Higgs Boson Machine 
Learning Challenge [kaggle.com/competitions/
higgs-boson] 

▸ And many other uses at LHC, e.g. in Higgs 
boson discovery [10.1038/
s41586-018-0361-2] 

▸ Predicting critical temperature of a 
superconductor [10.1016/
j.commatsci.2018.07.052] 

▸ MiniBooNE neutrino event classification 
[10.1016/j.nima.2004.12.018] 

▸ Observation of single top quark production at D0 
[10.1103/PhysRevLett.103.092001]

BOOSTED DECISION TREES IN THE WILD 31

https://www.kaggle.com/competitions/higgs-boson
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http:///10.1038/s41586-018-0361-2
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https://doi.org/10.1016/j.commatsci.2018.07.052
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https://doi.org/10.1103/PhysRevLett.103.092001%5D
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artificial neuron: weighted sum and non-linearity

h = �(s)

s = w0 + w1x1 + w2x2 + · · ·+ wMxM = w|x
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ONE ARTIFICIAL 
NEURON
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weights
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network: sequence of parallelized weighted sums and non-linearities
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A NETWORK 34



Universal approximation theorem (informal). Given a function  and an , 
there exists a deep network  (of arbitrary width or depth) such that:

y = f(x) ϵ > 0
y = fw(x)

sup
x∈X

∥f(x) − fw(x)∥ < ϵ

input

output

input

output

arbitrarily wide

sh
al

lo
w

ar
bi

tra
ril

y 
de

ep

narrow

Note: This means that a network can represent any function, not that it can learn it! The 
“amount” of function a given network can represent is often called its expressive power.

NNS ARE UNIVERSAL FUNCTION APPROXIMATORS
Universal approximation theorem (informal). Given a function  and an , 
there exists a deep network  (of arbitrary width or depth) such that:

y = f(x) ϵ > 0
y = fw(x)

sup
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Note: This means that a network can represent any function, not that it can learn it! The 
“amount” of function a given network can represent is often called its expressive power.

35



30

We train deep networks using Maximum Likelihood Estimation (MLE): The last layer of a 
DNN is a softmax that outputs probabilities over classes:

pw(y |x) =
0.9
0.1
⋮

x = input data

y = labelw = vector 
containing all 

weights

We train the weights  to maximize the log-likelihood of the data under our model:w

L(w) = 1
N

N

∑
i=1

− log pw(yi |xi) Negative log-likelihood loss

(cross-entropy loss)

TRAINING A NN

Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).

– 13 –

30

We train deep networks using Maximum Likelihood Estimation (MLE): The last layer of a 
DNN is a softmax that outputs probabilities over classes:

pw(y |x) =
0.9
0.1
⋮

x = input data

y = labelw = vector 
containing all 

weights

We train the weights  to maximize the log-likelihood of the data under our model:w

L(w) = 1
N

N

∑
i=1

− log pw(yi |xi) Negative log-likelihood loss

(cross-entropy loss)

L(w) = −
1
N

N

∑
i=1

log pw(yi |xi)
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BACKPROPAGATION FOR NNS

‣ Idea: Model a probability distribution  of labels  given inputs  

‣ Choose a form for  (different for regression and classification) 

‣ Write the likelihood of , i.e. the probability of observing the labels  of the training dataset  given the 
inputs : 
 

 

‣ Maximum likelihood estimation (MLE): find  that maximizes the (log) likelihood: 
 

p(y |x; w) y x

p(y |x; w)

w yi S
xi

p(S |w) =
N

∏
i=1

p(yi |xi)

w

log p(S |w) =
N

∑
i=1

log p(yi |xi; w) = − l(w)

!38

backpropagation
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depends on the 
form of the loss

derivative of the 
non-linearity

@

@W(L)
(W(L)|x(L�1)) = x(L�1)|

@

@W(L)
(W(L)|x(L�1)) = x(L�1)|

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

37



LINEAR MODELS & EMBEDDINGS

Images from https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Data Linear classifier Embedding + Linear classifier

y = softmax (w ⋅ x + b) y = softmax (w ⋅ ϕ(x) + b)

ϕ(x) = (1, x, x2, …, xn)
We have seen the polynomial embedding:

y = softmax(w⊺x) y = softmax(w⊺ϕ(x))

ϕ(x) = (1,x, x2, …, xn)

ϕ(x)

colah.github.io/posts/2014-03-NN-Manifolds-Topology

38
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y = softmax(w⊺x) y = σ(W2σ(W1x))

Images from https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/ 

Data Linear classifier 2-layer network

y = softmax (w ⋅ x + b) y = σ(w1 ⋅ σ(w0 ⋅ x))

colah.github.io/posts/2014-03-NN-Manifolds-Topology

NEURAL NETWORKS & TOPOLOGY 39
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▸ B-jet energy regression 
[arXiv:1912.06046] 

▸ Jet classification [arXiv:2004.08262] 

▸ Jet mass regression [https://
cds.cern.ch/record/2777006] 

▸ Tracking 

▸ Clustering 

▸ Particle-flow reconstruction 
[arXiv:2203.00330]  

▸ Anomaly detection 

▸ Fast simulation 

▸ Trigger applications 

▸ Background modeling
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Figure 1: One simulated tt event with pileup under LHC Run 3 conditions, reconstructed with
particle flow (top) and machine-learned particle flow (bottom). The trajectories correspond to
the particle flow candidates extrapolated to the ECAL surface, with candidates of di↵erent type
shown in di↵erent colors. We also show the ECAL detector surface (cyan) and the muon stations
(blue).

Table 1: Simulation samples used for optimizing the MLPF model.

Sample fragment PU Configuration MC events
Top quark-antiquark pairs (tt) Flat 55–75 20 k

Z ! ⌧⌧ all-hadronic Flat 55–75 20 k
Single electron flat pT 2 [1, 100]GeV No PU 400 k
Single muon flat pT 2 [0.7, 10]GeV No PU 400 k

Single ⇡
0 flat pT 2 [0, 10]GeV No PU 400 k

Single ⇡ flat pT 2 [0.7, 10]GeV No PU 400 k
Single ⌧ flat pT 2 [2, 150]GeV No PU 400 k
Single � flat pT 2 [10, 100]GeV No PU 400 k
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Figure 1: Performance of the ParticleNet regression (green - solid) and the soft drop algorithm (red - dashed). The mass response is

shown for large-R (R=0.8) Higgs boson jets with pT > 400 GeV and 100 < Mtarget < 150 GeV for various jet compositions: H→ bb

(left), H→ cc (center) and H→ qq (right). The last bin contains the overflow contribution. The resolution degrades for the heavier

quark flavours due to the larger presence of neutrinos. For all the jet compositions, the mass regression shows a substantial

improvement in the mass resolution and in the absolute scale. In addition, tails are strongly mitigated with the mass regression, in

particular at M≈0, where the soft drop algorithm incorrectly identifies the large R jet as single-prong.
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JET IMAGES
▸ Jet images = pixelated versions of 

calorimeter hits in 2D (η, ϕ) 

▸ Much lower level
vs.

top jet QCD jet (on average) (on average)

41



CONVOLUTIONAL NEURAL NETWORKS
▸ Natural to apply 2D CNN 32- -
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Figure 5: The convolution neural network concept as applied to jet-images.

4.1 Architectural Selection

For the MaxOut architecture, we utilize two FC layers with MaxOut activation (the first with 256
units, the second with 128 units, both of which have 5 piecewise components in the MaxOut-operation),
followed by two FC layers with ReLU activations (the first with 64 units, the second with 25 units),
followed by a FC sigmoid layer for classification. We found that the He-uniform initialization [35]
for the initial MaxOut layer weights was needed in order to train the network, which we suspect is
due to the sparsity of the jet-image input. In cases where other initialization schemes were used, the
networks often converged to very sub optimal solutions. This network is trained (and evaluated) on
un-normalized jet-images using the transverse energy for the pixel intensities

For the deep convolution networks, we use a convolutional architecture consisting of three sequen-
tial [Conv + Max-Pool + Dropout] units, followed by a local response normalization (LRN) layer [8],
followed by two fully connected, dense layers. We note that the convolutional layers used are so called
“full” convolutions – i.e., zero padding is added the the input pre-convolution. Our architecture can
be succinctly written as:

[Dropout ! Conv ! ReLU ! MaxPool] ⇤ 3 ! LRN ! [Dropout ! FC ! ReLU] ! Dropout ! Sigmoid.

(4.1)
The convolution layers each utilize 32 feature maps, or filters, with filter sizes of 11 ⇥ 11, 3 ⇥ 3,

and 3 ⇥ 3 respectively. All convolution layers are regularized with the L
2 weight matrix norm. A

down-sampling of (2, 2), (3, 3), and (3, 3) is performed by the three max pooling layers, respectively.
A dropout [8] of 20% is used before the first FC layer, and a dropout 10% is used before the output
layer. The FC hidden layer consists of 64 units.

After early experiments with the standard 3 ⇥ 3 filter size, we discovered significantly worse
performance over a more basic MaxOut [7] feedforward network. After further investigation into larger
convolutional filter size, we discovered that larger-than-normal filters work well on our application.
Though not common in the Deep Learning community, we hypothesize that this larger filter size is
helpful when dealing with sparse structures in the input images. In Table 1, we compare di↵erent
filter sizes, finding the optimal filter size of 11⇥ 11, when considering the Area Under the ROC Curve
(AUC) metric, based on the ROC curve outlined in Sections 3 and 5.

– 8 –
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Figure 5: ROC curves for all algorithms evaluated on the same test sample, shown as the
AUC ensemble median of multiple trainings. More precise numbers as well as uncertainty
bands given by the ensemble analysis are given in Tab. 1.

Instead of extracting these performance measures from single models we can use ensembles.
For this purpose we train nine models for each tagger and define 84 ensemble taggers, each time
combining six of them. They allow us to evaluate the spread of the ensemble taggers and define
mean-of-ensemble and median-of-ensemble results. We find that ensembles leads to a 5 ... 15%
improvement in performance, depending on the algorithm. For the uncertainty estimate of the
background rejection we remove the outliers. In Tab. 1 we see that the background rejection
varies from around 1/600 to better than 1/1000. For the ensemble tagger the ParticleNet,
ResNeXt, TreeNiN, and PFN approaches again lead to the best results. Phrased in terms
of the improvement in the signal-to-background ratio they give factors ✏S/✏B > 300, vastly
exceeding the current top tagging performance in ATLAS and CMS.

Altogether, in Fig. 5 and Tab. 1 we see that some of the physics-motivated setups remain
competitive with the technically much more advanced ResNeXt and ParticleNet networks.
This suggests that even for a straightforward task like top tagging in fat jets we can develop
e�cient physics-specific tools. While their performance does not quite match the state-of-
the-art standard networks, it is close enough to test both approaches on key requirements in
particle physics, like treatment of uncertainties, stability with respect to detector e↵ects, etc.

The obvious question in any deep-learning analysis is if the tagger captures all relevant
information. At this point we have checked that including full or partial information on

15

CNN PERFORMANCE
▸ CNNs among the best performing algorithms 
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AUC Acc 1/✏B (✏S = 0.3) #Param
single mean median

CNN [16] 0.981 0.930 914±14 995±15 975±18 610k
ResNeXt [31] 0.984 0.936 1122±47 1270±28 1286±31 1.46M

TopoDNN [18] 0.972 0.916 295±5 382± 5 378 ± 8 59k
Multi-body N -subjettiness 6 [24] 0.979 0.922 792±18 798±12 808±13 57k
Multi-body N -subjettiness 8 [24] 0.981 0.929 867±15 918±20 926±18 58k
TreeNiN [43] 0.982 0.933 1025±11 1202±23 1188±24 34k
P-CNN 0.980 0.930 732±24 845±13 834±14 348k
ParticleNet [47] 0.985 0.938 1298±46 1412±45 1393±41 498k

LBN [19] 0.981 0.931 836±17 859±67 966±20 705k
LoLa [22] 0.980 0.929 722±17 768±11 765±11 127k
LDA [54] 0.955 0.892 151±0.4 151.5±0.5 151.7±0.4 184k
Energy Flow Polynomials [21] 0.980 0.932 384 1k
Energy Flow Network [23] 0.979 0.927 633±31 729±13 726±11 82k
Particle Flow Network [23] 0.982 0.932 891±18 1063±21 1052±29 82k

GoaT 0.985 0.939 1368±140 1549±208 35k

Table 1: Single-number performance metrics for all algorithms evaluated on the test sample.
We quote the area under the ROC curve (AUC), the accuracy, and the background rejection
at a signal e�ciency of 30%. For the background rejection we also show the mean and median
from an ensemble tagger setup. The number of trainable parameters of the model is given as
well. Performance metrics for the GoaT meta-tagger are based on a subset of events.

the event-level kinematics of the fat jets in the event sample has no visible impact on our
quoted performance metrics. We can then test how correlated the classifier output of the
di↵erent taggers are, leading to the pair-wise correlations for a subset of classifier outputs
shown in Fig. 6. The correlation matrix is given in Tab. 2. As expected from strong classifier
performances, most jets are clustered in the bottom left and top right corners, corresponding
to identification as background and signal, respectively. The largest spread is observed for
correlations with the EFP. Even the two strongest individual classifier outputs with relatively
little physics input — ResNeXt and ParticleNet — are not perfectly correlated.

Given this limited correlation, we investigate whether a meta-tagger might improve per-
formance. Note that this GoaT (Greatest of all Taggers) meta-tagger should not be viewed
as a potential analysis tool, but rather as a benchmark of how much unused information is
still available in correlations. It is implemented as a fully connected network with 5 layers
containing 100-100-100-20-2 nodes. All activation functions are ReLu, apart from the final
layer’s SoftMax. Training is performed with the Adam [30] optimizer with an initial learning
rate of 0.001 and binary cross-entropy loss. We train for up to 50 epochs, but terminate if
there is no improvement in the validation loss for two consecutive epochs, so a typical training
ends after 5 epochs. The training data is provided by individual tagger output on the previous
test sample and split intro three subsets: GoaT-training (160k events), GoaT-testing (160k
events) and GoaT-validation (80k events). We repeat training/testing nine times, re-shu✏ing
the events randomly between the three subsets for each repetition. The standard deviation
of these nine repetitions is reported as uncertainty for GoaT taggers in Tab. 1. We show two
GoaT versions, one using a single output value per tagger as input (15 inputs), and one using
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INNOVATING WITH NEW REPRESENTATIONS 45

▸ In deep learning, tailoring algorithms to the structure (and symmetries) of the 
data has led to groundbreaking performance 
▸ CNNs for images 

▸ RNNs for language processing 

▸ What about high energy physics data like jets?

▸ Distributed 
unevenly in space 

▸ Sparse 
▸ Variable size 
▸ No defined order 
▸ Interconnections 
→ Graphs

arXiv:2007.13681 
arXiv:2012.01249
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NODE, EDGE, GRAPH FEATURES IN HEP (E.G. JET) 46

p = [E, px, py, pz] ≡ [pT, η, ϕ, m]

ΔR = Δη2 + Δϕ2

m = ∑
i∈jet

E2
i − p2

x,i − p2
y,i − p2

z,i

▸ Node features : particle 4-momentum 
 
 

▸ Edge features : pseudoangular distance 
between particles 
 
 
 

▸ Graph (global) features : jet mass
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ek
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▸ Features: triplet of global features, node features, and  
edge features:   

▸ Graph connectivity: adjacency matrix  
 

▸ Sparse representation:  
“receiver” indices  and  “sender” indices  
e.g. kth edge connects node sk to node rk 

(u, V, E)

A = {aij = 1 if i is connected to j}

r s

FORMALIZING A GRAPH 47
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" ÅĎ· Ď»±{Ď�55±ï" ÅĎ· Ď»±{Ď�55±ï" ÅĎ· Ď»±{Ď�55±ïGNN’S MAIN INGREDIENT: MESSAGE PASSING
▸ For all neighbors  of node  compute a “message” via a NN:  

▸ Update the node features by summing all messages: 
 

j i ϕ(xi, xj)

hi = ∑
j

ϕ(xi, xj)

“message passing”
ϕ(xi, xj)

48



" ÅĎ· Ď»±{Ď�55±ï" ÅĎ· Ď»±{Ď�55±ï" ÅĎ· Ď»±{Ď�55±ïHOW TO USE GNNS IN HEP 49" ÅĎ· Ď»±{Ď�55±ï" ÅĎ· Ď»±{Ď�55±ï Source: https://youtu.be/uF53xsT7mjc

▸ Node-level tasks 
▸ Identify "pileup" particles

▸ Graph-level tasks 
▸ Jet tagging

▸ Edge-level tasks 
▸ Identify good track doublets

ϕ(xi, xj)

https://youtu.be/uF53xsT7mjc
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Figure 3. Performance of the algorithms for identifying hadronically decaying Higgs bosons (Left: H→bb; Right:
H→cc). A selection on the jet mass, 90 < mSD < 140 GeV, is applied in addition to the ML-based identification
algorithm when evaluating the signal and background efficiencies. For the signal (background), the generated
Higgs bosons (quarks and gluons) are required to satisfy 500 < pT < 1000 GeV and |η| < 2.4. For each of the two
DeepAK8-DDT algorithms, the marker indicates the performance of the nominal working point, DeepAK8-DDT
> 0, and its background efficiency (shown in the vertical axis) is different from the design value (5% or 2%) due to
the additional selection on the jet mass.
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Global Average Pooling

Fully Connected
256, ReLU, Dropout = 0.1

Fully Connected
2

Softmax

▸ ParticleNet, using “dynamic edge convolutions:” graph is constructed based on 
“closeness” in an abstract “latent” space  

▸ Identifies H(bb) with an efficiency of ~50% while rejecting 99.9% of 
background

PARTICLENET: GNN FOR TAGGING H(BB) IN CMS 50
arXiv:1902.08570 
CMS-DP-2020-002

2⨉ improvement 
over previous  

non-GNN algorithm!

" ÅĎ· Ď»±{Ď�55±ï

https://arxiv.org/abs/1902.08570
https://cds.cern.ch/record/2707946/


▸ Explainable AI (XAI) refers to the set of techniques employed  
to provide explanations for ML model predictions 

▸ Layerwise relevance propagation (LRP) [1] computes relevance (R) scores for 
each neuron in a ML model 

▸ Neuron's R score is a measure of its contribution to the model's output,  
 

 with  

▸ Flow of R scores for a  
multilayer perceptron (MLP)

R(l)
j = ∑

k

zjk

∑m zmk
R(l+1)

k zjk = x(l)
j w(l+1)

jk

WHAT IS PARTICLENET LEARNING?

[1] https://doi.org/10.1007/978-3-030-28954-6_10

51

https://doi.org/10.1007/978-3-030-28954-6_10


▸ Is the model learning to connect particles from different subjets more often 
for top quark jets than for QCD jets? 

▸ Use CA algorithm to decluster each jet into exactly 3 subjets

IS PARTICLENET USING TRADITIONAL JET SUBSTRUCTURE?

Top quark jet

CA algorithm

52



LRP FOR PARTICLENET
▸ For a top quark jet sample, relevant edges connect different subjets 

 
 
 
 
 
 
 

▸ Trained model connects different  
subjets more often for top quarks  
than for QCD

arXiv.2211.09912 53

https://doi.org/10.48550/arXiv.2211.09912


▸ Symmetry-equivariant networks 
▸ More economical (fewer, but more expressive 

parameters), interpretable, and trainable

INDUCTIVE BIAS & EQUIVARIANCE 54� EQUIVARIANCE IN MACHINE LEARNING 5

Figure 1: An illustration of the di�erences between symmetry group invariance and equivariance for the
example case of identifying a handwritten letter in an image. Here, 5 : - ! . is a map between vector spaces
- and . . d6 (G) ⌘ d(6, G) is an action of a group ⌧ on - and d

0
6 (H) ⌘ d

0(6, H) is an action of a group ⌧ on
. . The invariant model (left) will output the same result on both the original and translated images, while the
equivariant model (right) will transform the translated image in a way that reflects the underlying symmetry
group. More formally, this means that the map 5 is equivariant with respect to the actions d : ⌧ ⇥ - ! -

and d
0 : ⌧ ⇥ . ! . if 5 (d6 (G)) = d

0
6 ( 5 (G)) for all G 2 - and 6 2 ⌧.



HOW DO WE ENFORCE LORENTZ SYMMETRY? 55

▸ Lorentz-invariant networks: 
▸ Boosting all particles into a 

new frame should give the 
same result 

▸ Lorentz-equivariant networks: 
▸ Boosting all particles into a 

new frame should give an 
output that transforms the 
same way

Boosted heavy objects

Search for new heavy particles

! Decays into high-pT Top/W/Z/Higgs

! Boosted decays

! Reconstruction of hadronic decays in a single jet

Example: top quark

resolved boosted

Dennis Schwarz ICHEP 2020 2
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Figure 1. (left): The structure of the Lorentz Group Equivariant Block (LGEB). (right): The
network architecture of the LorentzNet.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hlN ) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xlN ) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0i equals the input of the 4-momenta vi and h0i equals the
embedded input of the scalar variables si. LGEB aims to learn deeper embeddings hl+1, xl+1

via current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and  (·) = sgn(·) log(| · | + 1) in Equation (3.2) is to
normalize large numbers from broad distributions for ease of optimization. Except for the
embedding of the scalar features hli and hlj , according to Proposition 3.1, the input of the
neural network contains the Minkowski dot product hxi, xji. The kxli�xljk2 is also included
because the interaction between particles relies on this term and we include it as a prior
feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as

xl+1
i = xli + c

X

j2[N ]

�x(m
l
ij) · xlj (3.3)

where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, the hyperparameter c is introduced to control the scale of xl+1

i to avoid the scale
exploding. This step captures the interactions of the i-th particle with other particles via
the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-preserving
neural networks such as LGN and EGNN [56] (for E(n) equivariance)1 which only apply

1
The relation with EGNN is discussed in the Appendix B.
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where �e(·) is a neural network and  (·) = sgn(·) log(| · | + 1) in Equation (3.2) is to
normalize large numbers from broad distributions for ease of optimization. Except for the
embedding of the scalar features hli and hlj , according to Proposition 3.1, the input of the
neural network contains the Minkowski dot product hxi, xji. The kxli�xljk2 is also included
because the interaction between particles relies on this term and we include it as a prior
feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as
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where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
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i .
Therefore, the hyperparameter c is introduced to control the scale of xl+1

i to avoid the scale
exploding. This step captures the interactions of the i-th particle with other particles via
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Boosted heavy objects

Search for new heavy particles

! Decays into high-pT Top/W/Z/Higgs

! Boosted decays

! Reconstruction of hadronic decays in a single jet

Example: top quark

resolved boosted

Dennis Schwarz ICHEP 2020 2

Lorentz 
boost

arXiv:2201.08187

WP: arXiv:2201.08187

If we perform Lorentz boost along the x-spatial axis, then the Lorentz transformation
between these two frames is the matrix

Q =

0

BBB@

� ��� 0 0

��� � 0 0

0 0 1 0

0 0 0 1

1

CCCA
.

Lorentz group equivariance. Let Tg : V ! V and Sg : U ! U be group actions of
g 2 G on sets V and U , respectively. We say a function � : V ! U is equivariant to group
G if

�(Tg(v)) = Sg(�(v)) (2.1)

holds for all v 2 V and g 2 G. In this work, we only consider the case that the type of
the output is a scalar or vector. Therefore, we explore the following equivariance on a set
of particles V 2 RN⇥4. Let Q be the Lorentz transformation, the Lorentz equivariance of
�(·) means:

Q�(v) =�(Qv), for �(v) 2 R4; (2.2)
�(v) =�(Qv), for �(v) 2 R. (2.3)

Note that when the output is a scalar, the group equivariance equals the group invariance.

2.3 Graph Neural Network for Particle Cloud

A jet can be denoted as a graph when we regard the constituent particles as nodes. For the
particle with index i, we use its 4-momentum vector vi = (Ei, pix, p

i
y, p

i
z) as the coordinate

of node i in Minkowski space. We use si = (si1, s
i
2, · · · , si↵) to denote the scalars, such as

mass, charge and particle identity information, etc, which compose the node attributes.
Now fi = vi � si contains essential features for tagging. The graph can be denoted as
G = (V,E) where V is the set of nodes and E is the set of edges. The edges characterize
the message passing between two particles, hence the interaction of two individual sets of
particle-wise features. If there is no such interaction, there will be no edge between the two
corresponding nodes. Here, we regard the graph as a fully connected graph as we do not
assume that we have any prior on the interactions among these particles.

Graph neural networks are natural to learn representations for graph-structured data
[62]. Given a graph G = (V,E), assuming L steps in total, the l-th message passing step
on the graph can be described as [63]:

ml+1
i =

X

j2N (i)

Ml(h
l
i, h

l
j , eij); (2.4)

hl+1
i = Ul(h

l
i,m

l+1
i ); (2.5)

where h0i = fi is the input feature, eij is the edge feature, N (i) is the set of neighbors of
the node i, and Ml, Ul are neural networks. For a classification problem, the output ŷ can
be obtained by applying the softmax function after decoding {hLi ; i 2 [N ]}.

– 4 –
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LORENTZNET PERFORMANCE 56

▸ State-of-the-art performance for top quark tagging 
▸ Lorentz group invariance confirmed

arXiv:2201.08187

Model Accuracy AUC 1/"B
("S = 0.5)

1/"B
("S = 0.3)

ResNeXt 0.936 0.9837 302± 5 1147± 58

P-CNN 0.930 0.9803 201± 4 759± 24

PFN 0.932 0.9819 247± 3 888± 17

ParticleNet 0.940 0.9858 397± 7 1615± 93

EGNN 0.922 0.9760 148± 8 540± 49

LGN 0.929 0.9640 124± 20 435± 95

LorentzNet 0.942 0.9868 498± 18 2195± 173

Table 1. Performance comparison between LorentzNet and other representative algorithms on top
tagging dataset. The results for LorentzNet and EGNN are averaged on 6 runs. The results for
other baselines are referred to [36, 37, 61].

Model Accuracy AUC 1/"B
("S = 0.5)

1/"B
("S = 0.3)

ResNeXt 0.821 0.8960 30.9 80.8

P-CNN 0.827 0.9002 34.7 91.0

PFN � 0.9005 34.7± 0.4 �
ParticleNet 0.840 0.9116 39.8± 0.2 98.6± 1.3

EGNN 0.803 0.8806 26.3± 0.3 76.6± 0.5

LGN 0.803 0.8324 16.0 44.3

LorentzNet 0.844 0.9156 42.4± 0.4 110.2± 1.3

Table 2. Performance comparison between LorentzNet and other representative algorithms on
quark-gluon tagging dataset. The results for LorentzNet, EGNN and LGN are averaged on 6 runs.
The results for other baselines are referred to [36, 37].

Figure 2. A comparison of ROC curves between LorentzNet and other algorithms on top tagging
dataset (left) and quark-gluon dataset (right).

– 10 –

Model Equivariance Accuracy AUC 1/"B
("S = 0.5)

1/"B
("S = 0.3)

LorentzNet (w/o) 7 0.934 0.9832 290± 30 1105± 59

LorentzNet 3 0.942 0.9868 498± 18 2195± 173

Table 4. Performance comparison between LorentzNet and corresponding non-equivalent version
on top tagging dataset. Both of the results are averaged on 6 runs.

gap between the tagging accuracy and AUC between LorentzNet and ParticleNet becomes
larger as the number of training data becomes smaller. The results clearly show the benefit
of the preservation of Lorentz group symmetry in jet tagging.

4.4 Equivariance test

Another advantage of symmetry-preserving deep learning models is their robustness under
Lorentz transformation. To verify it, we rotate the test data by Lorentz transformation with
different scales of � along the x�axis, i.e., the value of (E, px) in the 4-momentum vector
will be rotated. As � becomes larger, the difference between the distributions of training
and test data will become larger. We test the model trained on the original training data,
and the tagging accuracy on the rotated test data is reported in Fig. 3. The horizontal
axis of Fig. 3 shows the value of � and the vertical axis shows the tagging accuracy on the
top tagging dataset under Lorentz transformation with corresponding �. The results show
that the accuracy of LorentzNet and LGN on the test data after Lorentz transformation is
robust in a large range of �, while the test accuracy of other non-equivariant models will
drop as � becomes larger. According to special relativity, the fundamental quantities to
clarify the particles will not be changed. Even compared with LGN, LorentzNet is more
stable when � approaches 1, and the instability of LGN is caused by the rounding errors in
float arithmetic as described in its original paper [61].

Figure 3. Equivariant test under Lorentz boosts on top tagging dataset.

– 12 –
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36Unsupervised

Typically, the goal of these methods is to look 
for events with low p(background)

Unsupervised = no labels

M. Farina, Y. Nakai, D. Shih, 1808.08992; T. Heimel, G. 
Kasieczka, T. Plehn, J. Thompson, 1808.08979; + many more

One strategy (autoencoders) is to try to compress 
events and then uncompress them.  When x is far from 
uncompres(compress(x)), then x probably has low p(x).

LANDSCAPE OF BSM SEARCHES
▸ Supervised = full label information 
▸ Semi-supervised = partial labels 
▸ Weakly-supervised = noisy labels  
▸ Unsupervised = no labels 
▸ Example: autoencoders compress data and 

then uncompress it 

▸ Assumption: if  is far from 
, then  has low 

x
Decoder(Encoder(x)) x pbkgd(x)
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34Landscape of Model Dependence

Suppose you want to search for a new signal process

Simulations 
Directly

Control 
Regions

Matrix 
Methods

Bump 
Hunts
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(“train” with 
simulations)

Some 
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(train signal 
versus data)

Train data 
versus 

background 
simulation

many 
new 

ideas!

Credit: B. Nachman 
 https://indico.cern.ch/event/1188153/
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LHC OLYMPICS 2020 59

▸ Challenge with “black box” signals run in 2020—2021 
▸ Plethora of new techniques
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6

AUTOENCODERS FOR ANOMALY DETECT ION

Using Autoencoders for anomaly detection 
Encode input in smaller dimensional space 
Train on typical LHC background 
Anomalous data will have higher loss  
Calculating the loss requires to store the input until the 
output is computed

3.2 Baseline performance

The models described in the previous section are trained with floating point precision on an NVIDIA RTX2080 GPU.
We refer to these models as baseline (B). Figures 4 and 5 shows the distribution of the anomaly-detection scores
considered in this paper (IO AD for the AE models, Rz and DKL(ADs for the VAE models). For completeness, results
obtained from the IO AD score of the VAE models are also shown.

Figure 4: Distribution of four anomaly detection scores (IO AD for AE and VAE models, Rzand DKLADs for the VAE
models) for the DNN model, for the SM cocktail and the four new physics benchmark models.

The model performance is assessed using the four new physics benchmark models. The receiver operating characteristic
(ROC) curves in Fig. 6 show the dependence of the true positive rate (TPR) as a function of the false positive rate (FPR),
computing by changing the lower threshold applied on the different anomaly scores. We further quantify the anomaly
detection performance quoting the area under the ROC curve (AUC) and the TPR corresponding to to a working point
of SM false positive rate "SM = 10

�5 (see Table 1), which corresponds to the average of ⇡ 1000 SM events accepted
every month [1].
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VARIAT IONAL AUTOENCODERS FOR ANOMALY DETECT ION

Sample

Encoder De
co

de
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σ

z

Using Variational Autoencoders for anomaly detection 
The latent space is sampled from Encoder output 
Can be used to generate new samples 
Inference can be done only on the latent space 
No need to store input and deployment of Encoder is enough 
(e.g. saves resources and latency in comparison to AE)

APPLICATION: ANOMALY DETECTION AT 40 MHZ
▸ Challenge: if new physics has an unexpected signature that doesn’t align with 

existing triggers, precious BSM events may be discarded at trigger level 

▸ Can we use unsupervised algorithms to detect non-SM-like anomalies? 

▸ Autoencoders (AEs): compress input to a smaller dimensional latent space then 
decompress and calculate difference 

▸ Variational autoencoders (VAEs): model the latent space as a probability 
distribution; possible to detect anomalies purely with latent space variables

arXiv:2108.03986
60Data challenge: mpp-hep.github.io/ADC2021
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term [57] usually adopted for VAEs

DKL(~µ,~�) = �
1

2

X

i

�
log(�2

i )� �2
i � µ2

i + 1
�
, (2)

and � is a hyperparameter defined in the range [0, 1] [58].

Both models are trained for 100 epochs with a batch size
of 1024, using early stopping if there is no improvement in
the loss observed after ten epochs. All models are trained
with floating point precision on an NVIDIA RTX2080
GPU. We refer to these as the baseline floating-point
(BF) models.

IV. ANOMALY DETECTION SCORES

An autoencoder is optimized to retain the minimal set
of information needed to reconstruct a accurate estimate
of the input. During inference, an autoencoder might have
problems generalizing to features it was not exposed to
during training. Selecting events where the autoencoder
output is far from the given input is often seen as an
e↵ective AD algorithm. For this purpose, one could use
a metric that measures the distance between the input
and the output. The simplest solution is to use the same
metric that defines the training loss function. In our case,
we use the MSE between the input and the output. We
refer to this strategy as input-output (IO) AD.

In the case of a VAE deployed in the L1T, one cannot
simply exploit an IO AD strategy since this would require
sampling random numbers on the FPGA. The trigger
decision would not be deterministic, something usually
tolerated only for service triggers, and not for triggers
serving physics studies. Moreover, one would have to store
random numbers on the FPGA, which would consume
resources and increase the latency. To deal with this
problem, we consider an alternative strategy by defining
an AD score based on the ~µ and ~� values returned by
the encoder (see Eq. (1)). In particular, we consider two
options: the KL divergence term entering the VAE loss
(see Eq. (2)) and the z-score of the origin ~0 in the latent
space with respect to a Gaussian distribution centered at
~µ with standard deviation ~� [10]:

Rz =
X

i

µ2
i

�2
i

. (3)

These two AD scores have several benefits we take advan-
tage of: Gaussian sampling is avoided; we save significant
resources and latency by not evaluating the decoder; and
we do not need to bu↵er the input data for computation
of the MSE. During the model optimization, we tune
� so that we obtain (on the benchmark signal models)
comparable performance for the DKL AD score and the
IO AD score of the VAE.

V. PERFORMANCE AT FLOATING-POINT
PRECISION

The model performance is assessed using the four new
physics benchmark models. The anomaly-detection scores
considered in this paper are IO AD for the AE models,
Rz and DKL ADs for the VAE models. For completeness,
results obtained from the IO AD score of the VAE models
are also shown. The receiver operating characteristic
(ROC) curves in Figures II and III show the true positive
rate (TPR) as a function of the false positive rate (FPR),
computed by changing the lower threshold applied on the
di↵erent anomaly scores. We further quantify the AD
performance quoting the area under the ROC curve (AUC)
and the TPR corresponding to a FPR working point of
10�5 (see Table I), which on this dataset corresponds to
the reduction of the background rate to approximately
1000 events per month.

From the ROC curves, we conclude that DKL can be
used as an anomaly metric for both the DNN and CNN
VAE. This has the potential to significantly reduce the
inference latency and on-chip resource consumption as
only half of the network (the encoder) needs to be evalu-
ated and that there no longer is a need to bu↵er the input
in order to compute an MSE loss. The Rz metric per-
forms worse and is therefore not included in the following
studies.

VI. MODEL COMPRESSION

We adopt di↵erent strategies for model compression.
First of all, we compress the BF model by pruning the
dense and convolutional layers by 50% of their connec-
tions, following the same procedure as Ref. [19]. Pruning
is enforced using the polynomial decay implemented in
TensorFlow pruning API, a Keras-based [59] inter-
face consisting of a simple drop-in replacement of Keras
layers. A sparsity of 50% is targeted, meaning only 50%
of the weights are retained in the pruned layers and the
remaining ones are set to zero. The pruning is set to start
from the fifth epoch of the training to ensure the model
is closer to a stable minimum before removing weights
deemed unimportant. By pruning the BF model layers
to a target sparsity of 50%, the number of floating-point
operations required when evaluating the model, can be
significantly reduced. We refer to the resulting model
as the baseline pruned (BP) model. For the VAE, only
the encoder is pruned, since only that will be deployed
on FPGA. The BP models are taken as a reference to
evaluate the resource saving of the following compression
strategies, including QAT and PTQ.
Furthermore, we perform a QAT of each model de-

scribed in Section III, implementing them in the QKeras
library [23]. The bit precision is scanned between 2 and
16 with a 2-bit step. When quantizing a model, we also
impose a pruning of the dense (convolutional) layers by
50%, as done for the DNN (CNN) BP models. The results

Key observation: Can build an anomaly 
score from the latent space of VAE directly! 
No need to run decoder!

https://arxiv.org/abs/2108.03986
https://mpp-hep.github.io/ADC2021


▸ hls4ml for scientists or ML experts to translate ML algorithms into RTL firmware

Compressed 
model

Keras 
TensorFlow 

PyTorch 
…

Tune configuration
latency, throughput, 

power, resource usage

HLS  
project

HLS  
conversion

FPGA flow

ASIC flow

Model

Machine learning model 
optimization, compression

hls  4  ml

hls4ml

HLS  4  ML

DESIGN EXPLORATION WITH HLS4ML J. Instrum. 13, P07027 (2018)61

https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913


FPGA IMPLEMENTATION arXiv:2108.03986

Output:
Conv2d 4 (1,(3,3))

Block 3:
Dense (8)
Dense 1 (64)
ReLU
Reshape (2,1,32)

Block 1:
Conv2d (16,(3,3))  
ReLU 
AvPooling (3,1)  

ReLU

Block 2:
Conv2d 1 (32,(3,1))  
ReLU 
AvPooling (3,1)
Flatten (64)

Block 4:
Conv2d 2 (32,(3,1))  
ReLU 
UpSampling (3,1)
ZeroPad (0,0),(1,1)

Block 5:
Conv2d 3 (16,(3,1))  
ReLU 
UpSampling (3,1)
ZeroPad (1,0),(0,0)

Block 0:
Input 19x3x1
ZeroPadding (1,0)
BatchNorm

ReLU ReLU ReLU ReLU

Model DSP [%] LUT [%] FF [%] BRAM 
[%]

Latency 
[ns]

II  
[ns] AUC [%]

TPR @ 
FPR=10-5

CNN VAE 
Rz

10 12 4 2 365 115 86 0.06%

CNN AE 7 47 5 6 1480 895 96 0.10%
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Data challenge: mpp-hep.github.io/ADC2021

▸ CNNs as the basis for (V)AEs for anomaly detection  

▸ Good anomaly detection performance for unseen signals 
(LQ → b𝛕, A → 4l, h± → 𝛕ν, h0 → 𝛕𝛕) 

▸ VAE fits in latency and resource requirements for HL-LHC!

https://arxiv.org/abs/2108.03986
https://mpp-hep.github.io/ADC2021
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FULL DETECTOR 
SIMULATION

DIGITIZATION 
EMULATION RECONSTRUCTIONFull Simulation

FULL DETECTOR 
SIM W/ ML

APPROXIMATE 
DETECTOR 

SIMULATION

PARTIAL 
DIGITIZATION 
EMULATION

SIMPLIFIED 
RECONSTRUCTIONFast Simulation

ML4SIM STRATEGIES
▸ Several different strategies: 
▸ Replace (part of) FullSim: increase speed, preserve accuracy 
▸ Replace (part of) FastSim: maintain speed, increase accuracy 
▸ Conditional: map generated → reconstructed events 
▸ End-to-end: map random noise → reconstructed events directly

HARD PROCESS 
GENERATION

SHOWERING/
HADRONIZATION/
UNDERLYING EVT

APPROXIMATE 
DETECTOR SIM W/ 

ML

Delphes

ANALYSIS/
NTUPLING

PARAMETRIZED SMEARING

CONDITIONAL

END-TO-END
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GENERATIVE ADVERSARIAL NETWORKS

▸ Train two neural networks in tandem:  

▸ one to generate realistic “fake” data  

▸ the other to discriminate “real” from “fake” data

65
arXiv:1406.2661 
arXiv:1912.04958

thispersondoesnotexist.com

Note: failure modes!

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1912.04958
https://thispersondoesnotexist.com/


GENERATIVE AI EVALUATION METRICS
▸ Evaluation of generative models is in general difficult 
▸ We want to evaluate quantitatively:  
▸ the quality of the data 
▸ the diversity of the data  
▸ ultimately, physics performance

Minimum 
Matching Distance 

Coverage Fréchet ParticleNet 
Distance

1-Wassersstein 
Distance (W1)

Quality ✅ ✅ ✅

Diversity ✅ ✅ ✅

Physics Perf. ✅

arXiv:2012.00173 
arXiv:2106.11535 66

https://arxiv.org/abs/2012.00173
https://arxiv.org/abs/2106.11535


Generated 
Particle Cloud

hT
1

hT
2

MESSAGE-PASSING GAN ARCHITECTURE
▸ As an alternative to voxelization, a graph-based GAN can be used  

to generate jets as particle clouds mt+1
ij = f t+1

e (ht
i ⊕ ht

j)

ht+1
v = f t+1

n (ht
i ⊕ ∑

j∈J

mt+1
ij )

× T

f t
e

f t
n

…

{Initial Noise

h0
1

h0
2

MP Generator

{Final Features
η φ pT 1

× T

fe

fn

MP Discriminator
Real Particle 

Cloud

FCAve
Pool

…

…

{Hidden Features
Real or 

Generated

67
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arXiv:2106.11535
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68QUALITATIVE TOP QUARK JET RESULTS arXiv:2012.00173 
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▸ To easily visualize the generated particle clouds, we can make “jet images”
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▸ Reproduces nontrivial properties like top quark jet mass and energy-flow 
polynomials (  so 3 subjets + not always fully merged)t → Wb → qqb

Generator Discriminator W1-P (10-3) W1-M (10-3) W1-EFP (10-5) FPND Coverage MMD
Real 0.55 ± 0.07 0.51 ± 0.07 1.1 ± 0.1 — — —

FC PointNet 1.5 ± 0.2 2.6 ± 0.1 8 ± 3 225 0.56 0.076
GraphCNN PointNet 37 ± 3 10.8 ± 0.5 39 ± 18 2M 0.39 0.084
MP MP 2.1 ± 0.2 0.7 ± 0.1 1.8 ± 0.8 6.4 0.56 0.071
MP PointNet 1.5 ± 0.1 1.0 ± 0.3 5 ± 2 12 0.58 0.071

O(1 s) per jet

36 μs per jet

Time

https://arxiv.org/abs/2012.00173
https://arxiv.org/abs/2106.11535


CALO CHALLENGE
▸ Ongoing challenge for generative modeling of calorimeter showers in HEP! 
▸ Many new approaches presented at CaloChallenge Workshop: https://

agenda.infn.it/event/34036/

calochallenge.github.io 70

� Shower images

Ian Pang (Rutgers) CaloFlow for CaloChallenge November 2, 2022 18 / 18

⇡+ Shower images

Ian Pang (Rutgers) CaloFlow for CaloChallenge November 2, 2022 18 / 18

https://agenda.infn.it/event/34036/
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DIFFUSION MODELS IN HEP
▸ Diffusion models 

have recently 
dethroned GANs for 
natural images 

▸ Generative model is 
trained using a 
diffusion process that 
slowly perturbs the 
data by adding noise 
— model learns to 
denoise 

▸ Generation of new 
samples by reversing 
the diffusion process

arXiv:2011.13456 
arXiv:2206.11898 71

3

t=1t=0 t=0.75t=0.25

Forward diffusion (training)

Reverse-time diffusion (data generation)

FIG. 1. The score-based generative model is trained using a di↵usion process that slowly perturbs the data. Generation of new
samples is carried out by reversing the di↵usion process using the learned score-function, or the gradient of the data density.
For di↵erent time-steps, we show the distribution of deposited energies versus generated particle energies (top) and the energy
deposition in a single layer of a calorimeter (bottom), generated with our proposed CaloScore model.

data, matching the score of the smearing function re-
quires computing the smeared data and an expectation
value over the smeared data.

Given a Gaussian perturbation kernel p�(x̃|x) :=
N (x,�2) and p�(x̃) :=

R
pdata(x)p�(x̃|x)dx, the proba-

bility density of the perturbed data, the loss function
minimized during training is:

1

2
Ep�(x̃|x)pdata

h
ks✓(x̃)�rx̃ log p�(x̃|x)k

2
2

i
. (4)

The advantage of this strategy is that we can directly
estimate the last term in Eq. 4, since:

rx̃ log p�(x̃|x) =
x� x̃

�2
⇠

N (0, 1)

�
(5)

The time component can be made explicit by rewriting
the loss function in Eq. 4 as:

1

2
EtEp(xt|x0)p(x0)

h
�(t) ks✓(x, t)�rxt log pt(xt|x0)k

2
2

i
.

(6)
The weighting function �(t) : R ! R ensures

the loss function has the same order of magnitude at
all times and is chosen to be inversely proportional

to E
h
krxt log pt(xt|x0)k

2
2

i
. When the drift coe�cient

f(x, t) is chosen to be an a�ne function of x, the result-
ing perturbation kernel is always Gaussian [58] and can
be chosen such that both mean and variance are known
in closed form, making Eq. 6 e�cient to compute during
training.

III. CHOICE OF DRIFT AND DIFFUSION
COEFFICIENTS

In this work we investigate three di↵erent choices of
drift and di↵usion coe�cients that result in perturbation
kernels that are easy to calculate in closed form. The
first SDE, initially proposed in [53], is defined as:

dx =

r
d[�2(t)]

dt
dw. (7)

The parameter �(t) = �min

⇣
�max
�min

⌘t
is defined with

�min = 0.01 and �max = 50 to ensure x(1) ⇠ N (0,�2
max)

is independent from x(0). Since the time-dependent vari-
ance of the resulting perturbation explodes when t ! 1,
this SDE is often referred to variance exploding (VE)
SDE.
The second SDE is a continuous version of the discrete

▸ Distribution of deposited energies for generated 
particle energies (top) and the energy deposition in a 
single layer of a calorimeter (bottom) vs time step

https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2206.11898
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SUMMARY AND OUTLOOK
▸ Different representations of HEP data, from tabular data, 

image data, set data, graph data, paired with corresponding 
algorithms can achieve excellent performance 

▸ Plethora of ML techniques in HEP from anomaly detection 
to generative modeling have exploded in recent years 
▸ Availability of public datasets and challenges have 

advanced the state-of-the-art 
▸ Fast ML can accelerate science allowing us to test  

hypotheses faster, enhance performance of detectors/
accelerators, and save potentially overlooked data 

▸ Generative modeling can enhance or even replace current 
simulators

73
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.
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Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.
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Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Figure 5: The convolution neural network concept as applied to jet-images.

4.1 Architectural Selection

For the MaxOut architecture, we utilize two FC layers with MaxOut activation (the first with 256
units, the second with 128 units, both of which have 5 piecewise components in the MaxOut-operation),
followed by two FC layers with ReLU activations (the first with 64 units, the second with 25 units),
followed by a FC sigmoid layer for classification. We found that the He-uniform initialization [35]
for the initial MaxOut layer weights was needed in order to train the network, which we suspect is
due to the sparsity of the jet-image input. In cases where other initialization schemes were used, the
networks often converged to very sub optimal solutions. This network is trained (and evaluated) on
un-normalized jet-images using the transverse energy for the pixel intensities

For the deep convolution networks, we use a convolutional architecture consisting of three sequen-
tial [Conv + Max-Pool + Dropout] units, followed by a local response normalization (LRN) layer [8],
followed by two fully connected, dense layers. We note that the convolutional layers used are so called
“full” convolutions – i.e., zero padding is added the the input pre-convolution. Our architecture can
be succinctly written as:

[Dropout ! Conv ! ReLU ! MaxPool] ⇤ 3 ! LRN ! [Dropout ! FC ! ReLU] ! Dropout ! Sigmoid.

(4.1)
The convolution layers each utilize 32 feature maps, or filters, with filter sizes of 11 ⇥ 11, 3 ⇥ 3,

and 3 ⇥ 3 respectively. All convolution layers are regularized with the L
2 weight matrix norm. A

down-sampling of (2, 2), (3, 3), and (3, 3) is performed by the three max pooling layers, respectively.
A dropout [8] of 20% is used before the first FC layer, and a dropout 10% is used before the output
layer. The FC hidden layer consists of 64 units.

After early experiments with the standard 3 ⇥ 3 filter size, we discovered significantly worse
performance over a more basic MaxOut [7] feedforward network. After further investigation into larger
convolutional filter size, we discovered that larger-than-normal filters work well on our application.
Though not common in the Deep Learning community, we hypothesize that this larger filter size is
helpful when dealing with sparse structures in the input images. In Table 1, we compare di↵erent
filter sizes, finding the optimal filter size of 11⇥ 11, when considering the Area Under the ROC Curve
(AUC) metric, based on the ROC curve outlined in Sections 3 and 5.
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