

Introduction to Machine Learning: Part II

Elham E Khoda

University of Washington

Accelerated Al Algorithms for Data-Driven Discovery

US ATLAS ML Training 2023 July 25, 2023

2

Visualizing How NN works: A Simple Example

Elham E Khoda (UW)

Conventionally, **feature extraction** is done by humans with domain- / problem-specific expertise

- Experience, a priori physics knowledge, etc.
- Expensive, difficult

Linear models are easy to solve, but limited • Closed form solution or convex optimization • But linear, obviously...

Neural Network Visualization

Links for visualization examples:

- Simple NN training live on browser: <u>Link</u>
- Visualizing hidden layers & decision boundaries: Link

Elham E Khoda (UW)

Optimizer: visualization

- ['Adadelta' '50.0']
- ['Adagrad' '0.1']
- e ['Adam' '0.05']
- ['Ftrl' '0.5']
- ['GD' '0.05']
- ['Momentum' '0.01']
- ['RMSProp' '0.02']

Classifier help categorize

Elham E Khoda (UW)

Likelihoods

Statistical inference is all about likelihoods, turns out ML is great at learning them !

Eg. Normalizing Flows, a class of generative models (see more on Wednesday)

P(*data* | *theory*)

Likelihood ratios

Generative models are hard to train, but often, all you need are likelihood ratios

- Hypothesis testing $(H_0 vs H_1)$
- Re-weighting

A classifier is all you need !

A neural network trained to classify between data from θ_0 and θ_1 approximates:

 $c(x_i, \theta_0, \theta_1) = \frac{P(x_i | \theta_1)}{P(x_i | \theta_0) + P(x_i | \theta_1)}$

Neyman-Pearson Lemma

"Likelihood ratio is the best test statistic for hypothesis tests"

$c(x_i, \theta_0, \theta_1) = \frac{P(x_i | \theta_1)}{P(x_i | \theta_0) + P(x_i | \theta_1)}$

We get a likelihood ratio per event, unbinned hypothesis testing ! (See Aishik's ATLAS work on this)

Elham E Khoda (UW)

 $\lambda(x, \theta_0, \theta_1) = \frac{p(x \mid \theta_0)}{p(x \mid \theta_1)}$

Simulator-Based Inference

Amortised: In histogram analyses, statistical fits are computationally expensive, in SBI the inference is lightning fast! Computational cost to train on simulation, but fast to evaluate on data.

For trustable likelihood ratios:

- Train large ensemble of networks, average the outputs
- Matrix element amplitudes as target labels
- Gradient information as auxiliary tasks

Re-weighting

Likelihood ratios let you re-weight samples, without binning !

unfolding (see more on Thursday)

Elham E Khoda (UW)

Introduction to ML: part II

Simple idea powering the next generation of ML for HEP tools like multi-dimensional, unbinned

NN-based reweighting in ATLAS analysis

Classifier Confusion Matrix

Let's consider binary classification:

- Two classes 0 and 1
- Confusion matrix is a 2x2 table

Actual Values: True/False **Predicted values:** Positive/Negative

If a model predicts probabilities instead of class labels (0&1) then it is crucial to choose a reasonable threshold

Actual Values

- ROC = Receiver Operating Characteristics
- AUC = Area under the Curve
- •Generally used when the output is a probability, [0,1]

True Positive Rate =

False Positive Rate =

AUC & ROC curve is a performance measurement for the classification problems at various threshold settings

ROC and AUC

FPR

AUC - ROC Curve [Image 2] (Image courtesy: My Photoshopped Collection)

Underfitting and Overfitting

A model with "high bias" pages very little attention to the training data and over simplifies the model

Performs poorly on training as well as testing data ➡ Underfitting

Easy to solve this problem!

- Increase model complexity Increase the number of features, performing feature engineering
- Remove noise from the data
- Increase the number of epochs or increase the duration of training to get better results

Underfitting and Overfitting

A model fits training data so well that it leaves little or no room for generalization over new data

We say that the model has "high variance"

14/26

Why Overfitting?

A model fits training data so well that it leaves little or no room for generalization over new data

We say that the model has "high variance" • Overfitting

- Small training data: Does not contain enough data samples to accurately represent all possible input data values
- •Noisy data: The training data contains large amounts of irrelevant information
- •Long training: The model trains for too long on a single sample set of data
- High model complexity: It learns the noise within the training data

Lets practice a bit!

Update the git repo: https://github.com/usatlas-ml-training/lbnl-2023/

Lets use the notebook from here:

Introduction to ML: part II

<u>https://github.com/usatlas-ml-training/lbnl-2023/tree/main/intro_lecture2</u>

16/26

Jet Classification Example

Elham E Khoda (UW)

These are some popular techniques

Early Stopping

Reduce the network's capacity By removing layers or reducing the number of elements in the hidden layers

Regularization

collection of training/optimization techniques that try to eliminate factors that do not impact the prediction outcomes

Data Augmentation

dataset

- Pauses the training phase before the machine learning model learns the noise in the data

Large dataset will reduce overfitting. Data augmentation helps to increase the size of the

Regularization: L1/L2

Regularizer on the NN weights (absolute values of weights / squared weights)

L2 regularization is perhaps the most common form of regularization For every weight, w, in the network we add $-\frac{1}{2}$ where λ is the regularization strength

L1 regularization is another relatively common form of regularization, where for each weight we add the term $\lambda | w |$

It is possible to combine the L1 regularization v

$$-\lambda w^2$$
 to the objective

with the L2 regularization:
$$\frac{1}{2}\lambda w^2 + \lambda |w|$$

Regularization: Dropout

Dropout is an extremely effective, simple and recently introduced regularization technique by Srivastava et al. in

Dropout: A Simple Way to Prevent Neural Networks from Overfitting

that complements the other methods

During Training:

Dropout is implemented by only keeping a neuron active with some probability *p* (a hyperparameter), or setting it to zero otherwise

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right An example of a thinned net produced by applying dropout to the network on the le Crossed units have been dropped.

Hyperparameter Tuning (1/4)

Choose the model architecture Summary: When starting a new project, try to reuse a model that already works.

- Choose a well established, commonly used model architecture to get working first
- Try to find a paper that tackles something as close as possible to the problem at hand

Choosing the optimizer Summary: Start with the most popular optimizer for the type of problem at hand. Stick with well-established, popular optimizers, especially when starting a new project

Well-established optimizers that we like include (but are not limited to): • <u>SGD with momentum</u> (we like the Nesterov variant) • <u>Adam and NAdam</u>, which are more general than SGD with momentum. • Note that Adam has 4 tunable hyperparameters and they can all matter!

<u>Hyperparameter tuning playbook by google</u>

Introduction to ML: part II

21/26

Hyperparameter Tuning (2/4)

Choose the batch size performance. Often, the ideal batch size will be the largest batch size supported by the available hardware

- The batch size is a key factor in determining the training time and computing resource consumption Increasing the batch size will often reduce the training time
- \rightarrow Allows hyperparameters to be tuned more thoroughly within a fixed time interval
- The batch size should not be treated as a tunable hyperparameter for validation set performance • For an optimized network, the same final performance should be attainable using any batch size (see Shallue et al. 2018)

<u>Hyperparameter tuning playbook by google</u>

Summary: The batch size governs the training speed and shouldn't be used to directly tune the validation set

Hyperparameter Tuning (3/4)

Choose the Choosing the initial configuration Summary: quickly determine the starting points with manual exploration then do a more through check

- Before beginning hyperparameter tuning we must determine the starting point like
- 1. the model configuration (e.g. number of layers)
- 2. the optimizer hyperparameters (e.g. learning rate)
- 3. the number of training steps

Determining this initial configuration will require some manually configured training runs and trial-anderror.

Choosing the number of training steps involves balancing the following tension: • Training for more steps can improve performance and makes hyperparameter tuning easier

- (see Shallue et al. 2018)
- run in parallel.

<u>Hyperparameter tuning playbook by google</u>

• Training for fewer steps means that each training run is faster, allowing more experiments to be

23 / 26

Hyperparameter Tuning

• TensorBoard HParams

TensorBoard

Several tools allow you to do hyper parameter scans and hyperparameter optimization

SCALARS HPARAMS

> All of these tools have grid search, random search and Bayesian **Optimization implemented**

> > Pick the one you like!

Tools for ML experiments visualization

You need to do some or a lot of experimenting with model improvement ideas • Visualizing differences between various ML experiments becomes crucial

There are several popular tools tools: Weights & Biases, TensorBoard, Comet, MLflow etc

• Tracking and visualizing metrics such as loss and accuracy

Paging

- Monitor learning curves
- Visualize CPU/GPU utilization

Weights & Biases

TensorBoard sc.	ALARS HPARAMS				INACTIVE	- c 🌣
Hyperparameters num_units 16.000 32.000 dropout	TABLE VIEW		PARALLEL COORDINATES VIEW		SCATTER PLOT MATRIX VIEW	
	Session Group Name.	Show Metrics	num_units	dropout	optimizer	Accuracy
Min -infinity	3df0d7cf35bec5a		32.000	0.20000	sgd	0.77550
Max +infinity optimizer adam sgd	3ec2aed9e07589f		32.000	0.20000	adam	0.82650
	53bf5bece9190fa		16.000	0.20000	adam	0.81540
	5b97f3c2967245b		16.000	0.10000	adam	0.83210
	6826c7fa3322d82		32.000	0.10000	adam	0.83950
Metrics Accuracy	7684dcc13358fd0		16.000	0.20000	sgd	0.76830
	7b29a731e3daca		32.000	0.10000	sgd	0.78530
Min Max -infinity +infinity	ae235909ec4e4d		16.000	0.10000	sgd	0.77700
Status						
VINKnown Success Failure Running						
Sorting						
Sort by 👻						
Direction -						

TensorBoard

Elham E Khoda (UW)

Comet

for managing the end-to-end machine learning lifecycle

- •Only certain BDT packages can handle negative weighted events (LightGBM yes, XGBoost no)
- For NNs, negative weights make logical sense, loss is multiplied by a negative weight and everything works as you would expect. So use your negative sample weights!
- Javier's slide: page 37 (Backpropagation)
- The more challenging problem: very large variance of weights (by orders of mag)
- •Often, you can even re-weight them with ML to get rid of negative weights! <u>Neural Resampler</u>, <u>Unweighting</u> with generative models

Negative Event Weight

Thank You!

Extra Slides

Deep Learning parallelization strategies

Data Parallelism

Distribute input samples

Model replicated across devices

Most common

Distribute network structure (layers)

Needed for massive models that don't fit in device memory

Becoming more common

Elham E Khoda (UW)

Introduction to ML: part II

Model Parallelism

Layer Pipelining Partition by layer

arxiv:1802.09941

The ATLAS Experiment

General purpose detector

Toroidal Magnet: 0.5 T

Muon Spectrometer: Four different detector technology

The ATLAS Experiment

General purpose detector

Calorimeter:

Electromagnetic (Liquid Argon), Hadronic (Liquid Argon (endcap) & Tile (barrel))

Solenoid Magnet: 2.0 T

The ATLAS Experiment

General purpose detector

Muon Spectrometer: Four different detector technology

Calorimeter:

Electromagnetic (Liquid Argon), Hadronic (Liquid Argon (endcap) & Tile (barrel))

Solenoid Magnet: 2.0 T

Inner Detector:

Three different detector technology

- 1. Silicon Pixel
- 2. Silicon Strip
- 3. Straw Tubes: Transition Radiation Tracker (TRT)

