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Visualizing How NN works: A Simple Example

2

Conventionally, feature extraction is done by 
humans with domain- / problem-specific expertise

 


• Experience, a priori physics knowledge, etc. 

• Expensive, difficult 


Linear models are easy to solve, but limited 

• Closed form solution or convex optimization

• But linear, obviously…
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Neural Network Visualization

3

Links for visualization examples: 

• Simple NN training live on browser: Link

• Visualizing hidden layers & decision boundaries: Link

https://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.003&regularizationRate=0&noise=0&networkShape=3&seed=0.13116&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
http://srome.github.io/Visualizing-the-Learning-of-a-Neural-Network-Geometrically/
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Optimizer: visualization

4
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Classifier help categorize

5
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Likelihoods

6

Statistical inference is all about likelihoods, turns out ML is great at learning them !





Eg. Normalizing Flows, a class of generative models (see more on Wednesday)

P(data | theory)
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Likelihood ratios

7

Generative models are hard to train, but often, all you need are likelihood ratios 

• Hypothesis testing (  vs )

• Re-weighting


A classifier is all you need !


A neural network trained to classify between data from  and  approximates:

H0 H1

θ0 θ1

c(xi, θ0, θ1) =
P(xi |θ1)

P(xi |θ0) + P(xi |θ1)
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Neyman-Pearson Lemma

8

“Likelihood ratio is the best test statistic for hypothesis tests”


c(xi, θ0, θ1) =
P(xi |θ1)

P(xi |θ0) + P(xi |θ1)

λ(x, θ0, θ1) =
p(x |θ0)
p(x |θ1)

λ(xi, θ0, θ1) =
1

c(xi, θ0, θ1)
− 1

We get a likelihood ratio per event, unbinned hypothesis testing !  (See Aishik’s ATLAS work on this)


https://auth.cern.ch/auth/realms/cern/protocol/saml?SAMLRequest=lZJLb4MwEIT/CvI9mJAHiRWQaHJopLRFhfbQS2WcTbBkbOo1ffz7Qmiq9BKpR9uz38yOvEJeq4alrav0I7y1gM77rJVGdnqISWs1MxwlMs1rQOYEy9O7HQv9gDXWOCOMIl6KCNZJo9dGY1uDzcG+SwFPj7uYVM41yCjlTnEcHRXXAnwBVvuionkly9IocJWPaGjPDmn2kBfE23RhpOY99gLSJf0d7g/UAlc10v6OnhPRPj3xtpuYvMJBBHy+h2gWReNZMInCaBkswmlZzqdisTh0MsQWthod1y4mYRBORkE0CmdFsGTjKQvnL8TLfsg3Uu+lPl4vphxEyG6LIhsN2zyDxdMmnYAkqz4gOxnbi8KvY/m5ZZL8o9MVvfAajBt238G3m8woKb68VCnzse56dBCTMaHJMPL3WyTf&RelayState=cookie:1690276466_4310&SigAlg=http://www.w3.org/2000/09/xmldsig#rsa-sha1&Signature=
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Simulator-Based Inference

9

Amortised: In histogram analyses, statistical fits are computationally expensive, in SBI the 
inference is lightning fast! Computational cost to train on simulation, but fast to evaluate on 
data.


For trustable likelihood ratios:

- Train large ensemble of networks, average the outputs

- Matrix element amplitudes as target labels

- Gradient information as auxiliary tasks


Brehmer et al.

15

Figure 5: Illustration of some key concepts with a one-dimensional Gaussian toy example. Left:
classifiers trained to distinguish two sets of events generated from different hypotheses (green dots)
converge to an optimal decision function s(x|✓0, ✓1) (in red) given in Eq. (17). This lets us extract
the likelihood ratio. Right: regression on the joint likelihood ratios r(xe, ze|✓0, ✓1) of the simulated

events (green dots) converges to the likelihood ratio r(x|✓0, ✓1) (red line).

2. Particle-physics structure

As we have argued in Sec. II C, particle physics processes have a specific structure that allow
us to extract additional information. Most processes satisfy the factorization of Eq. (2) with a
tractable parton-level likelihood p(z|✓). The generators do not only provide samples {xe}, but
also the corresponding parton-level momenta (latent variables) {ze} with (xe, ze) ⇠ p(x, z|✓0). By
evaluating the matrix elements at the generated momenta ze for different hypotheses ✓0 and ✓1,
we can extract the parton-level likelihood ratio p(ze|✓0)/p(ze|✓1). Since the distribution of x is
conditionally independent of the theory parameters, this is the same as the joint likelihood ratio

r(xe, zall e|✓0, ✓1) ⌘
p(xe, zdetector e, zshower e, ze|✓0)

p(xe, zdetector e, zshower e, ze|✓1)

=
p(xe|zdetector e)

p(xe|zdetector e)

p(zdetector e|zshower e)

p(zdetector e|zshower e)

p(zshower e|ze)

p(zshower e|ze)

p(ze|✓0)

p(ze|✓1)

=
p(ze|✓0)

p(ze|✓1)
. (19)

So while we cannot directly evaluate the likelihood ratio at the level of measured observables
r(x|✓0, ✓1), we can calculate the likelihood ratio for a generated event conditional on the latent
parton-level momenta.

The same is true for the score, i. e. the tangent vectors or relative change of the (log) likelihood
under infinitesimal changes of the parameters of interest. While the score t(xe|✓0) = r✓ log p(x|✓)|✓0

Function to learn
Labels

Labels
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So while we cannot directly evaluate the likelihood ratio at the level of measured observables
r(x|✓0, ✓1), we can calculate the likelihood ratio for a generated event conditional on the latent
parton-level momenta.
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Change the learning task

Labels

Function to learn
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Figure 6: Illustration of some key concepts with a one-dimensional Gaussian toy example. Left:
probability density functions for different values of ✓ and the scores t(xe, ze|✓) at generated events

(xe, ze). These tangent vectors measure the relative change of the density under infinitesimal
changes of ✓. Right: dependence of log p(x|✓) on ✓ for fixed x = 4. The arrows again show the

(tractable) scores t(xe, ze|✓).

is intractable, we can extract the joint score

t(xe, zall e|✓0) ⌘ r✓ log p(xe, zdetector e, zshower e, ze|✓0)

=
p(xe|zdetector e)

p(xe|zdetector e)

p(zdetector e|zshower e)

p(zdetector e|zshower e)

p(zshower e|ze)

p(zshower e|ze)

r✓p(ze|✓)

p(ze|✓)

����
✓0

=
r✓p(ze|✓)

p(ze|✓)

����
✓0

(20)

from the simulator. Again, all intractable parts of the likelihood cancel. We visualize the score
in Fig. 6 and all available information on the generated samples in Fig. 7. It is worth repeating
that we are not making any simplifying approximations about the process here, these statements
are valid with reducible backgrounds, for state-of-the-art generators including higher-order matrix
elements, matching of matrix element and parton shower, and with full detector simulations.

But how does the availability of the joint likelihood ratio r(x, z|✓) and score t(x, z|✓) (which
depend on the latent parton-level momenta z) help us to estimate the likelihood ratio r(x|✓), which
is the one we are interested in?

Consider the L2 squared loss functional for functions ĝ(x) that only depend on x, but which are
trying to approximate a function g(x, z),

L[ĝ(x)] =

Z
dx dz p(x, z|✓) |g(x, z)� ĝ(x)|2

=

Z
dx


ĝ2(x)

Z
dz p(x, z|✓)� 2ĝ(x)

Z
dz p(x, z|✓) g(x, z) +

Z
dz p(x, z|✓) g2(x, z)

�

| {z }
F (x)

.

(21)

https://arxiv.org/pdf/1805.00013.pdf
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Re-weighting

10

Likelihood ratios let you re-weight samples, without binning !


Simple idea powering the next generation of ML for HEP tools like multi-dimensional, unbinned 
unfolding (see more on Thursday)


NN-based reweighting in ATLAS analysis 
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Classifier Confusion Matrix
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Let’s consider binary classification:

•Two classes 0 and 1

•Confusion matrix is a 2x2 table

Actual Values:  True/False

Predicted values:  Positive/Negative


If a model predicts probabilities instead of class labels( 0&1) then it is crucial to choose a 
reasonable threshold
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ROC and AUC

12

•ROC = Receiver Operating Characteristics

•AUC = Area under the Curve

•Generally used when the output is a probability, [0,1]

AUC & ROC curve is a performance measurement 
for the classification problems at various threshold 
settings

AUC

True Positive Rate = 

False Positive Rate = 
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Underfitting and Overfitting

13

A model with “high bias” pages very little attention to the training data and over simplifies the model


Performs   poorly on training as well as testing data

➡ Underfitting 


Easy to solve this problem!


•Increase model complexity

•Increase the number of 

features, performing 
feature engineering


•Remove noise from the 
data


•Increase the number of 
epochs or increase the 
duration of training to get 
better results
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Underfitting and Overfitting

14

A model fits training data so well that it leaves little or no room for generalization over new data


We say that the model has “high variance”

➡ Overfitting 
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Why Overfitting?

15

A model fits training data so well that it leaves little or no room for generalization over new data


We say that the model has “high variance”

➡ Overfitting 


• Small training data: Does not contain enough data samples to accurately 
represent all possible input data values


•Noisy data: The training data contains large amounts of irrelevant information


•Long training: The model trains for too long on a single sample set of data


•High model complexity: It learns the noise within the training data
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Lets practice a bit!

16

Update the git repo: 

https://github.com/usatlas-ml-training/lbnl-2023/


Lets use the notebook from here: 

https://github.com/usatlas-ml-training/lbnl-2023/tree/main/intro_lecture2


https://github.com/usatlas-ml-training/lbnl-2023/
https://github.com/usatlas-ml-training/lbnl-2023/tree/main/intro_lecture2
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Jet Classification Example

17
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How to Prevent Overfitting?

18

These are some popular techniques


Early Stopping

Pauses the training phase before the machine learning model learns the noise in the data


Reduce the network’s capacity

By removing layers or reducing the number of elements in the hidden layers


Regularization

collection of training/optimization techniques that try to eliminate factors that do not 
impact the prediction outcomes


Data Augmentation

Large dataset will reduce overfitting. Data augmentation helps to increase the size of the 
dataset 
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Regularization: L1/L2

19

Regularizer on the NN weights (absolute values of weights / squared weights)


L2 regularization is perhaps the most common form of regularization

For every weight, w, in the network we add  to the objective

where  is the regularization strength

L1 regularization is another relatively common form of regularization, where for each weight we 

add the term 


It is possible to combine the L1 regularization with the L2 regularization:    +  


1
2

λw2

λ

λ |w |

1
2

λw2 λ |w |



/ 26Introduction to ML: part IIElham E Khoda (UW)

Regularization: Dropout

20

Dropout is an extremely effective, simple and recently introduced regularization technique 
by Srivastava et al. in 


Dropout: A Simple Way to Prevent Neural Networks from Overfitting


that complements the other methods 

During Training:


Dropout is implemented by only keeping a neuron active 
with some probability p (a hyperparameter), or setting it 
to zero otherwise

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
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Hyperparameter Tuning (1/4)
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Choose the model architecture

Summary: When starting a new project, try to reuse a model that already works.


• Choose a well established, commonly used model architecture to get working first

• Try to find a paper that tackles something as close as possible to the problem at hand 


Choosing the optimizer

Summary: Start with the most popular optimizer for the type of problem at hand. 
Stick with well-established, popular optimizers, especially when starting a new project

Well-established optimizers that we like include (but are not limited to):

• SGD with momentum (we like the Nesterov variant)

• Adam and NAdam, which are more general than SGD with momentum. 

• Note that Adam has 4 tunable hyperparameters and they can all matter!

Hyperparameter tuning playbook by google 

https://github.com/google-research/tuning_playbook#what-are-the-update-rules-for-all-the-popular-optimization-algorithms
https://github.com/google-research/tuning_playbook#what-are-the-update-rules-for-all-the-popular-optimization-algorithms
https://arxiv.org/abs/1910.05446
https://github.com/google-research/tuning_playbook#why-shouldnt-the-batch-size-be-tuned-to-directly-improve-validation-set-performance
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Hyperparameter Tuning (2/4)
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Choose the batch size

Summary: The batch size governs the training speed and shouldn't be used to directly tune the validation set 
performance. Often, the ideal batch size will be the largest batch size supported by the available hardware


 


•The batch size is a key factor in determining the training time and computing resource consumption

• Increasing the batch size will often reduce the training time


 Allows hyperparameters to be tuned more thoroughly within a fixed time interval


• The batch size should not be treated as a tunable hyperparameter for validation set performance

• For an optimized network, the same final performance should be attainable using any batch size 

(see Shallue et al. 2018)


→

Hyperparameter tuning playbook by google 

https://arxiv.org/abs/1811.03600
https://github.com/google-research/tuning_playbook#why-shouldnt-the-batch-size-be-tuned-to-directly-improve-validation-set-performance
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Hyperparameter Tuning (3/4)
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Choose the Choosing the initial configuration

Summary: quickly determine the starting points with manual exploration then do a more through check


 


• Before beginning hyperparameter tuning we must determine the starting point like

1. the model configuration (e.g. number of layers)

2. the optimizer hyperparameters (e.g. learning rate)

3. the number of training steps 


Determining this initial configuration will require some manually configured training runs and trial-and-
error. 


Choosing the number of training steps involves balancing the following tension:

• Training for more steps can improve performance and makes hyperparameter tuning easier 

(see Shallue et al. 2018)

• Training for fewer steps means that each training run is faster, allowing more experiments to be 

run in parallel.  


Hyperparameter tuning playbook by google 

https://arxiv.org/abs/1811.03600
https://github.com/google-research/tuning_playbook#why-shouldnt-the-batch-size-be-tuned-to-directly-improve-validation-set-performance
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Hyperparameter Tuning

24

Several tools allow you to do hyper parameter scans and hyperparameter optimization


•Ray-tune


•Weights & Bias Sweep


•TensorBoard HParams


•Keras Tuner


•Scikit-Optimize


•Optuna

All of these tools have grid search, 
random search and Bayesian 
Optimization implemented


Pick the one you like!

https://docs.ray.io/en/latest/tune/index.html
https://docs.wandb.ai/guides/sweeps
https://www.tensorflow.org/tensorboard/hyperparameter_tuning_with_hparams
https://keras.io/guides/keras_tuner/getting_started/
https://github.com/scikit-optimize/scikit-optimize
https://optuna.org/
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Tools for ML experiments visualization

25

Weights & Biases

TensorBoard

You need to do some or a lot of experimenting with model improvement ideas

• Visualizing differences between various ML experiments becomes crucial


There are several popular tools tools: Weights & Biases, TensorBoard, Comet, MLflow etc 


•Tracking and visualizing metrics such as loss and accuracy

•Monitor learning curves

•Visualize CPU/GPU utilization


Comet

for managing the end-to-end 
machine learning lifecycle

https://wandb.ai/site
https://www.tensorflow.org/tensorboard
https://www.comet.com/site/
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Negative Event Weight

26

•Only certain BDT packages can handle negative weighted 
events (LightGBM yes, XGBoost no)


•For NNs, negative weights make logical sense, loss is 
multiplied by a negative weight and everything works as you 
would expect. So use your negative sample weights!  

• Javier’s slide: page 37 (Backpropagation)


•The more challenging problem: very large variance of weights 
(by orders of mag)


•Often, you can even re-weight them with ML to get rid of 
negative weights! Neural Resampler, Unweighting with 
generative models


6

(a) (b)

(c) (d)

FIG. 1. Demonstration of neural resampling in a simple one-dimensional example of two Gaussians. (a) The (rescaled) cross
section for observable x, estimated by summing the event weights in each histogram bin. (b) The distribution of the event
weights, including solid lines corresponding to the analytic expectations. (c) The (rescaled) uncertainties for observable x,
estimated by summing the squared event weights in each histogram bin and taking the square root. (d) The number of events
as a function of x. The curves correspond to (solid blue) the original event sample with positive and negative weights, (orange
dotted) neural resampling with K = 1 such that the cross section is preserved, and (green dashed) neural resampling with
the optimal K value in Eq. (12) such that the cross sections and uncertainties are preserved. Note that the ratio between
the orange and green curves in Fig. 1d is K(x), which is the local factor describing how many fewer events are needed after
resampling.

tive weights. Subsampling with the optimal K restores
the original uncertainties, as desired. We therefore con-
clude that neural resampling has successfully preserved
the uncertainties via Eq. (5).

As shown in Fig. 1d, subsampling yields a significant
savings in terms of the number of events required to ob-
tain the same statistical properties as the original sam-
ple. Only one third of the events are needed to capture
the same behavior of the original events, with the sav-
ings greatest near x = 0 where there are larger relative
uncertainties.

This two Gaussian example highlights the e�cacy of
neural resampling in a simple one-dimensional example.

We now turn to a case of relevance to collider physics
where the phase space is multi-dimensional.

B. Top Quark Pair Production

Our realistic collider case study is based on top quark
pair production at NLO in quantum chromodynamics.
At fixed order in an expansion in the strong coupling con-
stant ↵s, it is well known that cross sections can become
negative due to the breakdown of perturbation theory in
the vicinity of soft/collinear singularities (see footnote 2).
These unphysical phase space regions can be regulated

https://indico.cern.ch/event/1264566/contributions/5348550/attachments/2690296/4668390/ATLASML_2023July25.pdf
https://arxiv.org/abs/2007.11586
https://arxiv.org/abs/2012.07873


Thank You!



Extra Slides
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Deep Learning parallelization strategies

29

Data Parallelism 


Distribute input samples


Model replicated across devices


Most common

Model Parallelism 


Distribute network 
structure (layers)


Needed for massive 
models that don’t fit in 

device memory 


Becoming more common

Layer Pipelining

 Partition by layer

arxiv:1802.09941

https://arxiv.org/abs/1802.09941
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The ATLAS Experiment

30

Inner Detector:  
Three different detector technology


1. Silicon Pixel

2. Silicon Strip

3. Straw Tubes: Transition Radiation Tracker (TRT)

General purpose detector


Toroidal Magnet: 0.5 T


Muon Spectrometer: 

Four different detector technology


Calorimeter: 

Electromagnetic (Liquid Argon), Hadronic (Liquid 
Argon (endcap) & Tile (barrel) )


Solenoid Magnet: 2.0 T 
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The ATLAS Experiment
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The ATLAS Experiment
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