
Overview of Machine 
Learning for Particle Physics

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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6Step 1: how to represent our data
See 1709.04464 for image refs.
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Figure 9. Left: A typical signal event image. Right: The output of the neural network on the left
image, after rotation in the „ direction by the given number of pixels.

4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
H æ bb̄ translates to improved bounds on BSM physics.

We are interested in probing new physics in the gg æ H production loop that can be
modeled as dimension-6 operators. Following Ref. [7], the operators modifying gg æ H

production cross section are parameterized as

Le� = LSM +
3

cy

yt

v2 |H|2Q̄LH̃tR + h.c.
4

+ cH

1
2v2 ˆµ|H|2ˆµ|H|2

+ cg

–s

12fiv2 |H|2Ga

µ‹Gaµ‹ + c̃g

–s

8fiv2 |H|2Ga

µ‹
ÂGaµ‹ . (4.1)

Here Gaµ‹ is the QCD field strength, and ÂGaµ‹ = 1
2‘µ‹‡flGa

‡fl its dual. After electroweak
breaking, the induced operators a�ecting the coupling of the Higgs boson to tops and gluons
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jets with a two-prong substructure using the double b-tag, standard tagging observables provide
minimal gains, and the primary difference between the two decays are their color flows, shown
in Fig. 6, with the Higgs being a color singlet, and the gluon a color octet. The gluon radiates
much more widely away from the dipole, as is clearly seen in the jet images in Fig. 5. ijm

(Are there any experimental benefits of Rb2? It might be cleaner to just use
beta. Rb2 is also IRC unsafe –ijm)

Having identified from the neural network that significant discrimination power can be
extracted from the jet, and building on the intuition from the jet images and our physical
understanding of the decay channels, that this information should be contained in the color
flow, we now show that this additional discrimination power can largely be extracted using a
simple observable to identify the color flow. A number of observables exist to probe the color
flow within a jet. Here we consider the recently introduced observable �3 [47]

�3 =

�
� (0.5)
1

�2�
� (1)
2

�0.5

� (2)
2

, (3.1)

where � j
n is the n-jettiness observable [37, 38] with angular exponent j defined with the winner

takes all axes [68].
In Fig. 7 we show an SIC curve comparing the performance of the �3 observable with the

full neural network architecture. The full neural network sets an upper bound on the achievable
discrimination power, and we find that the majority of the improved discrimination power
identified by the neural network is reproduced by the simple �3 observable. This is promising
for immediate application to LHC searches. It also supports our intuition that the dominant
remaining information lies in the color flow. Since much effort has been given to two-prong
tagging, and relatively limited attention has been payed to the study of color flow, we believe
that variable such as �3 may be more widely applicable to improving jet substructure searches.
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Figure 7. Color flow for H � bb̄ and g � bb̄, the main irreducible QCD background to our signal.
The numbers 1 and 2 label different color lines.
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Figure 6. Average jet images for the 100 most background like (top) and signal like (bottom) jets.
The jet images are weighted by the pT in the first column, the neutral pT in the second column, and
the charge multiplicity in the third column. Due to the di�erent color flows, the signal like (H æ bb̄)
jets have a more contained color flow pattern.

3.3.1 Jet Substructure

As emphasized earlier, the H æ bb̄ search is di�erent from other boosted hadronically decaying
massive boson studies because the application of double b-tagging already enforces a two-prong
topology. Therefore, two-prong tagging is not as useful. Studies to further optimize the event
selection with N2 confirm this expectation — little significance gain is possible using only this
state-of-the-art two-prong tagging technique (see also Ref. [37]). One of the attractive features
of jet images is that they can be directly inspected to visualize the information content. For
example, Fig. 6 shows the average of the 100 most signal-like and most background-like jets,
according to the neural network. The two-prong structure of both signal and background is
clear in all three channels. The main di�erence between gg æ bb̄ and H æ bb̄ is the orientation
of the radiation between and around the two prongs. As expected due to the di�erent color
structure, the radiation pattern around the two prongs is more spread out for the gluon
case. Figure 7 shows additional images that are split by their value of —3. It is clear from
the images that low —3 values (background-like) pick out subjets with a broader radiation
patterns compared with high —3 (signal-like) images. However, the top plot of Fig. 7 clearly
indicates that —3 is not the same as the neural network, so there is additional information
to learn. Figure 8 tries to visualize the additional information. The distribution of —3 in the
signal is reweighted to be the same as the background so that —3 by itself is not useful for
discrimination. The average images for signal and background look very similar by eye, but
the di�erence of the average images reveals interesting structure. These structures still show
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4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
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jets with a two-prong substructure using the double b-tag, standard tagging observables provide
minimal gains, and the primary difference between the two decays are their color flows, shown
in Fig. 6, with the Higgs being a color singlet, and the gluon a color octet. The gluon radiates
much more widely away from the dipole, as is clearly seen in the jet images in Fig. 5. ijm

(Are there any experimental benefits of Rb2? It might be cleaner to just use
beta. Rb2 is also IRC unsafe –ijm)

Having identified from the neural network that significant discrimination power can be
extracted from the jet, and building on the intuition from the jet images and our physical
understanding of the decay channels, that this information should be contained in the color
flow, we now show that this additional discrimination power can largely be extracted using a
simple observable to identify the color flow. A number of observables exist to probe the color
flow within a jet. Here we consider the recently introduced observable �3 [47]
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where � j
n is the n-jettiness observable [37, 38] with angular exponent j defined with the winner

takes all axes [68].
In Fig. 7 we show an SIC curve comparing the performance of the �3 observable with the

full neural network architecture. The full neural network sets an upper bound on the achievable
discrimination power, and we find that the majority of the improved discrimination power
identified by the neural network is reproduced by the simple �3 observable. This is promising
for immediate application to LHC searches. It also supports our intuition that the dominant
remaining information lies in the color flow. Since much effort has been given to two-prong
tagging, and relatively limited attention has been payed to the study of color flow, we believe
that variable such as �3 may be more widely applicable to improving jet substructure searches.
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Figure 7. Color flow for H � bb̄ and g � bb̄, the main irreducible QCD background to our signal.
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Figure 6. Average jet images for the 100 most background like (top) and signal like (bottom) jets.
The jet images are weighted by the pT in the first column, the neutral pT in the second column, and
the charge multiplicity in the third column. Due to the di�erent color flows, the signal like (H æ bb̄)
jets have a more contained color flow pattern.

3.3.1 Jet Substructure

As emphasized earlier, the H æ bb̄ search is di�erent from other boosted hadronically decaying
massive boson studies because the application of double b-tagging already enforces a two-prong
topology. Therefore, two-prong tagging is not as useful. Studies to further optimize the event
selection with N2 confirm this expectation — little significance gain is possible using only this
state-of-the-art two-prong tagging technique (see also Ref. [37]). One of the attractive features
of jet images is that they can be directly inspected to visualize the information content. For
example, Fig. 6 shows the average of the 100 most signal-like and most background-like jets,
according to the neural network. The two-prong structure of both signal and background is
clear in all three channels. The main di�erence between gg æ bb̄ and H æ bb̄ is the orientation
of the radiation between and around the two prongs. As expected due to the di�erent color
structure, the radiation pattern around the two prongs is more spread out for the gluon
case. Figure 7 shows additional images that are split by their value of —3. It is clear from
the images that low —3 values (background-like) pick out subjets with a broader radiation
patterns compared with high —3 (signal-like) images. However, the top plot of Fig. 7 clearly
indicates that —3 is not the same as the neural network, so there is additional information
to learn. Figure 8 tries to visualize the additional information. The distribution of —3 in the
signal is reweighted to be the same as the background so that —3 by itself is not useful for
discrimination. The average images for signal and background look very similar by eye, but
the di�erence of the average images reveals interesting structure. These structures still show
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for immediate application to LHC searches. It also supports our intuition that the dominant
remaining information lies in the color flow. Since much effort has been given to two-prong
tagging, and relatively limited attention has been payed to the study of color flow, we believe
that variable such as �3 may be more widely applicable to improving jet substructure searches.
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Figure 1. A schematic of the two-stream CNN used in this study. The first stream uses the full
event information, while the second stream uses the jet substructure information. More details on the
architecture are provided in the text.

activations, and stride length of 1. The first convolutional layer in each stream has 32 filters,
and the second convolutional layer in each stream has 64 filters. The dense layer at the
end of each stream has 300 neurons each. Finally, the two dense layers from each stream
are fully connected to an output layer of one neuron with sigmoid activation. In total this
gives 2.6 million trainable parameters in the network. We used the AdaDelta optimizer [94],
with binary cross entropy as our loss function, and used the relatively simple Early Stopping
method as a regularization technique, stopping when the significance improvement of the Higgs
measurement at pmin

T
= 450 GeV stopped improving (with a patience of 2 epochs). We arrived

at this final model after testing the performance (measured by the significance improvement
of the Higgs measurement at pmin

T
= 450 GeV) using di�erent optimizers (AdaDelta [94],

AdaGrad [95], Adam [96]), di�erent activation functions (mainly testing ReLU against leaky
ReLU), and regularization (dropout [97] vs. Early Stopping). Our training was performed
using the Keras [98] Python neural network library with Tensorflow [99] backend, on
Nvidia GeForce 1080 Ti GPUs.

2.2 Inputs and Preprocessing

The inputs to our neural network are jet images [56]. For each event, an image is created for
each stream: one image is the full event image and the other is the image of the hardest jet
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4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
H æ bb̄ translates to improved bounds on BSM physics.
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limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
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Figure 1. A schematic of the two-stream CNN used in this study. The first stream uses the full
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architecture are provided in the text.

activations, and stride length of 1. The first convolutional layer in each stream has 32 filters,
and the second convolutional layer in each stream has 64 filters. The dense layer at the
end of each stream has 300 neurons each. Finally, the two dense layers from each stream
are fully connected to an output layer of one neuron with sigmoid activation. In total this
gives 2.6 million trainable parameters in the network. We used the AdaDelta optimizer [94],
with binary cross entropy as our loss function, and used the relatively simple Early Stopping
method as a regularization technique, stopping when the significance improvement of the Higgs
measurement at pmin

T
= 450 GeV stopped improving (with a patience of 2 epochs). We arrived

at this final model after testing the performance (measured by the significance improvement
of the Higgs measurement at pmin

T
= 450 GeV) using di�erent optimizers (AdaDelta [94],

AdaGrad [95], Adam [96]), di�erent activation functions (mainly testing ReLU against leaky
ReLU), and regularization (dropout [97] vs. Early Stopping). Our training was performed
using the Keras [98] Python neural network library with Tensorflow [99] backend, on
Nvidia GeForce 1080 Ti GPUs.

2.2 Inputs and Preprocessing

The inputs to our neural network are jet images [56]. For each event, an image is created for
each stream: one image is the full event image and the other is the image of the hardest jet

– 4 –

Convolutional 
Layer

Pooling

x2

Padding Layer Convolutional Layer Pooling

Full Event Information

Higgs Jet

Convolutional Layer

Pooling

Dense Layer

η

φ 

Padding Layer

Figure 1. A schematic of the two-stream CNN used in this study. The first stream uses the full
event information, while the second stream uses the jet substructure information. More details on the
architecture are provided in the text.

activations, and stride length of 1. The first convolutional layer in each stream has 32 filters,
and the second convolutional layer in each stream has 64 filters. The dense layer at the
end of each stream has 300 neurons each. Finally, the two dense layers from each stream
are fully connected to an output layer of one neuron with sigmoid activation. In total this
gives 2.6 million trainable parameters in the network. We used the AdaDelta optimizer [94],
with binary cross entropy as our loss function, and used the relatively simple Early Stopping
method as a regularization technique, stopping when the significance improvement of the Higgs
measurement at pmin

T
= 450 GeV stopped improving (with a patience of 2 epochs). We arrived

at this final model after testing the performance (measured by the significance improvement
of the Higgs measurement at pmin

T
= 450 GeV) using di�erent optimizers (AdaDelta [94],

AdaGrad [95], Adam [96]), di�erent activation functions (mainly testing ReLU against leaky
ReLU), and regularization (dropout [97] vs. Early Stopping). Our training was performed
using the Keras [98] Python neural network library with Tensorflow [99] backend, on
Nvidia GeForce 1080 Ti GPUs.

2.2 Inputs and Preprocessing

The inputs to our neural network are jet images [56]. For each event, an image is created for
each stream: one image is the full event image and the other is the image of the hardest jet

– 4 –

x2

Padding Layer Convolutional Layer Pooling

Full Event Information

Higgs Jet

Convolutional Layer

Pooling

Dense Layer

η

φ 

Padding Layer

Figure 1. A schematic of the two-stream CNN used in this study. The first stream uses the full
event information, while the second stream uses the jet substructure information. More details on the
architecture are provided in the text.

activations, and stride length of 1. The first convolutional layer in each stream has 32 filters,
and the second convolutional layer in each stream has 64 filters. The dense layer at the
end of each stream has 300 neurons each. Finally, the two dense layers from each stream
are fully connected to an output layer of one neuron with sigmoid activation. In total this
gives 2.6 million trainable parameters in the network. We used the AdaDelta optimizer [94],
with binary cross entropy as our loss function, and used the relatively simple Early Stopping
method as a regularization technique, stopping when the significance improvement of the Higgs
measurement at pmin

T
= 450 GeV stopped improving (with a patience of 2 epochs). We arrived

at this final model after testing the performance (measured by the significance improvement
of the Higgs measurement at pmin

T
= 450 GeV) using di�erent optimizers (AdaDelta [94],

AdaGrad [95], Adam [96]), di�erent activation functions (mainly testing ReLU against leaky
ReLU), and regularization (dropout [97] vs. Early Stopping). Our training was performed
using the Keras [98] Python neural network library with Tensorflow [99] backend, on
Nvidia GeForce 1080 Ti GPUs.

2.2 Inputs and Preprocessing

The inputs to our neural network are jet images [56]. For each event, an image is created for
each stream: one image is the full event image and the other is the image of the hardest jet

– 4 –

Convolutional 
Layer

Pooling Dense

Dense

Higgs 
or 

not?

Repeat

Higgs 
or not?

Can combine local and global information 
from jet images and “event” images.

HEP data as an image

1807.10768



Images

Graphs

Introduction
Jet Physics

Previous work
Proposed model

Experiments
Conclusions

Jet parse trees

kt

anti-kt

I Attempt to reverse the generative process

I Sequential recombination algorithms

I Cambridge-Aachen, kt , anti-kt

I Binary tree representation

I NLP methods for parse trees

Sequences

Fixed 
sets

J
=
{p

µ
1
, p

µ
2
, .
..,
p
µ n
}

Introduction Jet Physics Previous work Proposed model Experiments Conclusions

Jet images

Single
W jet

Single
QCD jet

N
or
m
al
iz
ed
 P
ix
el
 E
ne
rg
y 
D
iff
er
en
ce

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
-3 10 ×

) η [Translated] Pseudorapidity (
-1-0.500.51

)φ

[T
ra
ns
la
te
d]
 A
zi
m
ut
ha
l A
ng
le
 (

-1

-0.5

0

0.5

1

b  b →  1,  8 → p p 
 = 125 GeV

1,8
re-showered with Pythia 8, m

N
or
m
al
iz
ed
 P
ix
el
 E
ne
rg
y

-11 10

-10 10

-9 10

-8 10

-7 10

-6 10

-5 10

-4 10

-3 10

-2 10

-1 10

1

) η [Translated] Pseudorapidity (
-1-0.500.51

)φ

[T
ra
ns
la
te
d]
 A
zi
m
ut
ha
l A
ng
le
 (

-1

-0.5

0

0.5

1

b  b →  1 → p p 
 = 125 GeV

1
re-showered with Pythia 8, m

N
or
m
al
iz
ed
 P
ix
el
 E
ne
rg
y

-11 10

-10 10

-9 10

-8 10

-7 10

-6 10

-5 10

-4 10

-3 10

-2 10

-1 10

1

) η [Translated] Pseudorapidity (
-1-0.500.51

)φ

[T
ra
ns
la
te
d]
 A
zi
m
ut
ha
l A
ng
le
 (

-1

-0.5

0

0.5

1

b  b →  8 → p p 
 = 125 GeV

8
re-showered with Pythia 8, m

N
or
m
al
iz
ed
 P
ix
el
 E
ne
rg
y

-11 10

-10 10

-9 10

-8 10

-7 10

-6 10

-5 10

-4 10

-3 10

-2 10

-1 10

1

) η [Translated] Pseudorapidity (
-1-0.500.51

)φ

[T
ra
ns
la
te
d]
 A
zi
m
ut
ha
l A
ng
le
 (

-1

-0.5

0

0.5

1

b  b →  1 → p p 
 = 125 GeV

1
re-showered with Pythia 8, m

N
or
m
al
iz
ed
 P
ix
el
 E
ne
rg
y

-11 10

-10 10

-9 10

-8 10

-7 10

-6 10

-5 10

-4 10

-3 10

-2 10

-1 10

1

) η [Translated] Pseudorapidity (
-1-0.500.51

)φ

[T
ra
ns
la
te
d]
 A
zi
m
ut
ha
l A
ng
le
 (

-1

-0.5

0

0.5

1

b  b →  8 → p p 
 = 125 GeV

8
re-showered with Pythia 8, mVariable 

sets

Trees

...

...

...

Pa
rti
cle
s

Ob
se
rv
ab
le

Pe
r-
Pa
rti
cle
Re
pr
es
en
tat
ion

Ev
en
t R
ep
res
en
tat
ion

Φ

Φ

Φ

F

En
erg
y/P
art
icl
e F
low
Ne
tw
or
k

La
ten
t S
pa
ce

F
ig
u
r
e
1
:
A

vi
su

al
iz
at

io
n

of
th

e
de

co
m

po
si
ti
on

of
an

ob
se

rv
ab

le
vi
a
E
q.

(1
.1
).

E
ac

h
pa

rt
ic
le

in
th

e
ev

en
t
is

m
ap

pe
d

by
�

to
an

in
te

rn
al

(l
at

en
t)

pa
rt
ic
le

re
pr

es
en

ta
ti
on

,
sh

ow
n

he
re

as

th
re

e
ab

st
ra

ct
ill

us
tr
at

io
ns

fo
r
a
la
te

nt
sp

ac
e
of

di
m

en
si
on

th
re

e.
T
he

la
te

nt
re

pr
es

en
ta

ti
on

is

th
en

su
m

m
ed

ov
er

al
l p

ar
ti
cl
es

to
ar

ri
ve

at
a
la
te

nt
ev

en
t
re

pr
es

en
ta

ti
on

, w
hi

ch
is

m
ap

pe
d

by

F
to

th
e
va

lu
e
of

th
e
ob

se
rv

ab
le
.
Fo

r
th

e
IR

C
-s
af
e
ca

se
of

E
q.

(1
.2
),

�
ta

ke
s
in

th
e
an

gu
la
r

in
fo
rm

at
io
n

of
th

e
pa

rt
ic
le

an
d

th
e

su
m

is
w
ei
gh

te
d

by
th

e
pa

rt
ic
le

en
er

gi
es

or
tr
an

sv
er

se

m
om

en
ta

.
co

m
pe

ti
ti
ve

w
it
h

ex
is
ti
ng

te
ch

ni
qu

es
on

ke
y
co

lli
de

r
ta

sk
s,

an
d

pr
ov

id
es

a
pl

at
fo
rm

fo
r
vi
su

al
-

iz
in

g
th

e
in

fo
rm

at
io
n

le
ar

ne
d

by
th

e
m

od
el
.
B
ey

on
d

th
is
, w

e
de

m
on

st
ra

te
ho

w
ou

r
fr
am

ew
or

k

un
ifi

es
th

e
ex

is
ti
ng

ev
en

t
re

pr
es

en
ta

ti
on

s
of

ca
lo
ri
m

et
er

im
ag

es
an

d
ra

di
at

io
n

m
om

en
ts
, a

nd

w
e
sh

ow
ca

se
th

e
ex

tr
ac

ti
on

of
no

ve
l a

na
ly
ti
c
ob

se
rv

ab
le
s
fr
om

th
e
tr
ai
ne

d
m

od
el
.

O
ne

ev
er

-p
re

se
nt

co
lli

de
r
ph

en
om

en
on

th
at

in
vo

lv
es

co
m

pl
ic
at

ed
m
ul

ti
pa

rt
ic
le

fin
al

st
at

es

is
th

e
fo
rm

at
io
n

an
d

ob
se

rv
at

io
n

of
je
ts
,
sp

ra
ys

of
co

lo
r-
ne

ut
ra

l
ha

dr
on

s
re

su
lt
in

g
fr
om

th
e

fr
ag

m
en

ta
ti
on

of
hi

gh
-e
ne

rg
y
qu

ar
ks

an
d
gl
uo

ns
in

qu
an

tu
m

ch
ro

m
od

yn
am

ic
s (

Q
C
D
).

N
um

er
-

ou
s i

nd
iv
id

ua
l o

bs
er

va
bl

es
ha

ve
be

en
pr

op
os

ed
to

st
ud

y
je
ts

in
cl
ud

in
g
th

e
je
t m

as
s,

co
ns

ti
tu

en
t

m
ul

ti
pl

ic
ity

, i
m

ag
e
ac

ti
vi
ty

[6
6]
, N

-s
ub

je
tt
in

es
s
[6
7,

68
],

tr
ac

k-
ba

se
d

ob
se

rv
ab

le
s
[6
9,

70
],

ge
n-

er
al
iz
ed

an
gu

la
ri
ti
es

[7
1]
, (

ge
ne

ra
liz

ed
)
en

er
gy

co
rr
el
at

io
n

fu
nc

ti
on

s
[7
2,

73
],

so
ft

dr
op

m
ul

ti
-

pl
ic
ity

[7
4,

75
],

an
d

m
an

y
m

or
e
(s
ee

R
ef
s.

[5
1,

76
–8

0]
fo
r
re

vi
ew

s)
.
M

ac
hi

ne
le
ar

ni
ng

m
et

ho
ds

ha
ve

fo
un

d
tr
em

en
do

us
ap

pl
ic
ab

ili
ty

to
je
t
cl
as

si
fic

at
io
n

ta
sk

s,
gr

ea
tl
y

ou
tp

er
fo
rm

in
g

in
di

-

vi
du

al
st
an

da
rd

ob
se

rv
ab

le
s.

Je
t

cl
as

si
fic

at
io
n

pr
ov

id
es

an
id

ea
l
ca

se
st
ud

y
fo
r

th
e

D
ee

p

–
4

–

De
ns

e n
et

wor
ks

De
ep

 se
ts

Co
nv

ol
ut

io
na

l N
Ns

 (C
NN

s)

Re
cu

rre
nt

 N
Ns

Re
cu

rs
ive

 N
Ns

Gra
ph

 C
NN

s

13

See 1709.04464 for image refs.

Step 1: how to represent our data



Images

Graphs

Introduction
Jet Physics

Previous work
Proposed model

Experiments
Conclusions

Jet parse trees

kt

anti-kt

I Attempt to reverse the generative process

I Sequential recombination algorithms

I Cambridge-Aachen, kt , anti-kt

I Binary tree representation

I NLP methods for parse trees

Sequences

Fixed 
sets

J
=
{p

µ
1
, p

µ
2
, .
..,
p
µ n
}

Introduction Jet Physics Previous work Proposed model Experiments Conclusions

Jet images

Single
W jet

Single
QCD jet

N
or
m
al
iz
ed
 P
ix
el
 E
ne
rg
y 
D
iff
er
en
ce

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
-3 10 ×

) η [Translated] Pseudorapidity (
-1-0.500.51

)φ

[T
ra
ns
la
te
d]
 A
zi
m
ut
ha
l A
ng
le
 (

-1

-0.5

0

0.5

1

b  b →  1,  8 → p p 
 = 125 GeV

1,8
re-showered with Pythia 8, m

N
or
m
al
iz
ed
 P
ix
el
 E
ne
rg
y

-11 10

-10 10

-9 10

-8 10

-7 10

-6 10

-5 10

-4 10

-3 10

-2 10

-1 10

1

) η [Translated] Pseudorapidity (
-1-0.500.51

)φ

[T
ra
ns
la
te
d]
 A
zi
m
ut
ha
l A
ng
le
 (

-1

-0.5

0

0.5

1

b  b →  1 → p p 
 = 125 GeV

1
re-showered with Pythia 8, m

N
or
m
al
iz
ed
 P
ix
el
 E
ne
rg
y

-11 10

-10 10

-9 10

-8 10

-7 10

-6 10

-5 10

-4 10

-3 10

-2 10

-1 10

1

) η [Translated] Pseudorapidity (
-1-0.500.51

)φ

[T
ra
ns
la
te
d]
 A
zi
m
ut
ha
l A
ng
le
 (

-1

-0.5

0

0.5

1

b  b →  8 → p p 
 = 125 GeV

8
re-showered with Pythia 8, m

N
or
m
al
iz
ed
 P
ix
el
 E
ne
rg
y

-11 10

-10 10

-9 10

-8 10

-7 10

-6 10

-5 10

-4 10

-3 10

-2 10

-1 10

1

) η [Translated] Pseudorapidity (
-1-0.500.51

)φ

[T
ra
ns
la
te
d]
 A
zi
m
ut
ha
l A
ng
le
 (

-1

-0.5

0

0.5

1

b  b →  1 → p p 
 = 125 GeV

1
re-showered with Pythia 8, m

N
or
m
al
iz
ed
 P
ix
el
 E
ne
rg
y

-11 10

-10 10

-9 10

-8 10

-7 10

-6 10

-5 10

-4 10

-3 10

-2 10

-1 10

1

) η [Translated] Pseudorapidity (
-1-0.500.51

)φ

[T
ra
ns
la
te
d]
 A
zi
m
ut
ha
l A
ng
le
 (

-1

-0.5

0

0.5

1

b  b →  8 → p p 
 = 125 GeV

8
re-showered with Pythia 8, mVariable 

sets

Trees

...

...

...

Pa
rti
cle
s

Ob
se
rv
ab
le

Pe
r-
Pa
rti
cle
Re
pr
es
en
tat
ion

Ev
en
t R
ep
res
en
tat
ion

Φ

Φ

Φ

F

En
erg
y/P
art
icl
e F
low
Ne
tw
or
k

La
ten
t S
pa
ce

F
ig
u
r
e
1
:
A

vi
su

al
iz
at

io
n

of
th

e
de

co
m

po
si
ti
on

of
an

ob
se

rv
ab

le
vi
a
E
q.

(1
.1
).

E
ac

h
pa

rt
ic
le

in
th

e
ev

en
t
is

m
ap

pe
d

by
�

to
an

in
te

rn
al

(l
at

en
t)

pa
rt
ic
le

re
pr

es
en

ta
ti
on

,
sh

ow
n

he
re

as

th
re

e
ab

st
ra

ct
ill

us
tr
at

io
ns

fo
r
a
la
te

nt
sp

ac
e
of

di
m

en
si
on

th
re

e.
T
he

la
te

nt
re

pr
es

en
ta

ti
on

is

th
en

su
m

m
ed

ov
er

al
l p

ar
ti
cl
es

to
ar

ri
ve

at
a
la
te

nt
ev

en
t
re

pr
es

en
ta

ti
on

, w
hi

ch
is

m
ap

pe
d

by

F
to

th
e
va

lu
e
of

th
e
ob

se
rv

ab
le
.
Fo

r
th

e
IR

C
-s
af
e
ca

se
of

E
q.

(1
.2
),

�
ta

ke
s
in

th
e
an

gu
la
r

in
fo
rm

at
io
n

of
th

e
pa

rt
ic
le

an
d

th
e

su
m

is
w
ei
gh

te
d

by
th

e
pa

rt
ic
le

en
er

gi
es

or
tr
an

sv
er

se

m
om

en
ta

.
co

m
pe

ti
ti
ve

w
it
h

ex
is
ti
ng

te
ch

ni
qu

es
on

ke
y
co

lli
de

r
ta

sk
s,

an
d

pr
ov

id
es

a
pl

at
fo
rm

fo
r
vi
su

al
-

iz
in

g
th

e
in

fo
rm

at
io
n

le
ar

ne
d

by
th

e
m

od
el
.
B
ey

on
d

th
is
, w

e
de

m
on

st
ra

te
ho

w
ou

r
fr
am

ew
or

k

un
ifi

es
th

e
ex

is
ti
ng

ev
en

t
re

pr
es

en
ta

ti
on

s
of

ca
lo
ri
m

et
er

im
ag

es
an

d
ra

di
at

io
n

m
om

en
ts
, a

nd

w
e
sh

ow
ca

se
th

e
ex

tr
ac

ti
on

of
no

ve
l a

na
ly
ti
c
ob

se
rv

ab
le
s
fr
om

th
e
tr
ai
ne

d
m

od
el
.

O
ne

ev
er

-p
re

se
nt

co
lli

de
r
ph

en
om

en
on

th
at

in
vo

lv
es

co
m

pl
ic
at

ed
m
ul

ti
pa

rt
ic
le

fin
al

st
at

es

is
th

e
fo
rm

at
io
n

an
d

ob
se

rv
at

io
n

of
je
ts
,
sp

ra
ys

of
co

lo
r-
ne

ut
ra

l
ha

dr
on

s
re

su
lt
in

g
fr
om

th
e

fr
ag

m
en

ta
ti
on

of
hi

gh
-e
ne

rg
y
qu

ar
ks

an
d
gl
uo

ns
in

qu
an

tu
m

ch
ro

m
od

yn
am

ic
s (

Q
C
D
).

N
um

er
-

ou
s i

nd
iv
id

ua
l o

bs
er

va
bl

es
ha

ve
be

en
pr

op
os

ed
to

st
ud

y
je
ts

in
cl
ud

in
g
th

e
je
t m

as
s,

co
ns

ti
tu

en
t

m
ul

ti
pl

ic
ity

, i
m

ag
e
ac

ti
vi
ty

[6
6]
, N

-s
ub

je
tt
in

es
s
[6
7,

68
],

tr
ac

k-
ba

se
d

ob
se

rv
ab

le
s
[6
9,

70
],

ge
n-

er
al
iz
ed

an
gu

la
ri
ti
es

[7
1]
, (

ge
ne

ra
liz

ed
)
en

er
gy

co
rr
el
at

io
n

fu
nc

ti
on

s
[7
2,

73
],

so
ft

dr
op

m
ul

ti
-

pl
ic
ity

[7
4,

75
],

an
d

m
an

y
m

or
e
(s
ee

R
ef
s.

[5
1,

76
–8

0]
fo
r
re

vi
ew

s)
.
M

ac
hi

ne
le
ar

ni
ng

m
et

ho
ds

ha
ve

fo
un

d
tr
em

en
do

us
ap

pl
ic
ab

ili
ty

to
je
t
cl
as

si
fic

at
io
n

ta
sk

s,
gr

ea
tl
y

ou
tp

er
fo
rm

in
g

in
di

-

vi
du

al
st
an

da
rd

ob
se

rv
ab

le
s.

Je
t

cl
as

si
fic

at
io
n

pr
ov

id
es

an
id

ea
l
ca

se
st
ud

y
fo
r

th
e

D
ee

p

–
4

–

De
ns

e n
et

wor
ks

De
ep

 se
ts

Co
nv

ol
ut

io
na

l N
Ns

 (C
NN

s)

Re
cu

rre
nt

 N
Ns

Re
cu

rs
ive

 N
Ns

Gra
ph

 C
NN

s

14

See 1709.04464 for image refs.

Step 1: how to represent our data



15Sequence learning

One key challenge with images is that they have a fixed size. 

In many contexts, this is ideal, because the data also 
have a fixed size.  However, this is not always the case.

For example, events / jets have a variable number of particles.

One can represent these particles as a sequence 
in order to apply variable-length approaches that 

can access the full feature granularity.



16Sequence learning with RNNs
Flavor tagging (classify jets from b-quark or 

not) has a long history of ML.  Use features of 
the charged-particle tracks inside jets.

In the past, challenging to 
incorporate correlations 

between tracks. 



17Sequence learning with RNNs
Flavor tagging (classify jets from b-quark or 

not) has a long history of ML.  Use features of 
the charged-particle tracks inside jets.

In the past, challenging to 
incorporate correlations 

between tracks. 

Possible with 
RNNs!

ATL-PHYS-PUB-2017-003



18Hybrid methods

better

CMS-DP-2017-013

RNN + 1x1 CNNs 
for dimensionality 

reduction.  

This reduction 
improved the 

performance of the  
overall classifier.
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See 1709.04464 for image refs.
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See 1709.04464 for image refs.

Step 1: how to represent our data



21Learning with sets

A challenge with sequence learning is that thanks to 
quantum mechanics, there is often no unique order.

A common scenario is that we have a variable-length SET 
of particles and we would like to learn from them directly.

Solution: set learning / point cloud approaches



22Solution 1: Deep sets / Particle flow Networks

1703.06114, 1810.05165

f({x1, . . . , xM}) = F (
M

∑
i=1

Φ(xi))

Factorize the problem into two networks: one that embeds 
the set into a fixed-length latent space and one that acts on 

a permutation invariant operation on that latent space:

Due to the sum, this structure can operate on any 
length set and the order of the inputs doesn’t matter.
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f({x1, . . . , xM}) = F (
M

∑
i=1

Φ(xi))

Factorize the problem into two networks: one that embeds 
the set into a fixed-length latent space and one that acts on 

a permutation invariant operation on that latent space:

Due to the sum, this structure can operate on any 
length set and the order of the inputs doesn’t matter.

• Can readily incorporate 
per-particle features

• Can be made infrared and 
collinear safe (EFN) safe
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f({x1, . . . , xM}) = F (
M

∑
i=1

Φ(xi))

Factorize the problem into two networks: one that embeds 
the set into a fixed-length latent space and one that acts on 

a permutation invariant operation on that latent space:

Due to the sum, this structure can operate on any 
length set and the order of the inputs doesn’t matter.

25Solution 1: Deep sets / Particle flow Networks

Latent space in IRC safe case is interpretable (and predictable!)



M. Zaheer et al. https://arxiv.org/abs/1703.06114; P. Komiske, E. Metodiev, & J. Thaler, JHEP 01 (2019) 121
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M
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Factorize the problem into two networks: one that embeds 
the set into a fixed-length latent space and one that acts on 

a permutation invariant operation on that latent space:

Due to the sum, this structure can operate on any 
length set and the order of the inputs doesn’t matter.

26Solution 1: Deep sets / Particle flow Networks

Latent space in IRC safe case is interpretable (and predictable!)
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better Faster to train than 
RNN so can do R&D 
on input features to 

improve overall 
performance.

https://arxiv.org/abs/1703.06114


27Solution 2: Graph methods

Classic CNNs operate on a fixed grid and are 
not invariant under the permutation of points

Can generalize CNNs to act on graphs 

Need to define distances using particle properties
1801.07829 , 1902.08570See also Javier’s talk!



1801.07829 , 1902.08570

28Solution 2: Graph methods

Classic CNNs operate on a fixed grid and are 
not invariant under the permutation of points

Can generalize CNNs to act on graphs 

Need to define distances using particle properties

CMS DP-2020/002

Competitive 
performance to 

other state-of-the-
art methods
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See 1709.04464 for image refs.

Step 1: how to represent our data



30

One way to categorize methods is 
based on their level of supervision

Unsupervised = no labels

Weakly-supervised = noisy labels

Semi-supervised = partial labels


Supervised = full label information

Step 2: set up the learning task



31Supervised

This is 99% of the ML.   We have labeled examples and we 
train a model to predict the labels from the examples.

Need to be careful about what loss function to pick 

(more on that in a little bit…)



32Unsupervised

Typically, the goal of these methods is to 
implicitly or explicitly estimate p(x).

Unsupervised = no labels

One strategy (autoencoders) is to try to compress 
events and then uncompress them.  When x is far from 
uncompres(compress(x)), then x probably has low p(x).

18
08

.0
89

92

Talking point: anomaly detection!



33Weakly-supervised

Typically, the goal of these methods is to estimate 

p(possibly signal-enriched)/p(possibly signal-depleted)

Weakly-supervised = noisy labels
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

Signal enriched Signal depleted
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Typically, these methods use some signal 
simulations to build signal sensitivity

Semi-supervised = partial labels

vs

e.g. SM background 
versus many signals
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background 
(no ML)

background 
(w/ ML)

RealityIdeal case
background 

(no ML)

background 
(w/ ML)

How can we learn a classifier that does 
not sculpt a bump in the background?

feature 1 feature 1 
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background 
(no ML)

background 
(w/ ML)

RealityIdeal case
background 

(no ML)

background 
(w/ ML)

How can we learn a classifier that does 
not sculpt a bump in the background?

feature 1 feature 1 

Solution: ensure that the classifier 
is independent* of feature 1.

*This is actually sufficient but unnecessary.  There are many dependencies (e.g. linear) that would not sculpt bumps.

Caution Part I
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Train e.g. a neural network with a custom loss functional
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i2b Ldecor(f(xi),mi)
<latexit sha1_base64="A+e4RbbbCGWAZdHPDobSfFHbxPM="></latexit>

Ldecor is large when f(x) 
and m are “correlated”

Lclassifier is the usual 
classifier loss, e.g. 

cross entropy or mean 
squared error.

Caution Part I: decorrelation
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Recent proposals:

Adversaries: Ldecor is the loss of a 2nd NN 
(adversary) that tries to learn m from f(x). 

Distance Correlation: Ldecor is distance correlation 
(generalizes Pearson correlation) between m and f(x).

Mode Decorrelation: Ldecor is small when the CDF of 
f(x) is the same across different values of m.
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Image credit: Denis Boigelot
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Adversaries: Ldecor is the loss of a 2nd NN 
(adversary) that tries to learn m from f(x). 

1611.01046,1703.03507

Pros:

Cons:

Very flexible and m can be multidimensional

Hard to train (minimax problem) & many parameters
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Distance Correlation: Ldecor is distance correlation 
(generalizes Pearson correlation) between m and f(x).

2001.05310, 2007.14400

Pros:

Cons:

Convex (easier to train) and no free parameters

Memory intensive to compute distance correlation
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Mode Decorrelation (MoDE): Ldecor is small when the 
CDF of f(x) is the same across different values of m.

2010.09745

Pros:

Cons:

Readily generalizes beyond independence 
(can require linear, quadratic (+monotonic), …

In its simplest form, need discrete bins in m 
(does not seem to be fundamental)

No free parameters and small memory footprint
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Figure 6. Left: Distributions of signal and background events without selection. Right: Back-
ground distributions at 50% signal e�ciency (true positive rate) for di↵erent classifiers. The un-
constrained classifier sculpts a peak at the W -boson mass, while other classifiers do not.

Figure 7. Decorrelation versus background-rejection power showing that MoDe[0] performs sim-
ilarly to existing state-of-the-art decorrelation methods.

3.2.3 Beyond Decorrelation

Moving beyond decorrelation the 1/JSD metric is no longer relevant. Figure 6 shows that

neither MoDe[1] nor MoDe[2] sculpts a peaking structure in the background, but their

1/JSD values are small since neither seeks to decorrelate from the mass. Therefore, we

replace the 1/JSD metric with the signal bias induced by the classifier selection, which

is what actually matters when searching for resonant new physics. Specifically, we use

the signal estimators obtained by fitting the selected background-only samples to a simple

polynomial function as proxies for the signal biases. These are divided by their uncertainties

such that values of roughly unity are consistent with no bias, while values significantly larger

– 13 –

2010.09745

Real world example: the search for Lorentz-
boosted W bosons at the Large Hadron Collider

W boson 
mass

MoDE[0] enforces independence, [1] is linear, [2] is monotonic quadratic, … 
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N.B. think twice about using decorrelation for uncertainties!  See 2109.08159.



48Caution Part II: prior dependence

Sometimes, we need a model (often for calibration) that 
does not depend on the training sample properties.

For example, a particle of a given energy hits our detector 
and registers measurements in a number of sensors

e.g. the particle energy is uniform during training, 
but exponential for certain running conditions.

(usually not an issue for classification)
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does not depend on the training sample properties.

For example, a particle of a given energy hits our detector 
and registers measurements in a number of sensors

e.g. the particle energy is uniform during training, 
but exponential for certain running conditions.

(usually not an issue for classification)

Your first instinct here might have 
been to train a classifier to estimate 

the true value given measured 
values using simulated data.
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For example, a particle of a given energy hits our detector 
and registers measurements in a number of sensors

e.g. the particle energy is uniform during training, 
but exponential for certain running conditions.

(usually not an issue for classification)

Your first instinct here might have 
been to train a classifier to estimate 

the true value given measured 
values using simulated data.

Claim: this is prior dependent !



51What goes wrong?

Suppose you have some features x and you want to predict y.

One way to do this is to find an f that 
minimizes the mean squared error (MSE):

f = argming
P

i(g(xi)� yi)2

Then*, f(x) = E[y|x].

detector energy true energy

*If you have not seen this before, please let me know if you need help with the proof!
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f(x) = E[y|x] =
R
dy y p(y|x)

E[f(x)|y] =
R
dxdy0 y0 ptrain(y0|x)ptest(x|y)

this need not be y even if ptrain = ptest (!)  

What goes wrong?

Suppose you have some features x and you want to predict y.
detector energy true energy
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(a) (b)

FIG. 1. (a) 2D Histogram of the reconstructed value xD distribution versus the true value zT distribution, in the Gaussian
example with µ = 0, ‡ = 1, and ‘ = 2. The dashed line represents a linear fit to the data points. (b) For test values of xD,
the vertical axis is the calibrated target value ẑT (xD). The blue dots are the results from a numerical MSE fit fMSE(xD), and
the error bars correspond to the numerical point resolution �MSE(xD), with the analytic prediction in the red dotted line. For
comparison, the Gaussian Ansatz calibration is indicated by the red points fMLC(xD), with the error bars indicating the point
resolution �MLC(xD). For both fits, the colored lines and bands are the analytically expected results for the fits and resolutions,
respectively.

(a) (b)

FIG. 2. The same MSE results as Fig. 1b, but plotted in bins of true zT rather than xD. Points correspond to numerical fit
results with associated resolution �MSE(zT ), while the dashed lines and bands correspond to analytic results. Multiple values of
the prior parameters (a) µ and (b) ‡ are shown to illustrate the prior dependence of the bias. Though not shown, we verified
that the Gaussian Ansatz gives results consistent with the unbiased calibration in dashed red.

2205.05084 
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FIG. 1. (a) 2D Histogram of the reconstructed value xD distribution versus the true value zT distribution, in the Gaussian
example with µ = 0, ‡ = 1, and ‘ = 2. The dashed line represents a linear fit to the data points. (b) For test values of xD,
the vertical axis is the calibrated target value ẑT (xD). The blue dots are the results from a numerical MSE fit fMSE(xD), and
the error bars correspond to the numerical point resolution �MSE(xD), with the analytic prediction in the red dotted line. For
comparison, the Gaussian Ansatz calibration is indicated by the red points fMLC(xD), with the error bars indicating the point
resolution �MLC(xD). For both fits, the colored lines and bands are the analytically expected results for the fits and resolutions,
respectively.
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FIG. 2. The same MSE results as Fig. 1b, but plotted in bins of true zT rather than xD. Points correspond to numerical fit
results with associated resolution �MSE(zT ), while the dashed lines and bands correspond to analytic results. Multiple values of
the prior parameters (a) µ and (b) ‡ are shown to illustrate the prior dependence of the bias. Though not shown, we verified
that the Gaussian Ansatz gives results consistent with the unbiased calibration in dashed red.

2205.05084 
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FIG. 1. (a) 2D Histogram of the reconstructed value xD distribution versus the true value zT distribution, in the Gaussian
example with µ = 0, ‡ = 1, and ‘ = 2. The dashed line represents a linear fit to the data points. (b) For test values of xD,
the vertical axis is the calibrated target value ẑT (xD). The blue dots are the results from a numerical MSE fit fMSE(xD), and
the error bars correspond to the numerical point resolution �MSE(xD), with the analytic prediction in the red dotted line. For
comparison, the Gaussian Ansatz calibration is indicated by the red points fMLC(xD), with the error bars indicating the point
resolution �MLC(xD). For both fits, the colored lines and bands are the analytically expected results for the fits and resolutions,
respectively.

(a) (b)

FIG. 2. The same MSE results as Fig. 1b, but plotted in bins of true zT rather than xD. Points correspond to numerical fit
results with associated resolution �MSE(zT ), while the dashed lines and bands correspond to analytic results. Multiple values of
the prior parameters (a) µ and (b) ‡ are shown to illustrate the prior dependence of the bias. Though not shown, we verified
that the Gaussian Ansatz gives results consistent with the unbiased calibration in dashed red.

Maximum likelihood without 
full density estimation

Note that MLE is 
prior independent!

2205.05084; see also ATL-PHYS-PUB-2018-013 
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2205.05084; see also ATL-PHYS-PUB-2018-013 
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tice, jet energy calibrations are derived for individual jets,
but this requires at least including calibrating the jet ra-
pidity in addition to the jet energy. We keep the problem
one-dimensional in order to ensure the problem is easy
to visualize and to mitigate the dependence on features
that are not explicitly modeled. For a high-dimensional
study of jet energy calibrations in a prior-independent
way, see Ref. [43].

A. Datasets

Our study is based on generic dijet production in quan-
tum chromodynamics (QCD). For these studies, we will
consider two di�erent datasets to demonstrate simulation-
based and data-based jet energy calibrations. The first
dataset is made with a full detector simulation. The full
simulation sample uses Pythia 6.426 [92] with the Z2
tune [93] and interfaced with a Geant4-based [94–96]
full simulation of the CMS experiment [97]. In simulation-
based calibration, our goal will be to reconstruct the
truth-level zT = mtrue

jj from the detector-level xD = mreco
jj .

The second dataset is constructed with a fast detector
simulation. The fast simulation uses Pythia 8.219 [98]
interfaced with Delphes 3.4.1 [99–101] using the default
CMS detector card. In data-based calibration, our goal
will be to match this fast simulation to “data”, which will
be represented by the full simulation. The full simulation
sample comes from the CMS Open Data Portal [102–104]
and processed into an MIT Open Data format [105–108].
The fast simulation sample is available at Ref. [109, 110].

For each dataset, we have access to the parton-level
hard-scattering scale p̂T from Pythia, which is in general
di�erent from the jet-level transverse momentum pT we
are interested in studying. To avoid any issues related
to the trigger, we focus on events where p̂T > 1 TeV.
Particles (at truth level) or particle flow candidates (at
reconstructed level) are used as inputs to jet clustering,
implemented using FastJet 3.2.1 [111, 112] and the anti-
kt algorithm [113] with radius parameter R = 0.5. No
calibrations are applied to the reconstructed jets.

To emulate two di�erent physics processes while con-
trolling for all hidden variables, we consider dijet events
with two di�erent sets of event weights. This will allow us
to study the prior-dependent e�ects of each calibration.

• QCD. This set of weights {wi} comes from the
original Pythia event generation. The resulting
spectra are steeply falling in the invariant mass of
the two jets, mjj .

• BSM. To emulate a narrow dijet resonance, we
consider a second set of weights given by

w(mtrue
jj,i ) Ã

1
‡wi

exp
C

≠
(mtrue

jj,i ≠ µ)2

2‡2

D
, (45)

where µ = 2.8 TeV and ‡ = 10 GeV. Note that the
weighting is applied using the true mjj .

FIG. 5. The mjj distributions for QCD (blue) and BSM (red)
events in the fast and full simulation. The shaded histograms
correspond to the zT = mtrue

jj truth-level distributions, whereas
the light triangles and dark circles correspond to xD = mreco

jj

for the fast (Delphes) and slow (Geant4) distributions re-
spectively.

The mjj distributions as described above are shown in
Fig. 5. In the full simulation, one can see a di�erence
between mtrue

jj and mreco
jj for both QCD and BSM, ne-

cessitating a simulation-based calibration. Additionally,
the mreco

jj distribution is significantly di�erent between
the full and fast simulations, which to correct requires a
data-based calibration.

For all following results, half of the examples are used
for training and half are used for testing.

B. Simulation-based Calibration

The goal for the simulation-based calibration is to learn
a function to predict zT = mtrue

jj from xD = mreco
jj in

the full simulation. In contrast to the Gaussian example
in Sec. IV A, we do not know the functional form of
the calibration. Therefore, we use a neural network to
provide a flexible parametrization of the calibration and
numerically minimize the MSE loss. The neural network
has three hidden layers with 50 nodes per layer, with
the rectified linear unit activation for intermediate layers
and a linear activation for the output. The network is
implemented in Keras with the Tensorflow backend
and optimized with Adam using a batch size of 1000 and
50 epochs. Training is performed over the QCD sample to
obtain the calibration function. The learned calibration
function is then applied to both the QCD and BSM test
samples.

The result of MSE calibration is shown in Fig. 6a. Prior
to any calibration, the detector response is about 5% low



57Physics Example

2205.05084; see also ATL-PHYS-PUB-2018-013 

11

(a) (b)

FIG. 6. The reconstructed mjj divided by the true mjj for the QCD and BSM samples, using (a) the MSE-based approach
and (b) the maximum likelihood approach with the Gaussian Ansatz. Shown are results with and without the simulation-based
calibration applied.

in both the QCD and BSM test samples. After calibration,
the mean is nearly unity for the QCD sample, albeit with
a large width – that is to say, the average bias is close to
zero over the prior, but the average resolution is large. For
the BSM sample, though, the calibrated mean is far from
unity, demonstrating the bias and prior dependence of the
MSE calibration. The MSE-based calibration obtained
from the QCD fit is not universal, and gives poor results
when applied to the BSM sample.10

For comparison, in Fig. 6b we show results from a
maximum-likelihood-based calibration trained on the
QCD sample, using the Gaussian Ansatz in Eq. (35).
The A, B, C, and D networks of the Gaussian Ansatz
each consist of three hidden layers with 32 nodes per
layer, with the same activation functions, batch size, and
epochs as in the Gaussian example. The calibration func-
tion trained on the QCD sample can be used for the BSM
sample, and as Fig. 6b shows, the calibration is indeed
universal and unbiased, as expected.

10 The converse is also true – attempting to use a calibration fitted
on the BSM sample will lead to bias on the QCD sample, or any
other BSM sample for that matter. These non-universal fits lead
to mass sculpting, in which a fit depends strongly on the mass
point used in training. See e.g. [114] for discussions on sculpting
and mass decorrelation.

C. Data-based Calibration

The goal for the data-based calibration task is to “cor-
rect” psim(mreco

jj ), given by the fast simulation (Delphes),
to the observed data distribution pdata(mreco

jj ), given by
the full simulation (Geant4). We now apply the same
procedure described in Sec. IV B to the dijet example.

An OT-based calibration is derived using QCD jets,
to align the fast simulation Delphes) sample with the
full simulation Geant4 sample. The calibration func-
tion, given by the optimal transport map (Eq. (17)), can
be computed numerically by sorting and integrating the
weighted data points to build the cumulative distribution
functions. On the QCD sample, this calibration closes
by construction. In particular, as shown in Fig. 7a, the
blue dashed line in the ratio plot fluctuates around unity,
with deviations due to statistical fluctuations that di�er
between the two halves of the event samples.

When this calibration is applied to the BSM events,
however, the calibration overshoots, as shown with the
red dashed line in the ratio plot in Fig. 7b. While the
resulting dashed distribution agrees better with the data
histogram in dark red than does the fast sim histogram
in light red, the overall agreement is still rather poor.
This again highlights the issue of prior dependence in
data-based calibrations.

10

tice, jet energy calibrations are derived for individual jets,
but this requires at least including calibrating the jet ra-
pidity in addition to the jet energy. We keep the problem
one-dimensional in order to ensure the problem is easy
to visualize and to mitigate the dependence on features
that are not explicitly modeled. For a high-dimensional
study of jet energy calibrations in a prior-independent
way, see Ref. [43].

A. Datasets

Our study is based on generic dijet production in quan-
tum chromodynamics (QCD). For these studies, we will
consider two di�erent datasets to demonstrate simulation-
based and data-based jet energy calibrations. The first
dataset is made with a full detector simulation. The full
simulation sample uses Pythia 6.426 [92] with the Z2
tune [93] and interfaced with a Geant4-based [94–96]
full simulation of the CMS experiment [97]. In simulation-
based calibration, our goal will be to reconstruct the
truth-level zT = mtrue

jj from the detector-level xD = mreco
jj .

The second dataset is constructed with a fast detector
simulation. The fast simulation uses Pythia 8.219 [98]
interfaced with Delphes 3.4.1 [99–101] using the default
CMS detector card. In data-based calibration, our goal
will be to match this fast simulation to “data”, which will
be represented by the full simulation. The full simulation
sample comes from the CMS Open Data Portal [102–104]
and processed into an MIT Open Data format [105–108].
The fast simulation sample is available at Ref. [109, 110].

For each dataset, we have access to the parton-level
hard-scattering scale p̂T from Pythia, which is in general
di�erent from the jet-level transverse momentum pT we
are interested in studying. To avoid any issues related
to the trigger, we focus on events where p̂T > 1 TeV.
Particles (at truth level) or particle flow candidates (at
reconstructed level) are used as inputs to jet clustering,
implemented using FastJet 3.2.1 [111, 112] and the anti-
kt algorithm [113] with radius parameter R = 0.5. No
calibrations are applied to the reconstructed jets.

To emulate two di�erent physics processes while con-
trolling for all hidden variables, we consider dijet events
with two di�erent sets of event weights. This will allow us
to study the prior-dependent e�ects of each calibration.

• QCD. This set of weights {wi} comes from the
original Pythia event generation. The resulting
spectra are steeply falling in the invariant mass of
the two jets, mjj .

• BSM. To emulate a narrow dijet resonance, we
consider a second set of weights given by

w(mtrue
jj,i ) Ã

1
‡wi

exp
C

≠
(mtrue

jj,i ≠ µ)2

2‡2

D
, (45)

where µ = 2.8 TeV and ‡ = 10 GeV. Note that the
weighting is applied using the true mjj .

FIG. 5. The mjj distributions for QCD (blue) and BSM (red)
events in the fast and full simulation. The shaded histograms
correspond to the zT = mtrue

jj truth-level distributions, whereas
the light triangles and dark circles correspond to xD = mreco

jj

for the fast (Delphes) and slow (Geant4) distributions re-
spectively.

The mjj distributions as described above are shown in
Fig. 5. In the full simulation, one can see a di�erence
between mtrue

jj and mreco
jj for both QCD and BSM, ne-

cessitating a simulation-based calibration. Additionally,
the mreco

jj distribution is significantly di�erent between
the full and fast simulations, which to correct requires a
data-based calibration.

For all following results, half of the examples are used
for training and half are used for testing.

B. Simulation-based Calibration

The goal for the simulation-based calibration is to learn
a function to predict zT = mtrue

jj from xD = mreco
jj in

the full simulation. In contrast to the Gaussian example
in Sec. IV A, we do not know the functional form of
the calibration. Therefore, we use a neural network to
provide a flexible parametrization of the calibration and
numerically minimize the MSE loss. The neural network
has three hidden layers with 50 nodes per layer, with
the rectified linear unit activation for intermediate layers
and a linear activation for the output. The network is
implemented in Keras with the Tensorflow backend
and optimized with Adam using a batch size of 1000 and
50 epochs. Training is performed over the QCD sample to
obtain the calibration function. The learned calibration
function is then applied to both the QCD and BSM test
samples.

The result of MSE calibration is shown in Fig. 6a. Prior
to any calibration, the detector response is about 5% low
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A generator is nothing other than a function 
that maps random numbers to structure.

Deep generative models: the map is a deep neural network.
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62Introduction: GANs
Generative Adversarial Networks (GANs): 

A two-network game where one maps noise to structure 
and one classifies images as fake or real.

{real,fake}

G
D

D

noise

When D is maximally 
confused, G will be 
a good generator Physics-based 

simulator or data
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Variational Autoencoders (VAEs): 

A pair of networks that embed the data into a latent space 
with a given prior and decode back to the data space.

Introduction: VAEs

Physics-based 
simulator or data

DE

latent space
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Normalizing Flows (NFs): 

A series of invertible transformations mapping a known 
density into the data density.

F

latent 
space

F F F

Invertible transformations 
with tractable Jacobians

Optimize via 
maximum likelihood

p(x) = p(z) |dF-1/dx|p(z) p(x)
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Score-based

Learn the gradient of the density instead of the probability 
density itself. 3

t=1t=0 t=0.75t=0.25

Forward diffusion (training)

Reverse-time diffusion (data generation)

FIG. 1. The score-based generative model is trained using a di↵usion process that slowly perturbs the data. Generation of new
samples is carried out by reversing the di↵usion process using the learned score-function, or the gradient of the data density.
For di↵erent time-steps, we show the distribution of deposited energies versus generated particle energies (top) and the energy
deposition in a single layer of a calorimeter (bottom), generated with our proposed CaloScore model.

minimized during training is:

1

2
Ep�(x̃|x)pdata

h
ks✓(x̃)�rx̃ log p�(x̃|x)k

2
2

i
. (4)

The advantage of this strategy is that we can directly
estimate the last term in Eq. 4, since:

rx̃ log p�(x̃|x) =
x� x̃

�2
⇠

N (0, 1)

�
(5)

The time component can be made explicit by rewriting
the loss function in Eq. 4 as:

1

2
EtEp(xt|x0)p(x0)

h
�(t) ks✓(x, t)�rxt log pt(xt|x0)k

2
2

i
.

(6)
The weighting function �(t) : R ! R ensures

the loss function has the same order of magnitude at
all times and is chosen to be inversely proportional

to E
h
krxt log pt(xt|x0)k

2
2

i
. When the drift coe�cient

f(x, t) is chosen to be an a�ne function of x, the result-
ing perturbation kernel is always Gaussian [58] and can
be chosen such that both mean and variance are known
in closed form, making Eq. 6 e�cient to compute during
training.

III. CHOICE OF DRIFT AND DIFFUSION
COEFFICIENTS

In this work we investigate three di↵erent choices of
drift and di↵usion coe�cients that result in perturbation
kernels that are easy to calculate in closed form. The
first SDE, initially proposed in [53], is defined as:

dx =

r
d[�2(t)]

dt
dw. (7)

The parameter �(t) = �min

⇣
�max
�min

⌘t
is defined with

�min = 0.01 and �max = 50 to ensure x(1) ⇠ N (0,�2
max)

is independent from x(0). Since the time-dependent vari-
ance of the resulting perturbation explodes when t ! 1,
this SDE is often referred to variance exploding (VE)
SDE.
The second SDE is a continuous version of the discrete

perturbation introduced in [54], defined as:

dx = �
1

2
�(t)xdt+

p
�(t)dw. (8)

The parameter �(t) = �min + t (�max � �min) with
�min = 0.1 and �max = 20 is used, resulting in x(1) ⇠

N (0, 1). The variance of this process is fixed to one when

From 2206.11898
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FIG. 3. Comparison of the sum of all voxel energies (top) and number of hits (bottom) for datasets 1 (left), 2 (middle), and 3
(right). Dashed red bands represent the 10% deviation interval of the generated samples when compared to Geant predictions

as:

�i =
q

hx2
i i � hxii

2, (15)

with energy-weighted mean defined as

hxii =

P
j xi,jEjP

j Ej
. (16)

A good agreement between all CaloScore implemen-
tations and Geant predictions is observed in dataset 2,
with all implementations showing less than 10% devia-
tion in all calorimeter layers. However, for dataset 3, the
VP implementations shows a disagreement at the last
layers of the detector while the shift observed in Fig. 4
for the VE implementation leads to a similar shift in
the shower width. Nevertheless, the subVP implemen-
tation maintains the same level of agreement as observed
in dataset 2.

A qualitative assessment of the generation is shown
in Fig. 7 for datasets 2 and 3. The 2-dimensional dis-
tribution of the average energy deposition is shown in
the detector layers with highest (layer 10) and lowest
(layer 44) mean energy depositions. Empty entries in the
Geant simulation are a result of the initial voxelization
combined with the following transformation to Cartesian
coordinates. All voxels with an expected energy deposi-

tion above 0 are populated in all CaloScore implemen-
tations, an indication that CaloScore is able to repro-
duce the shower diversity from the training set. Images at
layer 10 are identical for all di↵usion models, dominated
by the central voxel. Layer 44; however, has more vox-
els sharing a significant fraction of the layer energy. The
subVP implementation shows a visually similar average
to Geant compared to the other di↵usion implementa-
tions, capturing the high energy depositions along the
y-axis in dataset 2 and the isotropic pattern around the
center in dataset 3.
Finally, the assessment of generated samples using dif-

ferent conditional energies is investigated in Fig. 8, by
comparing the total deposited energy versus the gener-
ated particle energy.
All CaloScore models show similar mean and spread

compared to Geant, with the exception of the VE im-
plementation that shows a wider spread for dataset 2 and
higher mean in dataset 3.
We have also explored the classifier metric introduced

in CalowFlow whereby a post-hoc classifier is trained
to distinguish generated showers from Geant 4 exam-
ples. While the classifier could not exactly identify fake
from real showers, it did have an area under the receiver
operating characteristic curve (AUC) of about 0.98 for all
three models. While this suggests that further (hyper-
parameter)optimization would be beneficial, it already

2206.11898

See also https://calochallenge.github.io/homepage/ and https://calochallenge.github.io/homepage/

Figure 8. Distributions that are sensitive to Flow II for ⇡+. Top row: energy of brightest voxel
compared to the layer energy; second row: energy of second brightest voxel compared to the layer
energy; third row: di↵erence of brightest and second brightest voxel, normalized to their sum; last
row: sparsity of the showers. See [17] for detailed definitions.
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FIG. 3. Comparison of shower shape variables and other variables of interest, such as the sparsity level per layer, for the
Geant4 and CaloGAN datasets for e+, � and ⇡+. See [PRD companion paper] for detailed definitions.

fier tested on CaloGAN samples. The stability of the
accuracy metric implies that the CaloGAN succeeds at
representing at least as much variation among showers
initiated by di↵erent particles as it is necessary to clas-
sify them using the same features in Geant4. Training
on CaloGAN and testing on Geant4 does show signif-
icant degradation, indicating that the GAN is inventing
new class-dependent features or underrepresenting class-

independent features. While percent-level variations may
be important for some applications, using classification
as a generator diagnostic is an important tool for expos-
ing the modeling of interclass shower variations.

Figure 5. Deposited energy
per layer in z-direction for
showers which are decoded
with all latent variables
zi = 0, except the highest
KLD latent z0 variable
which is set to values
between -3 and 3.

Specifically, we can increase generation fidelity by either regularizing the latent space more
strongly or by leveraging and sampling from the information rich non-Gaussian distributions.
Either optimization path can be approached in di↵erent ways. We have chosen one exem-
plary method for each: (1) By increasing �KLD the overall KLD in the latent space is reduced,
yielding latent distributions stronger regularized towards Standard Normal distributions and
therefore more accurate generative sampling from such a N(0, 1) distribution; or (2) keeping
the already trained model but using a second density estimator — such as Kernel Density
Estimation (KDE) [25] — on the latent variables and sampling directly from the encoded
latent space. The former approach is motivated by [26] while the latter mirrors a method for
the Bu↵er-VAE from Ref. [27].

Figure 6. Di↵erential distributions comparing physics quantities between Geant4 and BIB-AE models
with �KLD = 0.05, �KLD = 0.4 and �KLD = 0.05 with the KDE sampling approach.
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FIG. 3. Comparison of shower shape variables and other variables of interest, such as the sparsity level per layer, for the
Geant4 and CaloGAN datasets for e+, � and ⇡+. See [PRD companion paper] for detailed definitions.

fier tested on CaloGAN samples. The stability of the
accuracy metric implies that the CaloGAN succeeds at
representing at least as much variation among showers
initiated by di↵erent particles as it is necessary to clas-
sify them using the same features in Geant4. Training
on CaloGAN and testing on Geant4 does show signif-
icant degradation, indicating that the GAN is inventing
new class-dependent features or underrepresenting class-

independent features. While percent-level variations may
be important for some applications, using classification
as a generator diagnostic is an important tool for expos-
ing the modeling of interclass shower variations.

1705.02355

67Calorimeter ML Surrogate Models

One image per 
calo layer

One network per particle type; 
input particle energy

ReLU to 
encourage sparsity

use layer i as input 
to layer i+1

Generator network

LA = Locally Aware, 
like a CNN



68Conditioning

Figure 4. Interpolation across physical range of x0 as a conditioning latent factor for e+ showers.
Note in the ATLAS coordinate system, x represents the vertical direction in this dataset. Each
point in the interpolation is an average of 10 showers, with each point along the traversal build
from an identical latent prior z.

Figure 5. Interpolation across physical range of ✓ as a conditioning latent factor for e+
showers, with ✓ increasing from left to right. Each point in the interpolation is an average
of 10 showers subtracted from the middle point along the interpolation path, with each point
along the traversal build from an identical latent prior z.

controllability of generation procedures, but much future work remains. In particular, a thorough
investigation around dynamics between the attribute estimation portion of the network, ⌅, and
the overall training objective should be pursued, particularly as it relates to the final fidelity of
the attribute estimates. In addition, future work should examine newer GAN formulations (as
outlined in Sec. 3) and their ability to improve image quality.
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[10] Paganini M, de Oliveira L and Nachman B 2017 (Preprint 1705.02355)

Fix noise, scan latent variable corresponding to energy

Fix noise, scan latent variable corresponding to x-position

Figure 2. Nearest GAN-generated neighbors (bottom) for seven random Geant4-generated
e+ showers (bottom) for the first layer (left), second layer (middle), and last layer (right) of the
calorimeter.

Figure 3. Interpolation across physical range of incident energy as a conditioning latent factor
for e+ showers, with energy increasing from 1 GeV to 100 GeV from left to right. Each point in
the interpolation is an average of 10 showers, with each point along the traversal build from an
identical latent prior z.

for seven Geant4 images and used to validate that (a) our model does not memorize shower
patterns, and (b) that the full space of displacements (both angular and positional) are explored.

At the nearest-neighbor level, the model produces convincing energy deposition patterns, as
shown in Figure 2. The model does not appear to memorize the training dataset. In addition,
positional variance (observed by noticing energy centroid deviations from the center of the
calorimeter image) is well explored by the GAN, as shown by GAN-generated images matching
all positions given by Geant4.

To further verify our models ability to condition on physical attributes, the latent space for
each conditioning variable is traversed, showing how the model learns about each conditioning
factor. In any practical setting, such conditioning mechanisms will need to be tuned to a high
level of fidelity.

To illustrate the model’s internal representation, incident energy, x0, and ✓ manifolds are
traversed at regular intervals along the trained range. In Figure 3, incident energy is traversed,
clearly showing more energetic behavior as the incident energy is increased from left to right.

Similarly, the latent space for x0 is traversed, and the resulting impact on generated image
is shown in Figure 4. We note that as x0 increases, shower position shifts downward, which is
consistent with the ATLAS coordinates used in the dataset described in Sec. 2.

Finally, as we traverse ✓ (Fig. 5) we illustrate the shower behavior dynamic using a di↵erence
between the middle point in interpolation space and each point along the ✓ traversal. As ✓
increases, we note that the width and dispersion decreases and the showers become significantly
more centralized2, which is consistent with the ATLAS definition of ✓.

7. Conclusion

In this work, we explore the ability of GANs to be conditioned on physically meaningful
attributes towards the ultimate goal of creating a viable, comprehensive solution for fast, high
fidelity simulation of electromagnetic calorimeters. Clearly, GANs show great potential for

2 In Figure 5, areas turning blue indicate that less energy is deposited in that particular section of the image at
a given point in latent space.

1711.08813



69Integration into real detector sim.
ATLAS Collaboration, 2109.02551

FastCalo
Sim V2Geant4

FastCaloSimv2

FastCalo
GAN

Geant4

Inner 
Detector Calorimeters Muon 

Spectrometer

Muons

Electrons 
Photons

Hadrons
FastCalo
Sim V2

Muon 
Punchthrough 

+Geant4

Geant4

Ekin < (8−16) GeV Ekin > (256 − 512) GeV(8−16) GeV < Ekin

Geant4
Ekin < 200 MeV

Ekin < 400 MeV
Other hadrons:

pions:

< (256 − 512) GeV

Our (ATLAS Collaboration) fast simulation (AF3) now 
includes a GAN at intermediate energies for pions



70Integration into real detector sim.
ATLAS Collaboration, 2109.02551

0 1 2 3 4 5

|η|

0.9
1

1.1
1.2
1.3
1.4

R
M

S 
FG

AN
/G

4 0 1 2 3 4 5
|η|

0.94

0.96

0.98

1

1.02

1.04

<E
> 

FG
AN

/G
4 0 1 2 3 4 5

|η|

35

40

45

50

55

60

65

70

<E
> 

an
d 

R
M

S 
[G

eV
]

ATLAS Simulation
  E=65.5 GeV±π

G4

FastCaloGAN

G4

FastCaloGAN

The GAN architecture 
is relatively simple, 

but it is able to match 
the energy scale and 

resolution well.

There is one GAN 
per η slice



71Integration into real detector sim.
ATLAS Collaboration, 2109.02551

Leading-Jet Number of Constituents

0.05

0.1

0.15

0.2

0.25

U
ni

t N
or

m
al

iz
ed

G4
AF2
AF3

4q→WZ→=13 TeV, W'(13 TeV)s
ATLASATLAS Simulation 

4q→WZ→=13 TeV, W'(13 TeV)s
>20 GeV, EMPFlow R=0.4 jets

T
Jet p

0 10 20 30 40 50 60 70
Leading-Jet Number of Constituents

0.6
0.8

1
1.2
1.4

AF
/G

4

Leading-Jet Mass [GeV]

0.01

0.02

0.03

0.04

0.05

0.06

0.07

U
ni

t N
or

m
al

iz
ed

G4
AF2
AF3

tt→=13 TeV, Z'(4 TeV)s
ATLASATLAS Simulation 

tt→=13 TeV, Z'(4 TeV)s
>200 GeV, UFO R=1.0 jets

T
Jet p

0 50 100 150 200 250 300 350 400
Leading-Jet Mass [GeV]

0.8
1

1.2

AF
/G

4

The new fast simulation 
(AF3) significantly improves 
jet substructure with respect 

to the older one (AF2)

Ideally, the same 
calibrations derived for full 

sim. (Geant4-based) can be 
applied to the fast sim.



72Integration into real detector sim.
ATLAS Collaboration, 2109.02551

10 210
Energy [GeV]

210

310

410

Av
er

ag
e 

C
PU

 ti
m

e 
/ E

ve
nt

 [m
s]

G4
AF3
AF2

ATLAS Simulation 
| < 0.25η , 0.20 < |γ = 13 TeV, s As expected, the 

fast sim. timing is 
independent of 
energy, while 

Geant4 requires 
more time for 
higher energy.



73Statistical Amplification

Common question: if we train on N events and sample M >> N 
events, do we have the statical power of M or N? 

No free lunch - only win with inductive bias.  Examples: 
factorization, symmetries, smoothness, …
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Common question: if we train on N events and sample M >> N 
events, do we have the statical power of M or N? 

2006.06685; 2202.07352

No free lunch - only win with inductive bias.  Examples: 
factorization, symmetries, smoothness, …
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Figure 2: Quantile error for the 1D camel back function for sampling (blue), fit (green), and
GAN (orange). We fit to and train on 100 data points, but also show (hypothetical) results
for larger data sets with 200, 300, 500 and 1000 data points (dotted blue). These results were
obtained using the same procedure as for the sample, but they have no influence on the GAN
or fit. Left to right we show results for 10, 20, and 50 quantiles.

populated 1D-phase space, the assumed functional value for the fit allows the data to have the
same statistical power as a dataset with no knowledge of the functional form that is 10 times
bigger. If we define the amplification factor as the ratio between asymptotic performance to
training events, the factor when using the fit information would be about 10. The question
is, how much is a GAN with its very basic assumptions worth, for instance in comparison to
this fit?

We introduce a simple generative model using the generator-discriminator structure of a
standard GAN. This architecture remains generic in the sense that we do not use specific
knowledge about the data structure or its symmetries in the network construction. Our setup
is illustrated in Fig. 3. All neural networks are implemented using PyTorch [48]. The
generator is a fully connected network (FCN). Its input consists of 1000 random numbers,
uniformly sampled from [�1, 1]. It is passed to seven layers with 256 nodes each, followed by
a final output layer with d nodes, where d is the number of phase space dimensions. To each
fully-connected layer we add a 50% dropout layer [49] to reduce over-fitting which is kept
active during generation. The generator uses the ELU activation function [50].

The discriminator is also a FCN. In a naive setup, our bi-modal density makes us especially
vulnerable to mode collapse, where the network simply ignores one of the two Gaussians. To
avoid it, we give it access to per-batch statistics in addition to individual examples using an
architecture inspired by DeepSets [51, 52]. This way its input consists of two objects, a data
point x 2 Rd and the full batch B 2 Rd,n, where n is the batch size and x corresponds to one
column in B. First, we calculate the di↵erence vector between x and every point in B, B� x
with appropriate broadcasting, so that B � x 2 Rd,n as well. This gives the discriminator a
handle on the distance of generated points. This distance is passed to an embedding function
� : Rd,n ! Rm,n, where m the size of the embedding. The embedding � is implemented as
three 1D-convolutions (256 filters, 256 filters, m filters) with kernel size 1, stride 1 and no
padding. Each of the convolutions uses a LeakyReLU [53] activation function with a slope
of 0.01. For the embedding size we choose m = 32.

We then use an aggregation function F : Rm,n ! Rm along the batch-size direction. The

5
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Measure thisWant this

remove detector distortions (unfolding) or parameter estimation

(or the parameters of the generative model)
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Measure thisWant this

If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)

For parameter estimation, replace true with θ

Inverse Problems
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Challenge: measured is hyperspectral and true is 
hypervariate … p(meas. | true) is intractable !!

If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)

Inverse Problems

For parameter estimation, replace true with θ
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Challenge: measured is hyperspectral and true is 
hypervariate … p(meas. | true) is intractable !!

However: we have simulators that we can 
use to sample from p(meas. | true) 

→ Simulation-based (likelihood-free) inference

If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)

For parameter estimation, replace true with θ

Inverse Problems
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I’ll briefly show you one solution to give you a 
sense of the power of likelihood-free inference.



81Reweighting

I’ll briefly show you one solution to give you a 
sense of the power of likelihood-free inference.

The solution will be built on reweighting

dataset 1: sampled from p(x)

dataset 2: sampled from q(x)

Create weights w(x) = q(x)/p(x) so that when dataset 1 
is weighted by w, it is statistically identical to dataset 2.
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I’ll briefly show you one solution to give you a 
sense of the power of likelihood-free inference.

The solution will be built on reweighting

Create weights w(x) = q(x)/p(x) so that when dataset 1 
is weighted by w, it is statistically identical to dataset 2.

What if we don’t (and can’t easily) know q and p?

Reweighting

dataset 1: sampled from p(x)

dataset 2: sampled from q(x)



83Classification for reweighting

Solution: train a neural network to 
distinguish the two datasets!

Fact*: Neutral networks learn to 
approximate the likelihood ratio = q(x)/p(x)

This turns the problem of density estimation 
(hard) into a problem of classification (easy)

(or something monotonically related to it in a known way)

*This is easy to prove.  If you have not seen it before, please ask!



84Proof of fact

Try yourself with BCE!

δL[ f, f′￼]
δf

=
∂L
∂f

−
d
dx

∂L
∂f′￼

= 0 Euler-Lagrange 
Equation

L[ f ] = ∑ ( f(xi) − c)2

≈ ∫ dx p(x, c) ( f(x) − c)2



85Proof of fact

L[ f ] = ∑ ( f(xi) − c)2

≈ ∫ dx p(x, c) ( f(x) − c)2

Try yourself with BCE!

δL[ f, f′￼]
δf

=
∂L
∂f

−
d
dx

∂L
∂f′￼

= 0 Euler-Lagrange 
Equation

Basically just a regular derivative: 

∫ dc p(x, c)( f(x) − c) = 0 ⟹ f(x) = E[c |x]
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Solution: train a neural network to 
distinguish the two datasets!

Fact*: Neutral networks learn to 
approximate the likelihood ratio = q(x)/p(x)

This turns the problem of density estimation 
(hard) into a problem of classification (easy)

(or something monotonically related to it in a known way)

*This is easy to prove.  If you have not seen it before, please ask!



87Example

Here, instead of emulating  directly, we learn p(x |θ) p(x |θ)
p(x |θ0)

(turns the problem of generation into classifi



88Example

Here, instead of emulating  directly, we learn p(x |θ) p(x |θ)
p(x |θ0)

(turns the problem of generation into classifi

Benefit: easy to 
integrate complex 

data structure 
(symmetries, etc.) 

Image: Linear Collider Detector Project

Downside: large 
weights when  is 

far from 
θ

θ0



89Classification for reweighting
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multiple continuous parameters θ?

*1506.02169

Easy - learn a 
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92Example Fit

2

same support1, the function w(x) = p0(x)/p1(x) is the
ideal per-event weight to morph the second simulation
into the first one. A key observation made by multiple
groups in the past is that w can be well-approximated
by training a machine learning classifier to distinguish
the two simulations. For example, let f(x) be a neural
network and trained with the binary cross-entropy loss:

loss(f(x)) = �

X

i20

log f(xi) �

X

i21

log(1 � f(xi)), (1)

where 0 and 1 represent sets of examples from the
two simulations. Then a well-known result is that2,
f(x)/(1 � f(x)) ⇡ p0(x)/p1(x). The benefit of param-
eterizing f as a neural network is that deep learning can
readily analyze all of ⌦, which was not possible with shal-
low learning attempts with a similar statistical founda-
tion. The closest attempt to a full phase space approach
directly tried to learn pi(x) using the full kinematic (i.e.
non-flavor) part of ⌦ [35, 40], but this is much harder
than learning the ratio.

An important reweighting scenario is when the two
simulations are from the same simulation program, but
with di↵erent model parameters, ✓. For example, when
model uncertainties are evaluated, one may want to
transform p✓(x) into p✓+�✓ (x). When these uncertainties
are profiled in a fit, it is important that the transfor-
mation procedure be able to continuously interpolate be-
tween model parameters. The neural network reweight-
ing approximation can be extended to this continuous
case by adding ✓ as a feature [38, 39]: f(x, ✓). In the
examples presented below, the training data are gener-
ated with a uniform distribution in ✓, but this probability
density can be optimized per application and can even be
discrete.

Even though generators have many parameters that
must be fit to data, gradient methods cannot be used di-
rectly with the models as the phase space they produce
is not usually di↵erentiable (or at least the derivative is
intractable) with respect to their model parameters. Sur-
rogate generative models built from neural networks can
be used for gradient-based parameter fitting, but may not
have su�cient quality to be reliable. Reweighting is a ro-
bust alternative to surrogate generative models. A neural
network-based continuous reweighting function is essen-
tially a di↵erentiable (in model parameters) version of the
original simulator and can be used to perform inference

1 In most physical applications, this is always the case. If there
are regions where p0(x)/p1(x) is far from unity, one can add
a regularization parameter to the training to mitigate large
weights, which may significantly reduce the statistical power of
the reweighted dataset. We found that this works well, but was
unnecessary for the examples presented in this paper.

2 See Appendix A for the derivation.

on the parameters themselves. This is especially pow-
erful for particle-level parameter tuning to data where
one sample with a computational expensive full detector
simulation can be continuously reweighted to other pa-
rameter points with the same detector model at no extra
simulation cost.

An ideal loss function used to fit model parameters
makes use of the full observable phase space. Typical
metrics such as the �2 between histogram approxima-
tions to probability densities become impractical when
⌦ is high dimensional. As described above, classifiers
are powerful tools for accessing all of the available infor-
mation. Therefore, one can use a classifier for the loss.
When a classifier trained to distinguish some ✓0 from a ✓1
performs poorly, then the two samples are close. While
using classification to quantify di↵erences between event
samples has been used for anomaly detection [41–43], we
are unaware of an example where it is used for parameter
fitting. The idea of using the classifier loss as a metric is
similar to the minimax strategy in Generative Adversar-
ial Networks [44], only in this context the generative part
is a reweighter and is trained independently. A more ele-
gant way of implementing this approach is to fit unknown
parameters to the values that minimize the nominal clas-
sifier loss. In particular, suppose that a reweighter neural
network f is trained as described above. Such a function
will satisfy

f(x, ✓) = argmax
f 0

X

i2✓0

log f 0(xi, ✓) +
X

i2✓

log(1 � f 0(xi, ✓))

(2)

for all ✓. Note that the f 0 in the first sum takes the
parameter ✓ and not ✓0, otherwise the discrimination task
would be trivial. Now, suppose there is a new sample ✓1
where ✓1 is unknown (for instance, ✓1 are collider data).
The claim is that if ✓⇤ is chosen as

✓⇤ = argmax
✓0

X

i2✓0

log f(xi, ✓
0) +

X

i2✓1

log(1 � f(xi, ✓
0))

(3)

then ✓⇤ = ✓1. As f minimizes the cross-entropy loss for
any ✓ (Eq. 2),

X

i2✓0

log f(xi, ✓1) +
X

i2✓1

log(1 � f(xi, ✓1))

�

X

i2✓0

log f(xi, ✓
⇤) +

X

i2✓1

log(1 � f(xi, ✓
⇤)) (4)

must hold. However, the converse must also be true since
✓⇤ minimizes the cross-entropy loss as well and therefore,
✓⇤ = ✓1. Since f is di↵erentiable, Eq. 3 can be solved us-
ing standard gradient-based methods. While Eq. 3 per-
forms the fit on the same particle-level phase space as
the reweighting, it can be readily extended to do the fit-
ting (via the classification loss) at detector-level while the

Step 1: Differentiable Surrogate Model

See also 1805.00020
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2

same support1, the function w(x) = p0(x)/p1(x) is the
ideal per-event weight to morph the second simulation
into the first one. A key observation made by multiple
groups in the past is that w can be well-approximated
by training a machine learning classifier to distinguish
the two simulations. For example, let f(x) be a neural
network and trained with the binary cross-entropy loss:

loss(f(x)) = �

X

i20

log f(xi) �

X

i21

log(1 � f(xi)), (1)

where 0 and 1 represent sets of examples from the
two simulations. Then a well-known result is that2,
f(x)/(1 � f(x)) ⇡ p0(x)/p1(x). The benefit of param-
eterizing f as a neural network is that deep learning can
readily analyze all of ⌦, which was not possible with shal-
low learning attempts with a similar statistical founda-
tion. The closest attempt to a full phase space approach
directly tried to learn pi(x) using the full kinematic (i.e.
non-flavor) part of ⌦ [35, 40], but this is much harder
than learning the ratio.

An important reweighting scenario is when the two
simulations are from the same simulation program, but
with di↵erent model parameters, ✓. For example, when
model uncertainties are evaluated, one may want to
transform p✓(x) into p✓+�✓ (x). When these uncertainties
are profiled in a fit, it is important that the transfor-
mation procedure be able to continuously interpolate be-
tween model parameters. The neural network reweight-
ing approximation can be extended to this continuous
case by adding ✓ as a feature [38, 39]: f(x, ✓). In the
examples presented below, the training data are gener-
ated with a uniform distribution in ✓, but this probability
density can be optimized per application and can even be
discrete.

Even though generators have many parameters that
must be fit to data, gradient methods cannot be used di-
rectly with the models as the phase space they produce
is not usually di↵erentiable (or at least the derivative is
intractable) with respect to their model parameters. Sur-
rogate generative models built from neural networks can
be used for gradient-based parameter fitting, but may not
have su�cient quality to be reliable. Reweighting is a ro-
bust alternative to surrogate generative models. A neural
network-based continuous reweighting function is essen-
tially a di↵erentiable (in model parameters) version of the
original simulator and can be used to perform inference

1 In most physical applications, this is always the case. If there
are regions where p0(x)/p1(x) is far from unity, one can add
a regularization parameter to the training to mitigate large
weights, which may significantly reduce the statistical power of
the reweighted dataset. We found that this works well, but was
unnecessary for the examples presented in this paper.

2 See Appendix A for the derivation.

on the parameters themselves. This is especially pow-
erful for particle-level parameter tuning to data where
one sample with a computational expensive full detector
simulation can be continuously reweighted to other pa-
rameter points with the same detector model at no extra
simulation cost.

An ideal loss function used to fit model parameters
makes use of the full observable phase space. Typical
metrics such as the �2 between histogram approxima-
tions to probability densities become impractical when
⌦ is high dimensional. As described above, classifiers
are powerful tools for accessing all of the available infor-
mation. Therefore, one can use a classifier for the loss.
When a classifier trained to distinguish some ✓0 from a ✓1
performs poorly, then the two samples are close. While
using classification to quantify di↵erences between event
samples has been used for anomaly detection [41–43], we
are unaware of an example where it is used for parameter
fitting. The idea of using the classifier loss as a metric is
similar to the minimax strategy in Generative Adversar-
ial Networks [44], only in this context the generative part
is a reweighter and is trained independently. A more ele-
gant way of implementing this approach is to fit unknown
parameters to the values that minimize the nominal clas-
sifier loss. In particular, suppose that a reweighter neural
network f is trained as described above. Such a function
will satisfy

f(x, ✓) = argmax
f 0

X

i2✓0

log f 0(xi, ✓) +
X

i2✓

log(1 � f 0(xi, ✓))

(2)

for all ✓. Note that the f 0 in the first sum takes the
parameter ✓ and not ✓0, otherwise the discrimination task
would be trivial. Now, suppose there is a new sample ✓1
where ✓1 is unknown (for instance, ✓1 are collider data).
The claim is that if ✓⇤ is chosen as

✓⇤ = argmax
✓0

X

i2✓0

log f(xi, ✓
0) +

X

i2✓1

log(1 � f(xi, ✓
0))

(3)

then ✓⇤ = ✓1. As f minimizes the cross-entropy loss for
any ✓ (Eq. 2),

X

i2✓0

log f(xi, ✓1) +
X

i2✓1

log(1 � f(xi, ✓1))

�

X

i2✓0

log f(xi, ✓
⇤) +

X

i2✓1

log(1 � f(xi, ✓
⇤)) (4)

must hold. However, the converse must also be true since
✓⇤ minimizes the cross-entropy loss as well and therefore,
✓⇤ = ✓1. Since f is di↵erentiable, Eq. 3 can be solved us-
ing standard gradient-based methods. While Eq. 3 per-
forms the fit on the same particle-level phase space as
the reweighting, it can be readily extended to do the fit-
ting (via the classification loss) at detector-level while the

2

same support1, the function w(x) = p0(x)/p1(x) is the
ideal per-event weight to morph the second simulation
into the first one. A key observation made by multiple
groups in the past is that w can be well-approximated
by training a machine learning classifier to distinguish
the two simulations. For example, let f(x) be a neural
network and trained with the binary cross-entropy loss:

loss(f(x)) = �

X

i20

log f(xi) �

X

i21

log(1 � f(xi)), (1)

where 0 and 1 represent sets of examples from the
two simulations. Then a well-known result is that2,
f(x)/(1 � f(x)) ⇡ p0(x)/p1(x). The benefit of param-
eterizing f as a neural network is that deep learning can
readily analyze all of ⌦, which was not possible with shal-
low learning attempts with a similar statistical founda-
tion. The closest attempt to a full phase space approach
directly tried to learn pi(x) using the full kinematic (i.e.
non-flavor) part of ⌦ [35, 40], but this is much harder
than learning the ratio.

An important reweighting scenario is when the two
simulations are from the same simulation program, but
with di↵erent model parameters, ✓. For example, when
model uncertainties are evaluated, one may want to
transform p✓(x) into p✓+�✓ (x). When these uncertainties
are profiled in a fit, it is important that the transfor-
mation procedure be able to continuously interpolate be-
tween model parameters. The neural network reweight-
ing approximation can be extended to this continuous
case by adding ✓ as a feature [38, 39]: f(x, ✓). In the
examples presented below, the training data are gener-
ated with a uniform distribution in ✓, but this probability
density can be optimized per application and can even be
discrete.

Even though generators have many parameters that
must be fit to data, gradient methods cannot be used di-
rectly with the models as the phase space they produce
is not usually di↵erentiable (or at least the derivative is
intractable) with respect to their model parameters. Sur-
rogate generative models built from neural networks can
be used for gradient-based parameter fitting, but may not
have su�cient quality to be reliable. Reweighting is a ro-
bust alternative to surrogate generative models. A neural
network-based continuous reweighting function is essen-
tially a di↵erentiable (in model parameters) version of the
original simulator and can be used to perform inference

1 In most physical applications, this is always the case. If there
are regions where p0(x)/p1(x) is far from unity, one can add
a regularization parameter to the training to mitigate large
weights, which may significantly reduce the statistical power of
the reweighted dataset. We found that this works well, but was
unnecessary for the examples presented in this paper.

2 See Appendix A for the derivation.

on the parameters themselves. This is especially pow-
erful for particle-level parameter tuning to data where
one sample with a computational expensive full detector
simulation can be continuously reweighted to other pa-
rameter points with the same detector model at no extra
simulation cost.

An ideal loss function used to fit model parameters
makes use of the full observable phase space. Typical
metrics such as the �2 between histogram approxima-
tions to probability densities become impractical when
⌦ is high dimensional. As described above, classifiers
are powerful tools for accessing all of the available infor-
mation. Therefore, one can use a classifier for the loss.
When a classifier trained to distinguish some ✓0 from a ✓1
performs poorly, then the two samples are close. While
using classification to quantify di↵erences between event
samples has been used for anomaly detection [41–43], we
are unaware of an example where it is used for parameter
fitting. The idea of using the classifier loss as a metric is
similar to the minimax strategy in Generative Adversar-
ial Networks [44], only in this context the generative part
is a reweighter and is trained independently. A more ele-
gant way of implementing this approach is to fit unknown
parameters to the values that minimize the nominal clas-
sifier loss. In particular, suppose that a reweighter neural
network f is trained as described above. Such a function
will satisfy

f(x, ✓) = argmax
f 0

X

i2✓0

log f 0(xi, ✓) +
X

i2✓

log(1 � f 0(xi, ✓))

(2)

for all ✓. Note that the f 0 in the first sum takes the
parameter ✓ and not ✓0, otherwise the discrimination task
would be trivial. Now, suppose there is a new sample ✓1
where ✓1 is unknown (for instance, ✓1 are collider data).
The claim is that if ✓⇤ is chosen as

✓⇤ = argmax
✓0

X

i2✓0

log f(xi, ✓
0) +

X

i2✓1

log(1 � f(xi, ✓
0))

(3)

then ✓⇤ = ✓1. As f minimizes the cross-entropy loss for
any ✓ (Eq. 2),

X

i2✓0

log f(xi, ✓1) +
X

i2✓1

log(1 � f(xi, ✓1))

�

X

i2✓0

log f(xi, ✓
⇤) +

X

i2✓1

log(1 � f(xi, ✓
⇤)) (4)

must hold. However, the converse must also be true since
✓⇤ minimizes the cross-entropy loss as well and therefore,
✓⇤ = ✓1. Since f is di↵erentiable, Eq. 3 can be solved us-
ing standard gradient-based methods. While Eq. 3 per-
forms the fit on the same particle-level phase space as
the reweighting, it can be readily extended to do the fit-
ting (via the classification loss) at detector-level while the

Step 1: Differentiable Surrogate Model

Step 2: Gradient-based optimization

See also 1805.00020
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TABLE II. Simultaneous fit for three parameters. The top
row shows the results for the validation fit where we knew the
target parameters, and the bottom row is the blinded fit. The
reported numbers are the mean and standard deviation over
20 runs with di↵erent model initializations.

Parameter Target value Fit value

V
a
l.

TimeShower:alphaSvalue 0.1200 0.1195± 0.0022

StringZ:aLund 0.6000 0.6276± 0.0373

StringFlav:probStoUD 0.1200 0.1203± 0.0071

B
li
n
d
e
d TimeShower:alphaSvalue 0.1700 0.1707± 0.0022

StringZ:aLund 0.7500 0.7425± 0.0453

StringFlav:probStoUD 0.1400 0.1422± 0.0065

0.10 0.11 0.12 0.13 0.14 0.15
TimeShower:alphaSvalue

0.5

0.6

0.7

0.8

0.9

S
t
r
i
n
g
Z
:
a
L
u
n
d

Loss�

Starting point

Gradient descent path

Target value

0.669

0.670

0.680

0.690
0.700
0.710

FIG. 3. Two-dimensional slice through the loss surface for
the fit described in Table II. Markers indicate the starting
point at nominal values, the gradient descent path and the
target values. From the starting point, gradient descent using
Adam overshoots the minimum in its first two epochs before
it converges to the target value.

to generate new full-detector simulated samples with a
di↵erent particle-level simulation when at least one fully
simulated sample exists. This could be particularly use-
ful for systematic uncertainties computed using pairs of
simulations (e.g. comparing Pythia and Herwig) and for
legacy data analysis in which the original detector sim-
ulation is no longer available [71]. Continuous reweight-
ing will enable systematic parameter variations for un-
certainty estimation that were not possible before (most
parameters). Such variations can even be profiled during
any statistical test that fits phase space regions sensi-
tive to the varied nuisance parameters. Finally, the full
power of Dctr can be used for parameter tuning. Unlike
traditional tuning which use unfolded data that are usu-
ally one-dimensional and without observable-observable
correlations, a new paradigm is now possible were high-
dimensional detector-level data can be used directly. The
full power of the data can be utilized and all of the cor-

relations are correctly accounted for in the fit. For the
first time, this may allow for proper covariance matri-
ces (and thus correlated uncertainties) to be determined
for simulation parameter values. All of these opportuni-
ties illustrate the broad applicability of full phase-space
reweighting and parameter tuning and the power Dctr

to extend the scope, precision, and accuracy of collider-
based particle physics analyses.
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Figure 2. Examples of unfolding log10(x) for samples of 105 events. The response matrix (left),
unfolded and gen distributions (middle), and unfolding correlation matrix (right) are shown for the
electron (top), Sigma (middle), and DNN (bottom) methods.

and Sigma methods show significant correlations beyond neighboring bins in areas where

the resolution is poor, and even some correlations between distant bins are observed. In

contrast, the DNN method has the most diagonal matrix, where the non-zero o↵-diagonal

elements are mostly small correlations between neighboring bins, and no correlations be-

tween far apart bins is observed. The average global correlation coe�cients ⇢avg [69] of

these matrices are presented in Table 1, and a clear reduction is observed when using the

DNN method. In summary, the DNN method directly improves the resolution, which is

seen from reduced correlations, and improves mis-reconstruction (e.g. in the presence of

QED radiation), which is seen from the absence of distant correlations.

Figure 4 examines the statistical errors and the global correlation coe�cients [69] of

– 6 –

0

0.1

0.2

0.3

0.4

0.5

0.6

2.5− 2− 1.5− 1− 0.5− 0
Obs log10(x), e

2.5−

2−

1.5−

1−

0.5−

0

G
en

 lo
g1

0(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

Normalized response matrix, electron

2.5− 2− 1.5− 1− 0.5− 0
log10(x)

0
2000
4000
6000
8000
10000
12000
14000
16000

Ev
en
ts

Unfolded

Gen

Unfolded distribution, electron

1−
0.8−

0.6−

0.4−

0.2−

0
0.2
0.4
0.6
0.8
1

2.5− 2− 1.5− 1− 0.5− 0
log10(x)

2.5−

2−

1.5−

1−

0.5−

0

lo
g1
0(
x)

1−
0.8−

0.6−

0.4−

0.2−

0
0.2
0.4
0.6
0.8
1

Correlation coefficients, electron

0

0.1

0.2

0.3

0.4

0.5

0.6

2.5− 2− 1.5− 1− 0.5− 0
Obs log10(x), eSigma

2.5−

2−

1.5−

1−

0.5−

0

G
en

 lo
g1

0(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

Normalized response matrix, Sigma

2.5− 2− 1.5− 1− 0.5− 0
log10(x)

0

2000

4000

6000

8000

10000

12000

14000

16000

Ev
en
ts

Unfolded

Gen

Unfolded distribution, Sigma

1−
0.8−

0.6−

0.4−

0.2−

0
0.2
0.4
0.6
0.8
1

2.5− 2− 1.5− 1− 0.5− 0
log10(x)

2.5−

2−

1.5−

1−

0.5−

0
lo
g1
0(
x)

1−
0.8−

0.6−

0.4−

0.2−

0
0.2
0.4
0.6
0.8
1

Correlation coefficients, Sigma

0

0.1

0.2

0.3

0.4

0.5

0.6

2.5− 2− 1.5− 1− 0.5− 0
Obs log10(x), DNN

2.5−

2−

1.5−

1−

0.5−

0

G
en

 lo
g1

0(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

Normalized response matrix, DNN

2.5− 2− 1.5− 1− 0.5− 0
log10(x)

0

2000

4000

6000

8000

10000

12000

14000

16000

Ev
en
ts

Unfolded

Gen

Unfolded distribution, DNN

1−
0.8−

0.6−

0.4−

0.2−

0
0.2
0.4
0.6
0.8
1

2.5− 2− 1.5− 1− 0.5− 0
log10(x)

2.5−

2−

1.5−

1−

0.5−

0

lo
g1
0(
x)

1−
0.8−

0.6−

0.4−

0.2−

0
0.2
0.4
0.6
0.8
1

Correlation coefficients, DNN

Figure 2. Examples of unfolding log10(x) for samples of 105 events. The response matrix (left),
unfolded and gen distributions (middle), and unfolding correlation matrix (right) are shown for the
electron (top), Sigma (middle), and DNN (bottom) methods.
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Figure 2. Examples of unfolding log10(x) for samples of 105 events. The response matrix (left),
unfolded and gen distributions (middle), and unfolding correlation matrix (right) are shown for the
electron (top), Sigma (middle), and DNN (bottom) methods.

and Sigma methods show significant correlations beyond neighboring bins in areas where

the resolution is poor, and even some correlations between distant bins are observed. In

contrast, the DNN method has the most diagonal matrix, where the non-zero o↵-diagonal

elements are mostly small correlations between neighboring bins, and no correlations be-

tween far apart bins is observed. The average global correlation coe�cients ⇢avg [69] of

these matrices are presented in Table 1, and a clear reduction is observed when using the

DNN method. In summary, the DNN method directly improves the resolution, which is

seen from reduced correlations, and improves mis-reconstruction (e.g. in the presence of

QED radiation), which is seen from the absence of distant correlations.

Figure 4 examines the statistical errors and the global correlation coe�cients [69] of

– 6 –

Learn tailored observables; no reason detector level 
needs to be same observable as particle level!

Classical Observables Neural Network
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2109.13243

Figure 2. A histogram of the weights for each method. By definition, the weights for the cINN are
0.1, since 10 events are sampled from the density for each event in ‘data’. There are correspondingly
ten times more events for the cINN than for OmniFold. For OmniFold, the nominal weights are
nearly all one since the data and simulation are statistically identical.

Figure 3. The measured histograms of ⌧1 (left) and ⌧2 (right) using OmniFold and the cINN
methods. The error band represents the modeling uncertainty from comparing Pythia and Her-
wig.

– 15 –

See Vinny’s talk for more!

Figure 4. The measured histogram of ⌧21 = ⌧2/⌧1 using OmniFold and the cINN methods. The
error band represents the modeling uncertainty from comparing Pythia and Herwig.

– 16 –

ML allows us to do 
unfolding unbinned and 

in high dimensions!



100

Theory of everything

Physics simulators

Detector-level observables

Pattern recognition

Nature

Detector-level observables

Pattern recognition

Experiment

Parameter 
estimation / 
unfolding

Data curation

Inference
calibration

clustering

tracking


noise mitigation

particle identification


…

Fast 
simulation / 

phase space
Online 

processing & 
quality control

Particle Physics + Machine Learning

Experimental 
Design

Dimensionality 
reduction;


“signal” versus 
“background”

(I)

(II) (III)



101Conclusions and Outlook

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

AI/ML has a great potential to 
enhance, accelerate, and 
empower all areas of HEP

There are applications now that 
were unthinkable before ML 

and new ideas are incoming!

We need you to help develop, 
adapt, and deploy new methods

I’ve provided some specific examples today, but 
see the Living Review, 2102.02770, for more!
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Note that I could not cover everything!  e.g. equivariance


