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HEP data as an
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HEP data as an image

Convolutional
Layer

Pooling

Full Event
Information

Padding Layer

ATk
_.-gi“}f"

Higgs Jet Convolutional  Pooling  Dense
Information Layer

Can combine local and global information
from jet images and “event” images.

1807.10768
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Seqguence learning

One key challenge with images is that they have a fixed size.

In many contexts, this is ideal, because the data also
have a fixed size. However, this is not always the case.

For example, events / jets have a variable number of particles.

One can represent these particles as a sequence
INn order to apply variable-length approaches that
can access the full feature granularity.



Sequence learning with RNNs

Flavor tagging (classity jets from b-quark or
not) has a long history of ML. Use features of
the charged-particle tracks inside jets.

In the past, challenging to
incorporate correlations
between tracks.



Sequence learning with RNNs

Flavor tagging (classity jets from b-quark or
not) has a long history of ML. Use features of
the charged-particle tracks inside jets.

In the past, challenging to
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Hybrid methods
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See 1709.04464 for image refs.
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Learning with sets

A challenge with sequence learning Is that thanks to
guantum mechanics, there is often no unique order.

A common scenario is that we have a variable-length SET
of particles and we would like to learn from them directly.

Solution: set learning / point cloud approaches



Solution 1: Deep sets / Particle flow Networks @

Factorize the problem into two networks: one that embeds
the set into a fixed-length latent space and one that acts on
a on that latent space:

M
fUxp, .. coxy ) =F ( Z (I)(xl-)>
i=1

Due to the sum, this structure can operate on any
length set and the order of the inputs doesn't matter.

1703.06114, 1810.05165



Solution 1: Deep sets / Particle flow Networks @,

Particles Observable
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Solution 1: Deep sets / Particle flow Networks @,
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Solution 1: Deep sets / Particle flow Networks @
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Latent space in IRC safe case is interpretable (and predictable!)



Solution 1: Deep sets / Particle flow Networks! {4s
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https://arxiv.org/abs/1703.06114

Solution 2: Graph methods

Classic CNNs operate on a fixed grid and are
not invariant under the permutation of points

Can generalize CNNs to act on graphs

» €,
g C
i
X ‘ (U,J c"/,; X | D
® ® ®
X

Need to define distances using particle properties

See also Javier’s talk! 1801.07829 , 1902.08570



Solution 2: Graph methods
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Step 2: set up the learning task

One way to categorize methods is
based on their level of supervision

Unsupervised = no labels
Weakly-supervised = noisy labels
Semi-supervised = partial labels
Supervised = full label information



Supervised

This is 99% of the ML. We have labeled examples and we
train a model to predict the labels from the examples.

Need to be caretul about what loss function to pick
(more on that in a little bit...)



Unsupervised

Unsupervised = no labels

Typically, the goal of these methods is to
implicitly or explicitly estimate p(x).

1808.08992
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One strategy (autoencoders) is to try to compress
events and then uncompress them. When x is far from
uncompres(compress(x)), then x probably has low p(x).



Weakly-supervised

Weakly-supervised = noisy labels

Typically, the goal of these methods is to estimate
p(possibly signal-enriched)/po(possibly signal-depleted)

Signal enriched Signal depleted

1708.02949



Semi-supervised

Semi-supervised = partial labels

ypically, these methods use some signal
simulations to build signal sensitivity

VS

Image credit: https://www.particlezoo.net

e.g. SM background
Versus many signals




Caution Part |

How can we learn a classifier that does
not sculpt a bump in the background?

Ideal case Reality

feature 1 feature 1



Caution Part |

How can we learn a classifier that does
not sculpt a bump in the background?

Solution; ensure that the classifier
IS independent® of feature 1.

*This is actually sufficient but unnecessary. There are many dependencies (e.q. linear) that would not sculpt bumps.



Caution Part |: decorrelation

Train e.g. a neural network

L[f(aj)] — ZieS Lclassiﬁer(f(ﬂfi), 1)
_I—Z@’eb Lclassiﬁer(f(xi), O)

Event counts

[ ciassifier 1S the usual
classifier loss, e.qg.
Cross entropy or mean

feature m squared error.

features x



Caution Part |: decorrelation

Train e.g. a neural network with a custom loss functional

LIf(x)] = 2 ics Leassifier (f (i), 1)
__Zieb ClaSSIﬁer(f(xi)a O)
+A Zieb Laecor (f(x:), m4)

Event counts

[ ciassifier 1S the usual
classifier loss, e.qg.
Cross entropy or mean

feature m squared error.

Laecor1S large when f(x)

features x and m are “correlated”



Enforcing Independence

Train e.g. a neural network with a custom loss functional

£[f(x)] — ZiGS Lclassiﬁer(f(aji); 1) __Zieb Lclassiﬁer(f(xi)a O)
+A Zieb Ldecor(f(xi)a mz)

Recent proposals:



Enforcing Independence

Train e.g. a neural network with a custom loss functional

£[f(x)] — ZiES Lclassiﬁer(f(aji); 1) __Zieb Lclassiﬁer(f(xi)a O)
+A Zieb Ldecor(f(mi)a mz)

Recent proposals:

Adversaries: [ gecoris the loss of a 2nd NN
(adversary) that tries to learn m from f(x).



Enforcing Independence

Train e.g. a neural network with a custom loss functional

£[f(x)] — ZiES Lclassiﬁer(f(aji); 1) __Zieb Lclassiﬁer(f(xi)a O)
+A Zieb Ldecor(f(mi)a mz)

Recent proposals:

Distance Correlation: Lqecoris distance correlation
(generalizes Pearson correlation) between m and 7(x).



Enforcing Independence

Distance Correlation

1 0.7 0.3 0.1 0.3 0.8 1

Pearson Correlation
0.8

Image credit: Denis Boigelot

Distance Correlation: Lqecoris distance correlation
(generalizes Pearson correlation) between m and 7(x).



Enforcing Independence

Train e.g. a neural network with a custom loss functional

£[f(x)] — ZiES Lclassiﬁer(f(aji); 1) __Zieb Lclassiﬁer(f(xi)a O)
+A Zieb Ldecor(f(mi)a mz)

Recent proposals:

Mode Decorrelation: Lgecoris small when the CDF of
f(x)Is the same across different values of m.



Adversaries

Adversaries: [ gecoris the loss of a 2nd NN
(adversary) that tries to learn m from f(x).

Pros: Very flexible and m can be multidimensional

ard to train (minimax problem) & many parameters

1611.01046,1703.03507



Distance Correlation

Distance Correlation: Lq.coris distance correlation
(generalizes Pearson correlation) between m and 7(x).

Pros: Convex (easier to train) and no free parameters

Memory intensive to compute distance correlation

2001.05310, 2007.14400



Mode Decorrelation

Mode Decorrelation (MoDE): [gecoris small when the
CDF of f(x) is the same across different values of m.

Readily generalizes beyond independence

Pros: o . .
(can require linear, quadratic (+monotonic), ...

No free parameters and small memory footprint

In its simplest form, need discrete bins in m
(does not seem to be fundamental)

2010.09745
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Real world example: the search for Lorentz-
boosted W bosons at the Large Hadron Collider

Background only
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N.B. think twice about using decorrelation for uncertainties! See 2109.08159.

LHC simulations




Caution Part Il: prior dependence

Sometimes, we need a model (often for calibration) that
does not depend on the training sample properties.

For example, a particle of a given energy hits our detector
and registers measurements in a number of sensors

e.g. the particle energy is uniform during training,
but exponential for certain running conditions.

(usually not an issue for classification)



Caution Part Il: prior dependence

Sometimes, we need a model (often for calibration) that
does not depend on the training sample properties.

For example, a particle of a given energy hits our detector
and registers measurements in a number of sensors

e. ng,
Your first instinct here might have 3.
been to train a classifier to estimate
the true value given measured
values using simulated data.



Caution Part Il: prior dependence

Claim: this is prior dependent !

For example, a particle of a given energy hits our detector
and registers measurements in a number of sensors

e. ng,
Your first instinct here might have 3.
been to train a classifier to estimate
the true value given measured
values using simulated data.



What goes wrong?

Suppose you have some features x and you want to predict .

One way to do this is to find an f that
minimizes the mean squared error (MSE):

S = afgmiﬂg Zi(g(ﬂfz‘) — %)2

Then”, f(x) = E[ylX].

*If you have not seen this before, please let me know if you need help with the proof!



What goes wrong?

Suppose you have some features x and you want to predict .

f(x) = Elylz] = | dyyp(y|z)

E[f(ZE) |y] — f dCB dy/ y/ Ptrain (y/ ‘x) Ptest ($\y)

th|S ﬂeed ﬂOt be yeveﬂ |f ,Oz‘ra/'n — ,Oz‘est (')



Gaussian Example

Simulation-Based Gaussian Example
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Measured Xp

2205.05084



Gaussian Example

Simulation-Based Gaussian Example Simulation-Based Gaussian Example
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Gaussian Example

Simulation-Base

......... : . . . sed Gaussian Example
AR Maximum likelihood without SSEESERRpPE
| full density estimation T T
2| _ T
e Note that MLE is | .i,»'- (11 )44
o 0f prior independent! #7101 L
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2205.05084; see also ATL-PHYS-PUB-2018-013



Physics Example
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2205.05084; see also ATL-PHYS-PUB-2018-013



Dijet Distributions
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2205.05084; see also ATL-PHYS-PUB-2018-013
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Surrogate Models with ML
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; Can we train a neural
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s detector simulation?
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Introduction: generative models

A generator is nothing other than a function
that maps random numbers to structure.

E > {3

Deep generative models: the map is a deep neural network.




61

See also Sascha’s talk!

GANs Score-

(Generative

Adversarial Networks based

=

NFs VAES

Normalizing Flows Variational Autoencoders

Deep generative models: the map is a deep neural network.




Introduction: GANS

. Generative Adversarial Networks (GANSs):
A two-network game where one maps noise to structure
5 and one classifies images as fake or real. '

¢ Cell ID
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Introduction: VAES

. Variational Autoencoders (VAES): ,
. A pair of networks that embed the data into a latent space
. With a given prior and decode back to the data space. '

_ latent space

g 0

= 1

1033 2
5 Il

2 3

102 o a .
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' S 6

10! b

| L 8

9

100 10

p(z|x) p(x|z) =

Phyfifs'baze? Probabilistic Probabilistic
Sldatoror data encoder decoder




Introduction: NFs

. Normalizing Flows (NFs):
. A series of invertible transformations mapping a known
. density into the data density.

Optimize via
maximum likelihood

| ; 103%
55. . i
| rmation

iatent Invertible transformations

with tractable Jacobians

space
p(x) = p(z) |dF-1/dx]



Introduction: Score-based

. Score-based
. Learn the gradient of the density instead of the probability :
. density itself. 5

Forward diffusion (training)
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Calorimeter ML Surrogate Models

visible cell energy [MIPs]
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Calorimeter ML Surrogate Models
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Conditioning 68

FIX noise, scan latent variable corresponding to energy
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ATLAS Collaboration, 2109.02551

Integration into real detector sim.

. Muon
Calorimeters
Spectrometer
FastCaloSimv2

FastCalo | FastCalo | FastCalo Muon

Punchthrough
+Geant4

Qur (ATLAS Collaboration) fast simulation (AF3) now
includes a GAN at intermediate energies for pions




ATLAS Collaboration, 2109.02551

Integration into real detector sim.
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ATLAS Collaboration, 2109.02551

Integration into real detector sim.
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ATLAS Collaboration, 2109.02551

Integration into real detector sim.
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As expected, the
fast sim. timing Is
independent of
energy, while
Geant4 requires
more time for
higher energy.



Statistical Amplification

Common guestion: if we train on N events and sample M >> N
events, do we have the statical power of M or N?

No free lunch - only win with inductive bias. Examples:
factorization, symmetries, smoothness, ...



Statistical Amplification

Common guestion: if we train on N events and sample M >> N
events, do we have the statical power of M or N?

No free lunch - only win with inductive bias. Examples:
factorization, symmetries, smoothness, ...
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Inverse Problems

Want this

(or the parameters of the generative model)

Measure this

remove detector distortions (unfolding) or parameter estimation



Inverse Problems

If you know p(meas. | true), could do maximum likelihood, i.e.

unfolded = argmax p(measured | true)

Want this |Measure this




Inverse Problems

If you know p(meas. | true), could do maximum likelihood, i.e.

unfolded = argmax p(measured | true)
true

Challenge: measured is hyperspectral and true is
hypervariate ... p(meas. | true) is intractable !



Inverse Problems

If you know p(meas. | true), could do maximum likelihood, i.e.

unfolded = argmax p(measured | true)
true

Challenge: measured is hyperspectral and true is
hypervariate ... p(meas. | true) is intractable !

However: we have simulators that we can
use to sample from p(meas. | true)

— Simulation-based (likelihood-free) inference



I'll brietly show you one solution to give you a
sense of the power of likelihood-free inference.



Reweighting

I'll brietly show you one solution to give you a
sense of the power of likelihood-free inference.

The solution will be built on reweighting

dataset 1: sampled from p(x)
dataset 2: sampled from q(x)

Create weights w(x) = g(x)/p(x) so that when dataset 1
IS weighted by w, it Is statistically identical to dataset 2.



Reweighting

I'll brietly show you one solution to give you a
sense of the power of likelihood-free inference.

The solution will be built on reweighting

dataset 1: sampled from p(x)
dataset 2: sampled from q(x)

Create weights w(x) = g(x)/p(x) so that when dataset 1
IS weighted by w, it Is statistically identical to dataset 2.

What if we don't (and can't easily) know g and p?



Classification for reweighting

Fact*: Neutral networks learn to
approximate the likelihood ratio

Solution: train a neural network to
distinguish the two datasets!

This turns the problem of density estimation
(hard) into a problem of classification (easy)

*This is easy to prove. If you have not seen it before, please ask!



Proof of fact
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Proof of fact

Lif1= ) (flx) - )
S [ dx p(x, ¢) (f(x) = ¢)”

SLLAS) _ oL _ I _

Sf of OF
Basically just a regular derivative:

[dCP(x, c)(f(x) —c) =0 = f(x) = Elc|x]




Classification for reweighting

Fact*: Neutral networks learn to
approximate the likelihood ratio

Solution: train a neural network to
distinguish the two datasets!

This turns the problem of density estimation
(hard) into a problem of classification (easy)

*This is easy to prove. If you have not seen it before, please ask!
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px|0)
p(x|6y)

(turns the problem of generation into classitication)

Here, instead of emulating p(x | @) directly, we learn

Benetit: easy to
iIntegrate complex
data structure

> e (symmetries, etc.)
s F Downside: large
‘gt weights when @ is
IR - far from @,

Image: Linear Collider Detector Project



Classification for reweighting

Reweight the full phase space and then
check for various binned 1D observables.
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Achieving precision
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Works also when
the differences
between the two
simulations are
small (left) or
localized (right).

These are
histogram ratios
for a series of
one-dimensional
observables
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Parameterized reweighting

What if we have a new simulation with
multiple continuous parameters 67

= [Jnweighted
Weighted

Easy - learn a 102
parameterized classifier™ | ‘

1907.08209

...simply add the
parameter as a feature
to the network during
training and let it learn 10°:

to interpolate. 0150 0.155 0160 0165 0.170
O{S

*1506.02169



Step 1: Differentiable Surrogate Model

f(x,0) = argmax Z log ' (x;,0) + Zlog (1 — f'(z;,0))

J! 1€0¢ 1€0

See also 1805.00020



Step 1: Differentiable Surrogate Model

f(x,0) = argmax Z log ' (x;,0) + Zlog (1 — f'(z;,0))

J! 1€0¢ 1€0

Step 2: Gradient-based optimization

0" = argmax Z log f(xz;,0") + Z log(1 — f(x;,0"))

ZEOO iEHl

See also 1805.00020
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L earn tailored observables; no reason detector level
needs to be same observable as particle level!

Correlation coefficients, electron Correlation coefficients, S|gma Correlation coefficients, DNN
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log10(x) log10(x) log10(x)

Classical Observables Neural Network
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Conclusions and Outlook

Al/ML has a great potential to
enhance, accelerate, and
empower all areas of HEP

There are applications now that
were unthinkable betore ML
and new ideas are incoming!

We need you to help develop,
adapt, and deploy new methods

I've provided some specific examples today, but
see the Living Review, 2102.02770, tor more!



Note that | could not cover everything! e.g. equivariance

-,



